网络树型结构图
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
离散数学树
离散数学中的树(Tree)是一种常见的图论结构,它是一种无向、连通且没有简单回路的无向图,或者是一个有向连通图,其中每个节点都只有唯一一个父节点(除了根节点)。
树形结构中的每一个节点都可以视为一个子树的根节点,因为它下面连接了若干个子节点,这样就形成了一棵向下生长的树状结构。
树形结构还有一个重要的特点就是它具有很好的递归性质,因为每个节点下面都可以再建立一棵子树,这样就可以逐层递归地构建出整棵树。
在离散数学中,树被广泛应用于算法设计、数据结构以及对计算机网络和信息系统进行建模等领域。
树的深度和广度优先遍历、树的一些基本性质(如高度、度、叶子节点等)以及树的遍历应用在图的搜索算法、排序、哈夫曼编码、抽象语法树等算法中都有广泛的应用。
网络拓扑结构总汇星型结构星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。
中心节点可以是文件服务器,也可以是连接设备。
常见的中心节点为集线器。
星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。
每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。
因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。
优点:(1)控制简单。
任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。
易于网络监控和管理。
(2)故障诊断和隔离容易。
中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。
(3)方便服务。
中央节点可以方便地对各个站点提供服务和网络重新配置。
缺点:(1)需要耗费大量的电缆,安装、维护的工作量也骤增。
(2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。
(3)各站点的分布处理能力较低。
总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。
采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。
尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。
每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。
这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。
扩展星型拓扑:如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。
纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。
环型结构环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
一、基本概念逻辑结构是指数据元素之间的相互关系和约束关系。
它是程序中数据元素之间的相互组织关系。
逻辑结构可以分为线性结构、树形结构和图形结构。
1. 线性结构线性结构是最简单、最基本的逻辑结构,它的特点是数据元素之间是一对一的关系,只存在一个直接前驱和一个直接后继。
线性结构有顺序存储结构和链式存储结构两种。
2. 树形结构树形结构是由n(n≥1)个有限节点组成一个具有层次关系的集合。
树形结构具有以下特点:(1)每个节点有零个或多个子节点;(2)没有父节点的节点称为根节点;(3)每一个非根节点有且只有一个父节点;(4)除了根节点外,每个子节点可以分成多个拥有自己子节点的子树。
树形结构的应用非常广泛,如文件系统、组织结构等都可以用树形结构来描述。
3. 图形结构图形结构是一种较为复杂的逻辑结构,它的特点是数据元素之间是多对多的关系。
图形结构由顶点集合和边集合组成,边是顶点对的有序对,表示两个顶点之间的关系。
图形结构有有向图和无向图两种。
二、线性结构1. 线性结构的基本概念(1)线性结构是指数据元素之间的一对一关系。
(2)线性结构有顺序存储结构和链式存储结构两种。
(3)线性结构的应用领域非常广泛,如线性表、栈、队列等都可以用线性结构来描述。
2. 线性表线性表是由n(n≥0)个数据元素a1,a2,…,an组成的有序序列。
线性表的特点是数据元素之间存在一对一的关系。
(1)初始化线性表;(2)销毁线性表;(3)清空线性表;(4)判断线性表是否为空;(5)获取线性表长度;(6)获取指定位置的元素;(7)插入元素;(8)删除元素;(9)查找元素。
3. 栈栈是一种特殊的线性表,它的特点是只能在表的一端进行插入和删除操作。
栈的基本操作包括:(1)初始化栈;(2)销毁栈;(3)清空栈;(4)判断栈是否为空;(5)获取栈的长度;(6)入栈操作;(7)出栈操作。
4. 队列队列也是一种特殊的线性表,它的特点是只能在表的一端进行插入操作,而在另一端进行删除操作。
网络拓扑结构总汇星型结构星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。
中心节点可以是文件服务器,也可以是连接设备。
常见的中心节点为集线器。
星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。
每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。
因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。
优点:(1)控制简单。
任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。
