2014中考数学 第四部分 专题二 规律探究题
- 格式:ppt
- 大小:1.45 MB
- 文档页数:5
猜想、规律与探索一 、选择题1. (浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )A .28B .56C .60D . 1243. (广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 .4. (内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)5. (湖南益阳,16,8分)观察下列算式:① 1 × 3 - 22= 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1④……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.6.(广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有个数;(3)求第n 行各数之和.二、填空题1. (四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。
2. (广东东莞,10,4分)如图(1) ,将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△1D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2F 2,如图(3) 中阴影部分;如此下去…,则正六角星形A n F n B n D n C n E n F n 的面积为.第1个图形第 2 个图形 第3个图形第 4 个图形第 18题3. (湖南常德,8,3分)先找规律,再填数: 1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 4. (广东湛江20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)三 解答题1. (山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .2. (湖南邵阳,23,8分)数学课堂上,徐老师出示了一道试题:如图(十)所示,在正三角形ABC 中,M 是BC 边(不含端点B ,C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点,若∠AMN=60°,求证:AM=MN 。
数学中考专题突破专题一 数学思想问题⊙热点一:数形结合思想1.(2013年甘肃天水)函数y 1=x 和y 2=1x的图象如图Z1-8,则使y 1>y 2成立的x 取值范围是( )A .x <-1或x >1B .x <-1或0<x <1C .-1<x <0或x >1D .-1<x <0或0<x <1图Z1-8 图Z1-92.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图Z1-9),则使y 1>y 2成立的x 的取值范围是________________.3.(2012年广东湛江)某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y (单位:万亩)随着时间x (单位:年)逐年成直线上升,y 与x 之间的函数关系如图Z1-10.(1)求y 与x 之间的函数关系式(不必注明自变量x 的取值范围); (2)该市2012年荔枝种植面积为多少万亩?图Z1-10⊙热点二:分类讨论思想1.(2013年贵州贵阳)如图Z1-11,M 是Rt △ABC 的斜边BC 上异于B ,C 的一定点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有( )A .1条B .2条C .3条D .4条图Z1-11 图Z1-122.(2013年福建龙岩)如图Z1-12,在平面直角坐标系xOy 中,A (0,2),B (0,6),动点C 在直线y =x 上.若以A ,B ,C 三点为顶点的三角形是等腰三角形,则点C 的个数是( )A .2个B .3个C .4个D .6个 ⊙热点三:转化与化归思想 1.(2013年广东)如图Z1-13,3个小正方形的边长都为1,则图中阴影部分面积之和是__________(结果保留π).图Z1-132.(2013年福建福州)如图Z1-14,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是__________.图Z1-14 图Z1-153.(2013年广西贺州)如图Z1-15,A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是__________.⊙热点四:整体思想1.(2013年江苏徐州)当m +n =3时,式子m 2+2mn +n 2的值为__________.2.(2012年湖北黄冈)已知实数x 满足x +1x =3,则x 2+1x2的值为__________.3.(2012年江西南昌)已知(m -n )2=8,(m +n )2=2,则m 2+n 2=( ) A .10 B .6 C .5 D .3专题二 规律探究题⊙热点一:数字或代数式的猜想1.(2012年广东肇庆)观察下列一组数:23,45,67,89,…,它们是按一定规律排列的,那么这一组数的第k 个数是__________(k 为正整数).2.(2013年广西南宁)有这样一组数据a 1,a 2,a 3,…,a n ,满足以下规律:a 1=12,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1(n ≥2,且n 为正整数),则a 2013的值为__________(结果用数字表示).3.(2012年广东汕头)观察下列等式:第1个等式:a 1=11×3=12×⎝⎛⎭⎫1-13; 第2个等式:a 2=13×5=12×⎝⎛⎭⎫13-15; 第3个等式:a 3=15×7=12×⎝⎛⎭⎫15-17; 第4个等式:a 4=17×9=12×⎝⎛⎭⎫17-19; ……请解答下列问题:(1)按以上规律列出第5个等式:a 5=__________=__________;(2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.⊙热点二:几何图形中的猜想1.(2013年江西)观察下列图形中点的个数(如图Z2-3),若按其规律再画下去,可以得到第n 个图形中所有点的个数为__________(用含n 的代数式表示).图Z2-32.(2013年广东深圳)如图Z2-4,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形……按这样的规律下去,第6幅图中有________个正方形.图Z2-43.(2013年浙江绍兴)如图Z2-5,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2,…,第n次平移将矩形A n-1B n-1C n-1D n-1沿A n-B n-1的方向平移5个单位,得到矩形A n B n C n D n(n>2).1(1)求AB1和AB2的长;(2)若AB n的长为56,求n的值.图Z2-5专题三开放探索题⊙热点一:条件开放与探索1.(2013年黑龙江绥化)如图Z3-4,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件________,使得△EAB≌△BCD.图Z3-42.如图Z3-5,P是四边形ABCD的边DC上的一个动点,当四边形ABCD满足条件__________时,△PBA的面积始终保持不变(注:只需填上你认为正确的一种条件即可,不必考虑所有可能的情形).图Z3-53.如图Z3-6,D,E分别是△ABC的边AB,AC上的点,则使△AED∽△ABC的条件是__________.图Z3-6⊙热点二:结论开放与探索(2012年内蒙古赤峰)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过点(1,1);②当x>0时,y随x的增大而减小,这个函数的解析式是________(写出一个即可).⊙热点三:策略开放与探索(2012年湖北武汉)已知在△ABC中,AB=2 5,AC=4 5,BC=6.(1)如图Z3-7(1),点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图Z3-7(2),是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).(1) (2)图Z3-7专题四 阅读理解型问题⊙热点一:阅读试题所提供新定义、新定理,解决新问题 1.(2013年上海)当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.2.(2012年湖南张家界)阅读材料:对于任何实数,我们规定符号⎪⎪⎪⎪⎪⎪a c b d 的意义是⎪⎪⎪⎪⎪⎪a c b d =ad -bc .例如:⎪⎪⎪⎪⎪⎪1 23 4=1×4-2×3=-2,⎪⎪⎪⎪⎪⎪-2 43 5=(-2)×5-4×3=-22.(1)按照这个规定,请你计算⎪⎪⎪⎪⎪⎪5 67 8的值;(2)按照这个规定,请你计算:当x 2-4x +4=0时,⎪⎪⎪⎪⎪⎪x +1 2x x -1 2x -3的值.⊙热点二:阅读试题信息,归纳总结提炼数学思想方法1.(2013年湖北黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制 0 1 2 3 4 5 6 … 二进位制 0 1 10 11 100 101 110 …请将二进位制数10101010(二)写成十进位制数为______________. 2.(2013年四川凉山州)先阅读以下材料,然后解答问题:材料:将二次函数y =-x 2+2x +3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).