第四章 控制算法的模拟化设计方法1
- 格式:ppt
- 大小:719.50 KB
- 文档页数:26
|3.微型计算机控制系统的硬件由哪几部分组成各部分的作用是什么由四部分组成。
图微机控制系统组成框图(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。
主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。
(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。
过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。
过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。
过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。
(3)外部设备:这是实现微机和外界进行信息交换的设备,简称外设,包括人机联系设备(操作台)、输入输出设备(磁盘驱动器、键盘、打印机、显示终端等)和外存贮器(磁盘)。
其中操作台应具备显示功能,即根据操作人员的要求,能立即显示所要求的内容;还应有按钮,完成系统的启、停等功能;操作台还要保证即使操作错误也不会造成恶劣后果,即应有保护功能。
—(4)检测与执行机构a.测量变送单元:在微机控制系统中,为了收集和测量各种参数,采用了各种检测元件及变送器,其主要功能是将被检测参数的非电量转换成电量,例如热电偶把温度转换成mV信号;压力变送器可以把压力转换变为电信号,这些信号经变送器转换成统一的计算机标准电平信号(0~5V或4~20mA)后,再送入微机。
b.执行机构:要控制生产过程,必须有执行机构,它是微机控制系统中的重要部件,其功能是根据微机输出的控制信号,改变输出的角位移或直线位移,并通过调节机构改变被调介质的流量或能量,使生产过程符合预定的要求。
例如,在温度控制系统中,微机根据温度的误差计算出相应的控制量,输出给执行机构(调节阀)来控制进入加热炉的煤气(或油)量以实现预期的温度值。
作 业第二章:2-6某水槽如题图2-1所示。
其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求:(1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程;(2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。
图2-1解:1)平衡状态: 02010Q Q Q i +=2)当非平衡时: i i i Q Q Q ∆+=0;1011Q Q Q ∆+=;2022Q Q Q ∆+= 质量守恒:211Q Q Q dthd A i ∆-∆-∆=∆ 对应每个阀门,线性水阻:11R h Q ∆=∆;22R h Q ∆=∆ 动态方程:i Q R hR h dt h d A ∆=∆+∆+∆2113) 传递函数:)()()11(211s Q s H R R S A i =++1)11(1)()()(211+=++==Ts KR R S A s Q s H s G i这里:21121212111111R R A T R R R R R R K +=+=+=;2Q112-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。
解:如图为三个单链单容对像模型。
被控参考△h 3的动态方程: 3233Q Q dt h d c ∆-∆=∆;22R h Q ∆=∆;33R hQ ∆=∆; 2122Q Q dt h d c ∆-∆=∆;11R hQ ∆=∆ 111Q Q dth d c i ∆-∆=∆ u K Q i ∆=∆ 得多容体动态方程:uKR h dth d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ∆=∆+∆+++∆+++∆333332211232313132322121333321321)()(传递函数:322133)()()(a s a s a s Ks U s H s G +++==; 这里:32132133213213321321332211232132131313232212111;c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a ==++=++=2-8已知题图2-3中气罐的容积为V ,入口处气体压力,P 1和气罐 内气体温度T 均为常数。
摘要目前,由于PID结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。
电厂主汽温被控对象是一个大惯性、大迟延、非线性且对象变化的系统,常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的围。
但当运行工况发生较大变化时,却很难保证控制品质。
因此本文研究基于BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。
本处用一个多层前向神经网络,采用反向传播算法,依据控制要时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。
对这样一个系统在MATLAB平台上进行仿真研究,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。