易于网络监控和管理。
(2)故障诊断和隔离容易。
中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。
(3)方便服务。
中央节点可以方便地对各个站点提供服务和网络重新配置。
缺点:(1)需要耗费大量的电缆,安装、维护的工作量也骤增。
(2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。
(3)各站点的分布处理能力较低。
总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。
采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。
尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。
每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。
这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。
扩展星型拓扑:如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。
纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。
环型结构环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
SDH基本的网络拓扑结构SDH网是由SDH网元设备通过光缆互连而成的,网络节点(网元)和传输线路的几何排列就构成了网络的拓扑结构。
网络的有效性(信道的利用率)、可靠性和经济性在很大程度上与其拓扑结构有关。
网络拓扑的基本结构有链形、星形、树形、环形和网孔形,如图1-1所示。
1.链形网此种网络拓扑是将网中的所有节点一一串联,而首尾两端开放。
这种拓扑的特点是较经济,在SDH网的早期用得较多,主要用于专网(如铁路网)中。
2.星形网此种网络拓扑是将网中一网元做为特殊节点与其他各网元节点相连,其他各网元节点互不相连,网元节点的业务都要经过这个特殊节点转接。
这种网络拓扑的特点是可通过特殊节点来统一管理其它网络节点,利于分配带宽,节约成本,但存在特殊节点的安全保障和处理能力的潜在瓶颈问题。
特殊节点的作用类似交换网的汇接局,此种拓扑多用于本地网(接入网和用户网)。
(a) 链形(b)星形(c) 树形(d) 环形(e) 网孔形TMTMTMTMTM TM TMTMTMTMADMADMADMADMDXC/ADMDXC/ADM图1-1基本网络拓扑图3.树形网此种网络拓扑可看成是链形拓扑和星形拓扑的结合,也存在特殊节点的安全保障和处理能力的潜在瓶颈。
{4.环形网环形拓扑实际上是指将链形拓扑首尾相连,从而使网上任何一个网元节点都不对外开放的网络拓扑形式。
这是当前使用最多的网络拓扑形式,主要是因为它具有很强的生存性,即自愈功能较强。
环形网常用于本地网(接入网和用户网)、局间中继网。
2.网孔形网将所有网元节点两两相连,就形成了网孔形网络拓扑。
这种网络拓扑为两网元节点间提供多个传输路由,使网络的可靠更强,不存在瓶颈问题和失效问题。
但是由于系统的冗余度高,必会使系统有效性降低,成本高且结构复杂。
网孔形网主要用于长途网中,以提供网络的高可靠性。
当前用得最多的网络拓扑是链形和环形,通过它们的灵活组合,可构成更加复杂的网络。
本节主要讲述链网的组成和特点和环网的几种主要的自愈形式(自愈环)的工作机理及特点。
十种拓扑结构
1.点线面结构:点表示节点,线表示连接,面表示围绕节点的区域。
2. 树形结构:树形结构是一种有向无环图,其中每个节点都有一个父节点,除了根节点。
3. 网格结构:网格结构是指一个由连续的小正方形或长方形组成的网络。
4. 同心圆结构:同心圆结构是指由一系列同心圆构成的结构。
5. 辐射结构:辐射结构是指从一个中心点向外辐射出若干个分支的结构。
6. 螺旋结构:螺旋结构是指围绕中心点旋转的一系列结构。
7. 网状结构:网状结构是指由许多交叉的线条或分支组成的结构。
8. 扇形结构:扇形结构是指由一系列从中心点向外延伸的分支构成的结构。
9. 环形结构:环形结构是指由一系列环形或半环形构成的结构。
10. 随机结构:随机结构是指没有明显规律和特点的结构。
- 1 -。
目录1.1 数据中心网络特性需求 (1)1.2 现有数据中心网络拓扑 (2)传统树形结构 (2)Fat-Tree 拓扑结构 (3)VL2拓扑结构 (4)DCell 拓扑结构 (6)BCube拓扑结构 (8)MDCube (9)FiConn拓扑结构 (12)HCN拓扑结构 (13)BCN拓扑结构 (15)雪花结构 (17)Scafida (19)基于Kautz图的数据中心拓扑 (20)参考文献 (I)数据中心拓扑总结1.1 数据中心网络特性需求随着网络技术的发展,数据中心已经成为提供IT网络服务、分布式并行计算等的基础架构,为加速现代社会信息化建设、加快社会进步,发挥举足轻重的作用。
数据中心是当代IT建设的重点项目,承载着企业的核心业务,致力为企业提供高效的服务,降低企业管理难度及运营开销。
数据中心应用范围愈加广泛,应用需求不断增加,业务数据量达T/P级以上;另外,如视频、金融业务数据等对服务质量、时延、带宽都有严格要求,因此构建数据中心网络时,对于数据中心网络的性能要求很高,具体如下:⑴高度可扩展性:随着数据中心业务的拓展,数据中心的规模不断扩大,因此要求数据中心网络能够容纳更多的服务器及交换机设备,以保证业务需求。
设备的添加不会对现有网络服务性能造成很大的影响,实现性能平稳扩展,不会引入过载等问题;⑵多路径特性:由于数据中心规模巨大,链路、节点及部分网络出现故障是难以避免的。
另外,当源、目的节点对之间突发业务量较大时,单条链路难以保证带宽传输需求。