解:在抛物线y =-x 2+2x +3图象上任取两点A (0,3),B (1,4),由题意知:点A 向左平移1个单位得到A ′(-1,3),再向下平移2个单位得到A ″(-1,1);点B 向左平移1个单位得到B ′(0,4),再向下平移2个单位得到B ″(0,2).设平移后的抛物线的解析式为y =-x 2+bx +c .则点A ″(-1,1),B ″(0,2)在抛物线上.可得:⎩⎪⎨⎪⎧ -1-b +c =1,c =2.解得⎩⎪⎨⎪⎧b =0,c =2. 所以平移后的抛物线的解析式为y =-x 2+2. 根据以上信息解答下列问题:将直线y =2x -3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.⊙热点三:阅读试题信息,借助已有方法或通过归纳探索解决新问题 1.(2012年湖北十堰)阅读材料:例:说明代数式x 2+1+(x -3)2+4的几何意义,并求它的最小值. 解:x 2+1+(x -3)2+4=(x -0)2+12+(x -3)2+22,如图Z4-5,建立平面直角坐标系,点P (x,0)是x 轴上一点,则(x -0)2+12可以看成点P 与点A (0,1)的距离,(x -3)2+22可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段P A 与PB 的长度之和,它的最小值就是P A +PB 的最小值.设点A 关于x 轴的对称点为A ′,则P A =P A ′,因此,求P A +PB 的最小值,只需求P A ′+PB 的最小值,而点A ′,B 间的直线段距离最短,所以P A ′+PB 的最小值为线段A ′B 的长度.为此,构造直角三角形A ′CB ,因为A ′C =3,CB =3,所以A ′B =3 2,即原式的最小值为3 2.图Z4-5根据以上阅读材料,解答下列问题:(1)代数式(x -1)2+12+(x -2)2+9的值可以看成平面直角坐标系中点P (x,0)与点A (1,1)、点B ________的距离之和(填写点B 的坐标);(2)代数式x 2+49+x 2-12x +37的最小值为________________.2.(2012年江苏盐城)[知识迁移]当a >0,且x >0时,因为⎝⎛⎭⎪⎫x -a x 2≥0,所以x -2 a +a x ≥0,从而x +a x ≥2 a (当x =a 时,取等号).记函数y =x +ax(a >0,x >0).由上述结论,可知:当x =a 时,该函数有最小值为2 a .[直接应用]已知函数y 1=x (x >0)与函数y 2=1x(x >0),则当x =________时,y 1+y 2取得最小值为________.[变形应用]已知函数y 1=x +1(x >-1)与函数y 2=(x +1)2+4(x >-1),求y 2y 1的最小值,并指出取得该最小值时相应的x 的值.[实际应用]已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设汽车一次运输路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本最低?最低是多少元?专题五方案与设计⊙热点一:图案设计1.(2012年黑龙江牡丹江)如图Z5-4,已知一个等腰三角形的腰长为5,底边长为8,将该三角形沿底边上的高剪成两个三角形,用这两个三角形能拼成几种平行四边形?请画出所拼的平行四边形,直接写出它们的对角线的长,并画出体现解法的辅助线.图Z5-42.(2013年江苏无锡)如图Z5-5,下面给出的正多边形的边长都是20 cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明).(1)将图Z5-5(1)中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图Z5-5(2)中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图Z5-5(3)中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.图Z5-5⊙热点二:方案设计1.(2013年广西桂林)在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x的函数关系式;(2)如图Z5-6在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?图Z5-62.(2013年广西贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?⊙热点三:最值问题1.(2012年四川泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价).2.(2013年江苏南通)某公司营销A,B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(单位:万元)与销售产品x(单位:吨)之间存在二次函数关系y=ax2+bx.当x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(单位:万元)与销售产品x(单位:吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?专题六 巧解客观题⊙热点一:代入法1.(2011年山东济宁)已知关于x 的方程x 2+bx +a =0的一个根是-a (a ≠0),则a -b 值为( )A .-1B .0C .1D .22.(2011年广东肇庆)方程组⎩⎪⎨⎪⎧x -y =2,2x +y =4的解是( )A.⎩⎪⎨⎪⎧ x =1,y =2B.⎩⎪⎨⎪⎧ x =3,y =1 C.⎩⎪⎨⎪⎧ x =0,y =-2 D.⎩⎪⎨⎪⎧x =2,y =0 ⊙热点二:特殊元素法(2013年广东)已知实数a ,b ,若a >b ,则下列结论正确的是( ) A .a -5<b -5 B .2+a <2+b C.a 3<b3D .3a >3b ⊙热点三:排除(筛选)法1.(2013年江苏淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为( )A .5B .7C .5或7D .62.(2011年海南)如图Z6-3,将平行四边形ABCD 折叠,使顶点D 恰好落在AB 边上的点M 处,折痕为AN ,那么对于结论①MN ∥BC ;②MN =AM .下列说法正确的是( )图Z6-3A .①②都对B .①②都错C .①对②错D .①错②对3.(2013年四川绵阳)设“”“”“”分别表示三种不同的物体,现用天平秤两次,情况如图Z6-4,那么、、这三种物体按质量从大到小排列应为( )图Z6-4A.、、B.、、C.、、D.、、 ⊙热点四:图解法1.(2013年浙江义乌)已知两点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y =3x的图象上,当x 1>x 2>0时,下列结论正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0 C .y 1<y 2<02.如图Z6-5,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数y =1x的图象上,则图中阴影部分的面积等于____________.图Z6-53.(2013年江苏南通)小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地,他们离出发地的距离s (单位: km)和行驶时间t (单位:h)之间的函数关系的图象如图Z6-6,根据图中提供的信息,有下列说法:图Z6-6①他们都行驶了20 km ; ②小陆全程共用了1.5 h ;③小李与小陆相遇后,小李的速度小于小陆的速度; ④小李在途中停留了0.5 h. 其中正确的有( )A .4个B .3个C .2个D .1个专题七函数与图象⊙热点一:图象信息题1.如图Z7-7,二次函数y=-x2-2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S△AOP=3,则点P的坐标是()图Z7-7A.(-3,-3)B.(1,-3)C.(-3,-3)或(-3,1)D.(-3,-3)或(1,-3)2.(2013年山东菏泽)已知b<0时,二次函数y=ax2+bx+a2-1的图象是下列4个图之一.根据图象分析,a的值等于()A.-2 B.-1C.1 D.2⊙热点二:代数几何综合题1.(2013年湖南永州)如图Z7-8,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A,B两点.(1)写出A,B两点的坐标(坐标用m表示);(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;(3)设以AB为直径的⊙M与y轴交于C,D两点,求CD的长.图Z7-82.(2013年四川资阳节选)如图Z7-9,四边形ABCD 是平行四边形,过点A ,C ,D 作抛物线y =ax 2+bx +c (a ≠0),与x 轴的另一交点为E ,连接CE ,点A ,B ,D 的坐标分别为(-2,0),(3,0),(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l 交x 轴于点F ,交线段CD 于点K ,点M ,N 分别是直线l 和x 轴上的动点,连接MN ,当线段MN 恰好被BC 垂直平分时,求点N 的坐标.图Z7-9⊙热点三:函数探索开放题 (2013年四川雅安)如图Z7-10(1),已知抛物线y =ax 2+bx +c 经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值; (3)如图Z7-10(2),若E 是线段AD 上的一个动点(E 与A ,D 不重合),过E 点作平行于y轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S .