关键词:主汽温,PID,BP神经网络,MATLAB仿真ABSTRACTAt present, because PID has a simple structure and can be adjusted proportional 、integral and differential to satisfactory control performance, it is widely used in power plants of various control process. The system of power plant main steam temperature is an large inertia、big time-delayed and nonlinear dynamic system. Conventional steam temperature control system adopted cascade PID control or the differential control of lead before. When the unit is stable, these methods will control the steam temperature in a certain range ,but when operating conditions changed greatly, it is difficult to ensure the quality of control. This article studies PID control based BP neural network . Using such characteristics of neural network self-learning, nonlinear and don't rely on model realize PID parameters auto-tuning. It can make full use of the advantages of PID and neural network. Here, we use a multilayer feedforward neural network using back propagation algorithm. This net can real-time output Kp, Ki, Kd as the PID controller parameters , insteading of the traditional PID parameters determined by experience, so it can obtain good control performance .For such a system ,we can simulate in MATLAB simulation platform. The simulation results show that the PID control based BP neural network has good adaptive ability and self-learning ability. For the system of large delay and free-model can obtain good control effect.KEY WORDS: main steam temperature ,PID ,BP neural network, MATLAB simulation目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 选题背景和意义 (1)1.2 国外研究现状 (1)1.3 立论依据 (5)1.4 本文所做的主要工作 (6)第二章神经网络的基本原理 (8)2.1 人工神经元模型 (8)2.2 神经网络的学习方式和学习规则 (9)2.2.1 神经网络的学习方式 (9)2.2.2 神经网络的学习规则 (9)2.3 神经网络的特点及应用 (10)2.4 BP神经网络 (11)2.4.1 BP神经网络的结构 (11)2.4.2 BP神经网络的算法 (12)2.5 本章小结 (16)第三章基于BP神经网络的PID控制 (17)3.1 PID控制器的离散差分方程 (17)3.2 基于BP神经网络的PID整定原理 (18)3.3 基于BP神经网络的PID控制算法流程 (22)3.4 本章小结 (22)第四章基于BP神经网络的PID控制在主汽温控制系统中的应用 (23)4.1 主汽温的控制任务 (23)4.2 主汽温被控对象的动态特性 (23)4.3 主汽温控制策略 (24)4.3.1 主汽温控制信号的选择 (24)4.3.2 主汽温控制的两种策略 (26)4.4仿真分析 (27)4.5 本章总结 (34)结论与展望 (35)参考文献 (37)致 (39)第一章绪论1.1 选题背景和意义在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。
计算机控制系统复习题答案《计算机控制系统》课程复习题答案⼀、知识点:计算机控制系统的基本概念。
具体为了解计算机控制系统与⽣产⾃动化的关系;掌握计算机控制系统的组成和计算机控制系统的主要特性;理解计算机控制系统的分类和发展趋势。
回答题:1.画出典型计算机控制系统的基本框图;答:典型计算机控制系统的基本框图如下:2.简述计算机控制系统的⼀般控制过程;答:(1) 数据采集及处理,即对被控对象的被控参数进⾏实时检测,并输给计算机进⾏处理;(2) 实时控制,即按已设计的控制规律计算出控制量,实时向执⾏器发出控制信号。