因此对于网络拓扑提出的要求即是保证不同节点之间有多条并行的路径,使得:①在一定的网络故障率范围内,网络服务质量能够得到保障,网络具有很好的容错性能,实现网络的高可靠性,保证服务质量;②并行路径能够提供充裕带宽,当有过量突发业务需要传输服务时,网络能动态实现分流,满足数据传输需求;⑶低时延特性:数据中心在科研机构、金融等部门发挥着无可取代的重要作用,为用户提供视频、在线商务、高性能计算等服务,不少业务对网络时延比较敏感,对网络实时性要求非常严格。
FatTree胖树拓扑结构FatTree拓扑结构是由MIT的Fares等⼈在改进传统树形结构性能的基础上提出的,属于switch-only型拓扑。
整个拓扑⽹络分为三个层次:⾃上⽽下分别为边缘层(edge)、汇聚层(aggregate)和核⼼层(core),其中汇聚层交换机与边缘层交换机构成⼀个pod,交换设备均采⽤商⽤交换设备。
图1 常规树形拓扑图2 ⼆叉胖树图3 四叉胖树图3 六叉胖树FatTree构建拓扑规则如下:FatTree拓扑中包含的Pod数⽬为k,每⼀个pod连接的sever数⽬为(k/2)^2,每⼀个pod内的边缘交换机及聚合交换机数量均为k/2,核⼼交换机数量为(k/2)^2,⽹络中每⼀个交换机的端⼝数量为k,⽹络所能⽀持的服务器总数为k^3/4。
FatTree结构采⽤⽔平扩展的⽅式,当拓扑中所包含的pod数⽬增加,交换机的端⼝数⽬增加时,FatTree投票能够⽀持更多的服务器,满⾜数据中⼼的扩展需求,如k=48时,FatTree能够⽀持的服务器数⽬为27648。
FatTree结构通过在核⼼层多条链路实现负载的及时处理,避免⽹络热点;通过在pod内合理分流,避免过载问题。
FatTree对分带宽随着⽹络规模的扩展⽽增⼤,因此能够为数据中⼼提供⾼吞吐传输服务;不同pod之间的服务器间通信,源、⽬的节点之间具有多条并⾏路径,因此⽹络的容错性能良好,⼀般不会出现单点故障;采⽤商⽤设备取代⾼性能交换设备,⼤幅度降低⽹络设备开销;⽹络直径⼩,能够保证视频、在线会与等服务对⽹络实时性的要求;拓扑结构规则、对称,利于⽹络布线及⾃动化配置、优化升级等。
Fat-Tree结构也存在⼀定的缺陷:Fat-Tree结构的扩展规模在理论上受限于核⼼交换机的端⼝数⽬,不利于数据中⼼的长期发展要求;对于Pod内部,Fat-Tree容错性能差,对底层交换设备故障⾮常敏感,当底层交换设备故障时,难以保证服务质量;拓扑结构的特点决定了⽹络不能很好的⽀持one-to-all及all-to-all⽹络通信模式,不利于部署MapReduce、Dryad等现代⾼性能应⽤;⽹络中交换机与服务器的⽐值较⼤,在⼀定程度上使得⽹络设备成本依然很⾼,不利于企业的经济发展。
网络拓扑结构总汇星型结构星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。
中心节点可以是文件服务器,也可以是连接设备。
常见的中心节点为集线器。
星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。
每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。
因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。
优点:(1)控制简单。
任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。
易于网络监控和管理。
(2)故障诊断和隔离容易。
中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。
(3)方便服务。
中央节点可以方便地对各个站点提供服务和网络重新配置。
缺点:(1)需要耗费大量的电缆,安装、维护的工作量也骤增。
(2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。
(3)各站点的分布处理能力较低。
总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。
采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。
尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。
每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。
这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。
扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。
纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。
环型结构 环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
常见的局域网拓扑结构图有哪些
局域网网络拓扑结构反映出网络结构的关系、它对于网络的性能、可靠性、以及建设管理成本等有重要的影响,下面是店铺给大家整理的一些有关常见的局域网拓扑结构图介绍,希望对大家有帮助!
常见的局域网拓扑结构图简单介绍
星形拓扑是由中央节点和通过点对点链路链接到中央节点的各站点(网络工作站等)。
星形拓扑结构如下图;
总线拓扑采用单根传输线作为传输介质、所有的站点都通过相应地硬件接口直接链接到传输介质上、任何一个站点发送的信息都可以沿着介质传播。
而且能被其他所有站点接收。
总线拓扑如下图;
环形拓扑由一些中继器和链接中继器的点到点链路首尾相连形成一个闭合的环。
环形拓扑如下图;
树形拓扑是从总线拓扑演变而来的。
它把星形拓扑和总线拓扑结合起来、形成像一颗倒置的树。
树形拓扑如下图;
星形环拓扑是将星形拓扑和环形拓扑混合起来的一种拓扑、集中了星形拓扑和环形拓扑的优点、并克服了他们的缺点。
星形环拓扑如下图;
END。