①求S 与m 的函数关系式; ②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.(1) (2)图Z7-10专题八三角形和四边形⊙热点一:与三角形、四边形有关的计算、证明1.(2013年吉林长春)如图Z8-3,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD,CD.若∠B=65°,则∠ADC 的大小为________ .图Z8-32.(2013年河南)如图Z8-4,在矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为________.图Z8-43.(2013年江苏扬州)如图Z8-5,在△ABC中,∠ACB=90°,AC=BC,点D在边AB 上,连接CD,将线段CD绕点C顺时针旋转90°至CE的位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD·AB,求证:四边形ADCE是正方形.图Z8-5⊙热点二:与三角形、四边形有关的操作探究题1.(2013年湖南湘潭)在数学活动课中,小辉将边长为2和3的2个正方形放置在直线l 上,如图Z8-6(1),他连接AD,CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图Z8-6(2),试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF 绕O 点逆时针旋转,使点E 旋转至直线l 上,如图Z8-6(3),请你求出CF 的长.(1) (2) (3)图Z8-62.(2013年湖北武汉节选)已知在四边形ABCD 中,E ,F 分别是AB ,AD 边上的点,DE 与CF 交于点G .(1)如图Z8-7(1),若四边形ABCD 是矩形,且DE ⊥CF .求证DE CF =ADCD;(2)如图Z8-7(2),若四边形ABCD 是平行四边形.试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论.(1) (2)图Z8-7专题九 圆⊙热点一:与圆有关的计算、操作题1.(2013年江苏盐城)如图Z9-10,将⊙O 沿弦AB 折叠,使 AB 经过圆心O ,则∠OAB=________.图Z9-10 图Z9-112.(2013年江苏宿迁)如图Z9-11,AB 是半圆O 的直径,且AB =8,点C 为半圆上的一点.将此半圆沿BC 所在的直线折叠,若 BC恰好过圆心O ,则图中阴影部分的面积是________(结果保留π).3.(2013年江苏盐城)实践操作:如图Z9-12,△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).(1)①作∠BAC 的平分线,交BC 于点O ;②以O 为圆心,OC 为半径作圆.(2)综合运用:在你所作的图中,①AB 与⊙O 的位置关系是________(直接写出答案); ②若AC =5,BC =12,求⊙O 的半径.图Z9-12⊙热点二:圆与函数图象的综合 1.(2013年山东潍坊)为了改善市民的生活环境,我市在某河滨空地处修建一个如图Z9-13所示的休闲文化广场,在Rt △ABC 内修建矩形水池DEFG ,使顶点D ,E 在斜边AB 上,F ,G 分别在直角边BC ,AC 上;又分别以AB ,BC ,AC 为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中AB =24 3米,∠BAC =60°.设EF =x 米,DE =y 米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的13?图Z9-132.(2013年四川巴中)如图Z9-14,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P交y轴的正半轴于点C.(1)求经过A,B,C三点的抛物线所对应的函数解析式;(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;(3)试说明直线MC与⊙P的位置关系,并证明你的结论.图Z9-14⊙热点三:圆有关的动态题1.(2013年福建泉州)某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图Z9-15,甲、乙两点分别从直径的两端点 A ,B 以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l (单位:cm)与时间t (单位:s)满足关系:l =12t 2+32t (t ≥0),乙以4 cm/s 的速度匀速运动,半圆的长度为 21 cm. (1)甲运动 4 s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间? (3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?图Z9-152.(2013年湖北荆门)如图Z9-16,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M ,C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E .(1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)延长DC ,FP 交于点G ,连接OE 并延长交直线DC 于H (如图Z9-17),问是否存在点P ,使△EFO ∽△EHG (E ,F ,O 分别与E ,H ,G 为对应点),如果存在,试求(2)中x 和y 的值,如果不存在,请说明理由.图Z9-16 图Z9-17专题十 动态问题⊙热点一:点动(2013年广西钦州)如图Z10-6,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.图Z10-6⊙热点二:线动1.如图Z10-7,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC =60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()图Z10-7A BC D2.如图Z10-8,已知O(0,0),A(4,0),B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边OA,AB,BO作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O 时,它们都停止运动.当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围.图Z10-8⊙热点三:面动1.(2013年江苏南京)如图Z10-9,⊙O1,⊙O2的圆心在直线l上,⊙O1的半径为2 cm,⊙O2的半径为3 cm.O1O2=8 cm,⊙O1以1 m/s的速度沿直线l向右运动,7s后停止运动.在此过程中,⊙O1和⊙O2没有出现的位置关系是()A.外切B.相交C.内切D.内含图Z10-9 图Z10-102.(2013年山东淄博)如图Z10-10,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt △OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(2,2) B.(2,2)C.(2,2) D.(2,2)3.(2013年江苏连云港)如图Z10-11,在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.图Z10-11中考数学基础题强化提高测试1时间:45分钟满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.在-3,0,-2 2,2四个数中,最小的数是( ) A .-3 B .0 C .-2 2 D. 2 2.下列运算正确的是( ) A .a 2·a 3=a 5 B .x 3-x =x 2C.a 2+b 2=a +b D .(a -1)2=a 2-1 3.已知,如图J1-1,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )图J1-1A .40°B .50°C .60°D .70°4.不等式组⎩⎪⎨⎪⎧3x +2>-4,-(x -4)≥1的解集在数轴上表示正确的是( )A BC D5.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图J1-2所示的折线统计图,下列说法正确的是( )图J1-2A .平均数是58B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月 6.如图J1-3,AB 是⊙O 的直径,AB =4,AC 是弦,AC =2 3,∠AOC 为( )图J1-3A .120°B .130°C .140°D .150°二、填空题(本大题共4小题,每小题5分,共20分)7.计算:4m +3+m -1m +3=__________.8.如图J1-4,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为∠α(0°<∠α<180°),则∠α=________.图J1-49.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图J1-5.根据图形所提供的样本数据,可得学生参加科技活动的频率是____________.图J1-510.如图J1-6,点P 在双曲线y =kx(k ≠0)上,点P ′(1,2)与点P 关于y 轴对称,则此双曲线的解析式为________________.