3.简述计算机控制系统的组成;答:计算机控制系统由计算机系统和被控对象组成,计算机系统⼜由硬件和软件组成。
4.简述计算机控制系统的特点;答:计算机控制系统与连续控制系统相⽐,具有以下特点:⑴计算机控制系统是模拟和数字的混合系统。
⑵计算机控制系统修改控制规律,只需修改程序,⼀般不对硬件电路进⾏改动,因此具有很⼤的灵活性和适应性。
⑶能够实现模拟电路不能实现的复杂控制规律。
⑷计算机控制系统并不是连续控制的,⽽是离散控制的。
⑸⼀个数字控制器经常可以采⽤分时控制的⽅式,同时控制多个回路。
⑹采⽤计算机控制,便于实现控制与管理⼀体化。
5.简述计算机控制系统的类型。
答:(1)操作指导控制系统;(2)直接数字控制系统;(3)监督计算机控制系统)分级计算机控制系统4(.⼆、知识点:计算机控制系统的硬件基础。
具体为了解计算机控制系统的过程通道与接⼝;掌握采样和保持电路的原理和典型芯⽚的应⽤,掌握输⼊/输出接⼝电路:并⾏接⼝、串⾏接⼝、A/D和D/A的使⽤⽅法,能根据控制系统的要求选择控制⽤计算机系统。
回答题:1.给出多通道复⽤⼀个A/D转换器的原理⽰意图。
2.给出多通道复⽤⼀个D/A转换器的原理⽰意图。
3.例举三种以上典型的三端输出电压固定式集成稳压器。
答:W78系列,如W7805、7812、7824等;W79系列,如W7805、7812、7824等4.使⽤光电隔离器件时,如何做到器件两侧的电⽓被彻底隔离?答:光电隔离器件两侧的供电电源必须完全隔离。
第四章控制算法与策略按偏差的比例、积分和微分进行控制的控制器(简称为PID控制器、也称PID 调节器),是过程控制系统中技术成熟、应用最为广泛的一种控制器。
它的算法简单,参数少,易于调整,并已经派生出各种改进算法。
特别在工业过程控制中,有些控制对象的精确数学模型难以建立,系统的参数不容易确定,运用控制理论分析综合要耗费很大代价,却不能得到预期的效果。
所以人们往往采用PID控制器,根据经验进行在线整定,一般都可以达到控制要求。
随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现。
由于软件系统的灵活性,PID算法可以得到修正而更加完善[14]。
在本章中,将着重介绍基于数字PID控制算法的系统的控制策略。
4.1采用周期T的选择采样周期T在微机控制系统中是一个重要参数,它的选取应保证系统采样不失真的要求,而又受到系统硬件性能的限制。
采样定理给出了采样频率的下限,据此采样频率应满足,①'2①,其中①是原来信号的最高频率。
从控制性能Smm来考虑,采样频率应尽可能的高,但采样频率越高,对微机的运行速度要求越高,存储容量要求越大,微机的工作时间和工作量随之增加。
另外,当采样频率提高到一定程度后,对系统性能的改善已不明显[14]。
因此采样频率即采样周期的选择必须综合考虑下列诸因素:(1)作用于系统的扰动信号频率。
扰动频率越高,则采样频率也越高,即采样周期越小。
(2)对象的动态特性。
采样周期应比对象的时间参数小得多,否则采样信号无法反映瞬变过程。
(3)执行器的响应速度。
如果执行器的响应速度比较缓慢,那么过短的采样周期和控制周期将失去意义。
(4)对象的精度要求。
在计算机速度允许的情况下,采样周期越短,系统调节的品质越好。
(5)测量控制回路数。
如果控制回路数多,计算量大,则采样周期T越长,否则越小。
(6)控制算法的类型。
当采用PID算式时,积分作用和微分作用与采样周期T的选择有关。
选择采样周期T太小,将使微分积分作用不明显。
连续传递函数离散化的方法与原理(总44页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March目录第一章模拟化设计基础 1 第一节步骤 1 第二节在MATLAB中离散化 3 第三节延时e-Ts环节的处理 5 第四节控制函数分类 6 第二章离散化算法10 摘要10 比较11 第一节冲击响应不变法(imp,无保持器直接z变换法) 11 第二节阶跃响应不变法(zoh,零阶保持器z变换法) 11 第三节斜坡响应不变法(foh,一阶保持器z变换法) 11 第四节后向差分近似法12 第五节前向差分近似法14 第六节双线性近似法(tustin) 15 第七节预畸双线性法(prevarp) 17 第八节零极点匹配法(matched) 18 第三章时域化算法19 第一节直接算法1—双中间变量向后递推19 第二节直接算法2—双中间变量向前递推20 第三节直接算法3—单中间变量向后递推21 第四节直接算法4—单中间变量向前递推(简约快速算法) 21 第五节串联算法22 第六节并联算法23 第四章数字PID控制算法24 第一节微分方程和差分方程25第二节不完全微分25 第三节参数选择26 第四节 c51框架27 第五章保持器33 第一节零阶保持器33 第二节一阶保持器30 附录两种一阶离散化方法的结果的比较31第一章 模拟化设计基础数字控制系统的设计有两条道路,一是模拟化设计,一是直接数字设计。
如果已经有成熟的模拟控制器,可以节省很多时间和部分试验费用,只要将模拟控制器离散化即可投入应用。
如果模拟控制器还不存在,可以利用已有的模拟系统的设计经验,先设计出模拟控制器,再进行离散化。
将模拟控制器离散化,如果用手工进行,计算量比较大。
借助数学软件MATLAB 控制工具箱,可以轻松地完成所需要的全部计算步骤。
如果需要的话,还可以使用MATLAB 的SIMULINK 工具箱,进行模拟仿真。