图J1-6三、解答题(本大题共5小题,每小题10分,共50分) 11.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.12.如图J1-7,已知在平行四边形ABCD 中,点E 为边BC 的中点,延长DE ,与AB 的延长线交于点F .求证:CD =BF .图J1-713.如图J1-8,有一长方形的仓库,一边长为5米.现要将它改建为简易住房,改建后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积.若改建后卫生间的面积为6平方米,试求长方形仓库另一边的长.图J1-814.初三(1)班要举行一场毕业联欢会,规定每个同学同时转动图J1-9中的①、②两个转盘(每个转盘分别被二等分和三等分),两个转盘停止后,若指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解).图J1-915.已知抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,点D为抛物线的顶点.(1)求点A,B的坐标;(2)过点D作DH⊥y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)是否存在实数a,使四边形ABDC的面积为18,若存在,求出实数a的值;若不存在,请说明理由.中考数学基础题强化提高测试2时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.下列各数:π2,0,9,0.23·,cos60°,227,0.030 030 003…,1-2中,无理数有( )A .2 个B .3 个C .4 个D .5 个2.在平面直角坐标系中,下面的点在第四象限的是( ) A .(1,3) B .(0,-3) C .(-2,-3) D .(π,-1)3.下列图案中,既是轴对称图形又是中心对称图形的是( )4.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图J2-1,则其正视图是( )图J2-15.如图J2-2,△ABC 与△A ′B ′C ′是位似图形,点O 是位似中心,若OA =2AA ′,S △ABC =8,则S △A ′B ′C ′=( )A .9B .16C .18D .24图J2-2 图J2-36.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图J2-3,给出以下结论:①因为a >0,所以函数y 有最大值; ②该函数图象关于直线x =-1对称; ③当x =-2时,函数y 的值大于0;④当x =-3或x =1时,函数y 的值都等于0. 其中正确结论的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题(本大题共4小题,每小题5分,共20分) 7.如图J2-4,直线l 与直线a ,b 相交.若a ∥b ,∠1=70°,则∠2的度数是________.图J2-4 图J2-58.已知某种型号的纸100张厚度约为1 cm ,那么这种型号的纸13亿张厚度约为____________km.9.菱形OACB 在平面直角坐标系中的位置如图J2-5,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标是________.10.函数y =1-kx的图象与直线y =x 没有交点,那么k 的取值范围是____________.三、解答题(本大题共5小题,每小题10分,共50分)11.化简:x -1x ÷⎝⎛⎭⎫x -2x -1x .12.如图J2-6,放置在水平桌面上的台灯的灯臂AB 长为40 cm ,灯罩BC 长为30 cm ,底座厚度为2 cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少厘米?(结果精确到0.1 cm ,参考数据:3≈1.732)图J2-613.已知:关于x的一元二次方程:x2-2mx+m2-4=0.(1)求证:这个方程有两个不相等的实数根;(2)当抛物线y=x2-2mx+m2-4与x轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式.14.某校为了解本校八年级学生的课外阅读喜好,随机抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图J2-7是整理数据后画的两幅不完整的统计图,请你根据图中的信息,解答下列问题:(1)这次活动一共调查了________名学生;(2)在扇形统计图中,“其他”所在的扇形圆心角为________;(3)补全条形统计图;(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有________人.图J2-715.如图J2-8,在⊙O中,弦BC垂直于半径OA,垂足为E,点D是优弧上的一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6 cm,求图中阴影部分的面积.图J2-8中考数学基础题强化提高测试3时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.下列运算,正确的是( ) A .a +a 3=a 4 B .a 2·a 3=a 6 C .(a 2)3=a 6 D .a 10÷a 2=a 52.用配方法解方程x 2-2x -5=0时,原方程应变形为( ) A .(x +1)2=6 B .(x -1)2=6 C .(x +2)2=9 D .(x -2)2=9 3.下列事件是必然事件的是( )A .打开电视机屏幕上正在播放天气预报B .到电影院任意买一张电影票,座位号是奇数C .掷一枚均匀的骰子,骰子停止转动后偶数点朝上D .在地球上,抛出去的篮球一定会下落 4.如图J3-1,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( ) A .BC =2DE B .△ADE ∽△ABC C.AD AE =ABACD .S △ABC =3S △ADE图J3-1 图J3-25.一次函数y =kx +b (k ≠0)与反比例函数y =kx(k ≠0)的图象如图J3-2,则下列结论中正确的是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0 6.如图J3-3,在4×6的正方形网格中,点A ,B ,C ,D ,E ,F ,G 都在格点上,则下列结论不正确的是( )图J3-3①能与线段AB 构成等腰三角形的点有3个;②四边形ABEG 是矩形;③四边形ABDF 是菱形;④△ABD 与△ABF 的面积相等.则说法不正确的是( )A .①B .②C .③D .④二、填空题(本大题共4小题,每小题5分,共20分) 7.分解因式:a 3b -ab 3=______________________.8.一个角的补角是它的余角的4倍,则这个角等于____________度.9.要在一个不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸出一个乒乓球是黄色的概率是25,可以怎样放球____________(只写一种).10.一块直角边分别为6 cm 和8 cm 的三角形木板如图J3-4,绕6 cm 的边旋转一周,则斜边扫过的面积是________ cm 2(结果用含π的式子表示).。
2014年中考数学第二轮复习--规律探索型问题规律探索型问题在中考中的背景:这类问题主要是考察学生观察、分析、归纳问题的能力,常常是通过观察、分析、归纳构建数学模型来最终解决问题。
因此这类问题常常出现在中考试题中。
1.求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为( ) A .52013﹣1 B .52013﹣1 C . D .2.观察下表:根据表中数的排列规律,B+D=_________.3.在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx=和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),] A 2(23,27),那么点n A 的纵坐标是_ _____.4.已知整数a 1,,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-11a +,a 3=-22a +,a 4=-33a +,…依次类推,则a 2013的值为( )A .-1005B .-1006C .-1007D . -20135.如图,直角三角形纸片AB C 中,A B=3,A C=4D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n -1D n -2的中点为D n -1,第n 次将纸片折叠,使点A 与点D n -1重合,折痕与AD 交于点P n (n >2),则AP 6的长为( )A. 125235⨯B. 95253⨯C. 146235⨯D. 117253⨯6.如图,在一单位为1的方格纸上,△123A A A ,△345A A A ,△567A A A ,……,都是斜边 在x 轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△123A A A 的顶点坐标分别为1A (2,0),2A (1,-1),3A (0,0),则依图中所示规律,2012A 的坐标为7.设a i ≠0(i =1,2,……2013),且满足11a a +22a a +…+20122012a a =1968,则直线y =a i x +i(i =1,2,…2013)的图象经过第一、二、四象限的概率为8.如图,已知A 1,A 2,A 3,…A n ,…是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n-1A n …=1,分别过点A 1,A 2,A 3,…A n ,…作x 轴的垂线交反比例函数y =1x(x >0)的图象于点B 1,B 2,B 3,…B n ,…,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2……,记△B 1P 1B 2 的面积为S 1,△B 2P 2B 3的面积为S 2……,△B n P n B n+1的面积为S n ,则S 1+S 2+S 3+…+S n =9.如图,在标有刻度的直线L 上,从点A 开始,以AB=1为直径画半圆,记为第1个半圆;以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 倍,第n 个半圆的面积为 。
1(2014四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图所示.由图易得:.2(2014山东青岛)数学问题:计算(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续二等分,……;……第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为,最后空白部分的面积是.根据第n次分割图可得等式:.探究二:计算.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续三等分,……;……第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为,最后空白部分的面积是.根据第n次分割图可得等式:,两边同除以2,得.探究三:计算.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:________,所以,.拓广应用:计算.3(2014山东临沂)请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是()A.1-x n+1B.1+x n+1C.1-x n D.1+x n(2014辽宁盘锦)如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,O A=O B=a,以线段A B 为边在第一象限作正方形A B C D,C D的延长线交x轴于点E,再以C E 为边作第二个正方形E C G F,…,依此方法作下去,则第n个正方形的边长是________.5(2014贵州安顺)如图,∠A O B=45°,过射线O A上到点O的距离分别为1,3,5,7,9,11,…的点作O A的垂线与O B相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是S n=________.6(2014湖南娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由________个▲组成.7(2014湖南常德)已知:;;计算:;猜想:.8(2014湖北咸宁)观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第16个数据应是________(结果需化简).9(2014黑龙江龙东)如图,等腰R t△A B C中,∠A C B=90°,A C=B C=1,且A C边在直线a上,将△A B C 绕点A顺时针旋转到位置①可得到点P1,此时;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时;……,按此规律继续旋转,直至得到点P2014为止.则A P2014=________.10(2014湖南湘潭)如图:按此规律,第6行最后一个数字是________,第________行最后一个数是2014.11(2014四川雅安)已知:一组数1,3,5,7,9,…,按此规律,则第n个数是________.12(2014广西百色)观察以下等式:32-12=8,52-12=24,72-12=48,92-12=80,…由以上规律可以得出第n个等式为________.13(2014辽宁营口)如图,在平面直角坐标系中,直线,直线,在直线l1上取一点B,使O B=1,以点B为对称中心,作点O的对称点B1,过点B1作B1A1∥l2,交x 轴于点A1,作B1C1∥x轴,交直线l2于点C1,得到四边形O A1B1C1;再以点B1为对称中心,作O点的对称点B2,过点B2作B2A2∥l2,交x轴于点A2,作B2C2∥x轴,交直线l2于点C2,得到四边形O A2B2C2;…;按此规律作下去,则四边形O A n B n C n的面积是________.14(2014湖南岳阳)观察下列一组数:、1、、、…,它们是按一定规律排列的.那么这组数的第n个数是________.(n为正整数)15(2014黑龙江牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为________.16(2014四川内江)通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为________.17(2014四川内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是________.18(2014辽宁本溪)如图,已知∠A O B=90°,点A绕点O顺时针旋转后的对应点A1落在射线O B上,点A绕点A1顺时针旋转后的对应点A2落在射线O B上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接A A1、A A2、A A3…,依次作法,则∠A A n A n+1等于________度.(用含n的代数式表示,n为正整数)19(2014山东日照)下面是按照一定规律排列的一列数:第1个数:;第2个数:;第3个数:;……依此规律,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数B.第11个数C.第12个数D.第13个数20(2014湖北天门)将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1.依此类推,摆放2014个时,实线部分长为________.21(2014福建莆田)如图放置的△O A B1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边A O在y轴上,点B1,B2,B3,…都在直线上,则A2014的坐标是________.22(2014四川德阳)如图,直线a∥b,△A B C是等边三角形,点A在直线a上,边B C在直线b上,把△A B C沿B C方向平移B C的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,……;请问在第100个图形中等边三角形的个数是________.23(2014江苏淮安)如图,顺次连接边长为1的正方形A B C D四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为________.24(2014黑龙江大庆)有一列数如下:1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,……,则第9个1在这列数中是第________个数.25(2014福建漳州)如图,△A B C中,A B=A C,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△A B C)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是________度和________度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△A B C中画n条线段,则图中有________个等腰三角形,其中有________个黄金等腰三角形.26(2014福建漳州)已知一列数2,8,26,80,…,按此规律,则第n个数是________.(用含n的代数式表示)27(2014贵州铜仁)一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为________.28(2014广西贵港)已知点A1(a1,a2),A2(a2,a3),A3(a3,a4),…,A n(a n,a n+1)(n为正整数)都在一次函数y=x+3的图象上.若a1=2,则a2014=________.29(2014广东佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;要求:根据图1写出定理的已知、求证、证明;在证明过程中,至少有两外写出推理的依据(“已知”除外)(2)如图2,在□A B CD中,对角线交点为O,A1、B1、C1、D1分别是O A、O B、O C、O D的中点,A2、B2、C2、D2分别是O A1、O B1、O C1、O D1的中点,…,以此类推.若在□A BC D的周长为l,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?30(2014江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为________.(用含n的代数式表示,n为正整数)31(2014四川资阳)如图,以O(0,0)、A(2,0)为顶点作正△O A P1,以点P1和线段P1A的中点B为顶点作正△P1B P2,再以点P2和线段P2B的中点C为顶点作△P2C P3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是________.32(2014四川绵阳)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2014=________.33(2014广西钦州)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,……,依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是________分.34(2014山东聊城)如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,A n分别过这些点做x轴的垂线与反比例函数的图象相交于点P1,P2,P3,P4,…P n,再分别过P2,P3,P4,…,P n作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,P n B n-1⊥A n-1P n-1,垂足分别为B1,B2,B3,B4,…,B n-1,连接P1P2,P2P3,P3P4,…,P n-1P n,得到一组R t△P1B1P2,R t△P2B2P3,R t△P3B3P4,…,R t△P n-1B n-1P n,则R t△P n-1B n-1P n的面积为________.35(2014浙江绍兴)如图,边长为n的正方形O A B C 的边O A,O C在坐标轴上,点A1,A2,…,A n-1为O A的n等分点,点B1,B2,…,B n-1为C B的n等分点,连结A1B1,A2B2,…,A n-1B nx>0)于点C1,C2,…,C n-1.若C15B15=-1,分别交曲线(16C15A15,则n的值为________.(n为正整数)36(2014黑龙江齐齐哈尔)如图,在平面直角坐标系x O y中,有一个等腰直角三角形A O B,∠O A B=90°,直角边A O 在x轴上,且A O=1.将R t△A O B绕原点O顺时针旋转90°得到等腰直角三角形A1O B1,且A1O=2A O,再将R t△A1O B1绕原点O顺时针旋转90°得到等腰直角三角形A2O B2,且A2O=2A1O,……,依此规律,得到等腰直角三角形A2014O B2014,则点A2014的坐标为________.37(2014山东济南)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1.例如序列S0:(4,2,3,4,2),通过变换可得到新序列S1:(2,2,1,2,2).若S0可以为任意序列,则下面的序列可以作为S1的是() A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)38(2014内蒙古赤峰)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是多少?39(2014贵州遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.40(2014山东烟台)将一组数,,3,,,…,,按下面的方法进行排列:,,3,,;,,,,;…若的位置记为(1,4),的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)41(2014山东威海)如图,在平面直角坐标系x O y中,R t△O A1C1,R t△O A2C2,R t△O A3C3,R t△O A4C4…的斜边都在坐标轴上,∠A1O C1=∠A2O C2=∠A3O C3=∠A4O C4=…=30°.若点A1的坐标为(3,0),O A1=O C2,O A2=O C3,O A3=O C4…,则依此规律,点A2014的纵坐标为()A.0B.C.D.42(2014山东泰安)如图,在平面直角坐标系中,将△A B O绕点A顺时针旋转到△A B1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△A B1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…….若点A(,0),B(0,4),则点B2014的横坐标为________.43(2014山东东营)将自然数按以下规律排列:第一列第二列第三列第四列第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行9 8 7 14 …第四行10 11 12 13 …第五行………表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2014对应的有序数对为________.44(2014湖南邵阳)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依次类推,这样至少移动________次后该点到原点的距离不小于41.45(2014湖北孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是________.46(2014北京)在平面直角坐标系x O y中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为________,点A2014的坐标为________;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为________.47(2014湖南株州)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…….依此类推,第n步的是:当n能被3整除时,则向上走1个单位;当n被3除,余数是1时,则向右走1个单位,当n被3除,余数为2时,则向右走2个单位,当他走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)48(2014湖南衡阳)如图,在平面直角坐标系x O y 中,已知点M0的坐标为(1,0),将线段O M0绕原点O逆时针方向旋转45°,再将其延长至点M1,使得M1M0⊥O M0,得到线段O M1;又将线段O M1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥O M1,得到线段O M2;如此下去,得到线段O M3、O M4、O M5、….根据以上规律,请直接写出线段O M2014的长度为________.49(2014广东梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形O A B C的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰到矩形的边时的点为P n.则点P3的坐标是________,点P2014的坐标是________.50(2014山东荷泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n-2个数是________(用含n的代数式表示)51(2014广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有________.52(2014安徽)观察下列关于自然数的等式:32-4×12=5①52-4×22=9②72-4×32=13③……根据上述规律解决下列问题:(1)完成第四个等式:92-4×()2=();(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.53(2014云南)观察规律并填空:;;;;…….(用含n的代数式表示,n是正整数,且n≥2.)54(2014重庆A)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.4055(2014浙江台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果y n=________(含字母x和n的代数式表示).56(2014上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为________.57(2014湖北武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是()A.31B.46C.51D.66。
中考数学规律探究试题(2)1.小明玩一种挪动珠子的游戏,每次挪动珠子的颗数与对应所得的分数如下表:当每次挪动珠子的颗数为15颗时,对应所得分数为分,当对应所得分数为132分时,则挪动的珠子数颗。
2.观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2012个球止,共有实心球个。
”3.已知a≠0,s1=2a,s2=2s1,s3=2s2,…,s2010=2s2009,则S2012= (用含a的代数式表示).4.观察下列正三角形的三个顶点所标的数字规律,那么2012这个数在第_____个三角形的______顶点处(第二空填:上、左下、右下).5.如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字。
电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是。
6.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在点.7.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________.8.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()(A)2010 (B)2011 (C)2012 (D)20139.根据下列图形的排列规律: …,则第2008个图形是(填序号即可).(① ;② ;③ ;④ .)10.有一列数a1,a2,a3,……a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,,则a2007为()A.2007 B.2 C.12D.-119题11.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5 ,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n23+1得a3;…………依此类推,则a2008=_______________.12.若a1=1-1m,a2=1-1a1,a3=1-1a2,… ;则a2012的值为.(用含m的代数式表示)13.将正整数按如图所示的规律排列下去。
中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
规律探索一、选择题1.(2014?湖北荆门,第11题3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()第1题图A.()n?75°B.()n﹣1?65°C.()n﹣1?75°D.()n?85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.2.(2014?重庆A,第11题4分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40考点:规律型:图形的变化类.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.1. (2014?山东威海,第12题3分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,A.0B.﹣3×()2013C.(2)2014D.3×()2013考点:规律型:点的坐标专题:规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于而2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为3×()2013.故选D.点评:本题考查了规律型:点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.2. (2014?山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014?山东烟台,第9题3分)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014?十堰7.(3分))根据如图中箭头的指向规律,从2013到2014再到2015,箭头A.B.C.D.考规律型:数字的变化类点:分析:观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2013÷4=503…1,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D.点评:本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.5.(2014?四川宜宾,第7题,3分)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A .n B.n﹣1 C.()n﹣1D.n考点:正方形的性质;全等三角形的判定与性质专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.(2014?四川内江,第12题,3分)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次A.B.C.D.考点:一次函数图象上点的坐标特征.专题:规律型.分根据图象上点的坐标性质得出点B1、B2、B3、…、B n、B n+1各点坐标,进而利用相析:似三角形的判定与性质得出S1、S2、S3、…、S n,进而得出答案.解答:解:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6)…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1,∴=,∴△A1B1C1与△A2B2C2对应高的比为:1:2,∴A1B1边上的高为:,∴=××2==,同理可得出:=,=,∴S n=.故选;D.点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S 的变化规律,得出图形面积变化规律是解题关键.2.(2014?武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A .31 B.46 C.51 D.66考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.解答:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…3. (2014?株洲,第8题,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.点评:本题考查了坐标确定位置,点的坐标的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.二、填空题1. (2014?湘潭,16题,3分)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014.考点:规律型:数字的变化类.分析:每一行的最后一个数字构成等差数列1,4,7,10…,易得第n行的最后一个数字为1+3(n ﹣1)=3n﹣2,由此求得第6行最后一个数字,建立方程求得最后一个数是2014在哪一行.解答:解:每一行的最后一个数字构成等差数列1,4,7,10…,第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴第6行最后一个数字是3×6﹣2=16;3n﹣2=2014解得n=672.因此第6行最后一个数字是16,第672行最后一个数是2014.故答案为:16,672.点评:此题考查数字的排列规律,找出数字之间的联系,得出运算规律解决问题.1. (2014?上海,第17题4分)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b ∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.1.(2014?黑龙江龙东,第10题3分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣761)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣761)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.2.(2014?黑龙江绥化,第10题3分)如图,在平面直角坐标系中,已知点A(1,1),B (﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.3.(2014?湖南衡阳,第20题3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为21007.考点:规律型:点的坐标.专题:规律型.分析:根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.解答:解:∵点M0的坐标为(1,0),∴OM0=1,∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形,∴OM1=OM0=,同理,OM2=OM1=()2,OM3=OM2=()3,…,OM2014=OM2013=()2014=21007.故答案为:21007.点评:本题是对点的坐标变化规律的考查,主要利用了等腰直角三角形的判定与性质,读懂题目信息,判断出等腰直角三角形是解题的关键.4.(2014?湖南永州,第16题3分)小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是BABBA.题号答案选手1 2 3 4 5 得分小聪 B A A B A 40小玲 B A B A A 40小红 A B B B A 30考点:推理与论证.分析:根据得分可得小聪和小玲都是只有一个错,小红有2个错误,首先从三人答案相同的入手分析,然后从小聪和小玲不同的题目入手即可分析.解答:解:根据得分可得小聪和小玲都是只有一个错,小红有2个错误.第5题,三人选项相同,若不是选A,则小聪和小玲的其它题目的答案一定相同,与已知矛盾,则第5题的答案是A;第3个第4题小聪和小玲都不同,则一定在这两题上其中一人有错误,则第1,2正确,则1的答案是:B,2的答案是:A;则小红的错题是1和2,则3和4正确,则3的答案是:B,4的答案是:B.总之,正确答案(按1~5题的顺序排列)是BABBA.故答案是:BABBA.点评:本题考查了命题的推理与论证,正确确定问题的入手点,理解题目中每个题目只有A和B两个答案是关键.5. (2014?黔南州,第18题5分)已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为56.点此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关评:键.6.(2014年广西钦州,第18题3分)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是336分.考点:规律型:数字的变化类.分析:根据题意得甲报出的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1),由于1+3(n﹣1)=2014,解得n=672,则甲报出了672个数,再观察甲报出的数总是一奇一偶,所以偶数有672÷2=336个,由此得出答案即可.解答:解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.点评:本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.(2014年贵州安顺,第17题4分)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是S n= 8n﹣4.考点:直角梯形.专题:压轴题;规律型.分析:由∠AOB=45°及题意可得出图中的三角形都为等腰直角三角形,且黑色梯形的高都是2;根据等腰直角三角形的性质,分别表示出黑色梯形的上下底,找出第n个黑色梯形的上下底,利用梯形的面积公式即可表示出第n个黑色梯形的面积.解答:解:∵∠AOB=45°,∴图形中三角形都是等腰直角三角形,从图中可以看出,黑色梯形的高都是2,第一个黑色梯形的上底为:1,下底为:3,第2个黑色梯形的上底为:5=1+4,下底为:7=1+4+2,第3个黑色梯形的上底为:9=1+2×4,下底为:11=1+2×4+2,则第n个黑色梯形的上底为:1+(n﹣1)×4,下底为:1+(n﹣1)×4+2,故第n个黑色梯形的面积为:×2×[1+(n﹣1)×4+1+(n﹣1)×4+2]=8n﹣4.故答案为:8n﹣4.点评:此题考查了直角梯形的性质与等腰直角三角形的性质.此题属于规律性题目,难度适中,注意找到第n个黑色梯形的上底为:1+(n﹣1)×4,下底为1+(n﹣1)×4+2是解此题的关键.8.(2014?莱芜,第17题4分)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为(1342,0).考点:规律型:点的坐标;等边三角形的判定与性质;菱形的性质.专题:规律型.分析:连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2014=335×6+4,因此点B4向右平移1340(即335×4)即可到达点B2014,根据点B4的坐标就可求出点B2014的坐标.解答:解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=90°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2014=335×6+4,∴点B4向右平移1340(即335×4)到点B2014.∵B4的坐标为(2,0),∴B2014的坐标为(2+1340,0),∴B2014的坐标为(1342,0).点评:本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.9.(2014?黑龙江牡丹江, 第20题3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A2014到x轴的距离是.考点:全等三角形的判定与性质;规律型:点的坐标;正方形的性质.分析:根据勾股定理可得正方形A1B1C1D1的边长为=,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2014个正方形和第2014个正方形的边长,进一步得到点A2014到x轴的距离.解答:解:如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△1CE1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2014E4016=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴=,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为为=,∴D1F=,∴A1F=,∵A1E∥D1E1,∴=,∴A1E=3,∴=,∴点A2014到x轴的距离是×=点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.10. (2014?湖北黄石,第16题3分)观察下列等式:第一个等式:a1==﹣;第二个等式:a2==﹣;第三个等式:a3==﹣;第四个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.考点:规律型:数字的变化类.分析:(1)由前四个等是可以看出:是第几个算式,等号左边的分母的第一个因数是就是几,第二个因数是几加1,第三个因数是2的几加1次方,分子是几加2;等号右边分成分子都是1的两项差,第一个分母是几乘2的几次方,第二个分母是几加1乘2的几加1次方;由此规律解决问题;(2)把这20个数相加,化为左边的形式相加,正好抵消,剩下第一个数分裂的第一项和最后一个数分裂的后一项,得出答案即可.解答:解:(1)用含n的代数式表示第n个等式:a n==﹣.(2)a1+a2+a3+…+a20=﹣+﹣+﹣+﹣+…+﹣=﹣.故答案为:(1),﹣;(2)﹣.点评:此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.11.(2014?四川绵阳,第18题4分)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2014=1﹣.考点:规律型:图形的变化类分析:观察图形的变化发现每次折叠后的面积与正方形的关系,从而写出面积和的通项公式.解答:解:观察发现S1+S2+S3+…+S2014=+++…+=1﹣,故答案为:1﹣.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.12.(2014?浙江绍兴,第15题5分)如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为17.(n为正整数)考反比例函数图象上点的坐标特征.点:专题:规律型.分析:先根据正方形OABC的边长为n,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n ﹣1为CB的n等分点可知OA15=15,OB15=15,再根据C15B15=16C15A15表示出C15的坐标,代入反比例函数的解析式求出n的值即可.解答:解:∵正方形OABC的边长为n,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n ﹣1为CB的n等分点∴OA15=15,OB15=15,∵C15B15=16C15A15,∴C15(15,),∵点C15在曲线y=(x>0)上,∴15×=n﹣2,解得n=17.故答案为:17.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上k=xy为定值是解答此题的关键.13.(2014?四川成都,第23题4分)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是7,3,10.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S=11.(用数值作答)考点:规律型:图形的变化类;三元一次方程组的应用.分析:(1)观察图形,即可求得第一个结论;(2)根据格点多边形的面积S=aN+bL+c,结合图中的格点三角形ABC及多边形DEFGHI中的S,N,L数值,代入建立方程组,求出a,b,c即可求得S.解答:解:(1)观察图形,可得S=7,N=3,L=10;(2)不妨设某个格点四边形由四个小正方形组成,此时,S=4,N=1,L=8,∵格点多边形的面积S=aN+bL+c,∴结合图中的格点三角形ABC及格点四边形DEFG可得,解得,∴S=N+L﹣1,将N=5,L=14代入可得S=5+14×﹣1=11.故答案为:(Ⅰ)7,3,10;(Ⅱ)11.点评:此题考查格点图形的面积变化与多边形内部格点数和边界格点数的关系,从简单情况分析,找出规律解决问题.14.(2014?河北,第20题3分)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.2. (2014?四川巴中,第20题3分)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n 的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014?遵义16.(4分))有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考专题:正方体相对两个面上的文字;规律型:图形的变化类.点:分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.4.(2014?娄底19.(3分))如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5. (2014年湖北咸宁14.(3分))观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),。
2014年中考数学分类汇编(规律探索)
一、选择题
1.(5分)(2014o毕节地区,第18题5分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.
考点:规律型:数字的变化类
专题:规律型.
分析:观察已知一组数发现:分子为从1开始的连线奇数,分母为从2开始的连线正整数的平方,写出第n个数即可.
解答:解:根据题意得:这一组数的第n个数是.
故答案为:.
点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.
2.(2014o武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…
按此规律第5个图中共有点的个数是()
A.31B.46C.51D.66
考点:规律型:图形的变化类
分析:由图可知:其中第1个图中共有1+13=4个点,第2个图中共有1+13+23=10个点,第3个图中共有1+13+23+33=19个点,…由此规律得出第n个图有1+13+23+33+…+3n个点.
精心整理,仅供学习参考。