青藏高原隆起与气候区域分异
- 格式:pptx
- 大小:3.39 MB
- 文档页数:31
青藏高原的隆起对我国气候的影响学院:资源与坏境学院班级:10农业资源与环境学号:2010084023姓名:石继龙青藏高原是世界上最大的高原,地势高峻,平均海拔4000~5000米,有许多耸立于雪线之上高逾6000~8000米的山峰。
高原的外缘,高山环抱,壁立千仞,以3000~7000米的高差挺立于周围盆地、平原之上,衬托出高原挺拔的雄伟之势。
高原面积250万平方公里,东西长3000 公里,南北宽1500公里,跨15个纬度。
而且高原几乎占冬季中纬度对流层厚度的1/3以上,成为中纬度大气环流中的一个庞大的障碍物。
对中国气候的形成无疑起着巨大的作用。
青藏高原的平均高度在4公里以上,是全球最高最大且具有复杂地形的巨大台地,其主体呈椭圆形。
青藏高原对我国气候的影响有三个方面:一、对气温的影响1.机械阻挡作用青藏高原海拔高、面积大、矗立在29°-40°N间,南北约跨10个纬度,东西约跨35个经度,有相当大的面积,海拔在5000m以上,有一系列的山峰超过7000-8000m,占据对流层中低部,犹如大气海洋中的一个巨大岛屿,对于冬季层结稳定而厚度又不大的冷空气是一个较难越过的障碍。
从西伯利亚西部侵入我国的寒潮一般都是通过准噶尔盆地,经河西走廊、黄土高原而直下东部平原,这就导致我国东部热带、副热带地区的冬季气温远比受西藏高原屏障的印度半岛北部为低。
冬季西风气流遇到青藏高原的阻障被迫分支,分别沿高原绕行。
从冬季北半球700hPa与500hPa月平均气温图上可以清楚地看出,在高原北部冬季各月都是西北侧暖于东北侧,高原南半部,则东南侧暖于西南侧,这显然是受到上述分支冷暖平流的影响所致。
因西风在高原西侧发生分支,于是高原西北侧为暖平流,西南侧为冷平流,绕过高原之后,气流辐合,东北侧为冷平流,东南侧为暖平流。
夏季青藏高原对南来暖湿气流的北上,也有一定的阻挡作用,不过暖湿气流一般具有不稳定层结,比冷空气易于爬越山地。
青藏高原生态环境保护和可持续发展方案——青藏高原气候变化影响及应对策略青藏高原被誉为“世界屋脊”“地球第三极”“亚洲水塔”,是我国重要的生态安全保障、战略资源储备基地、生态环境脆弱地区,也是全球气候变化最为敏感的地带之一。
保护好青藏高原生态就是对中华民族生存和发展最大的贡献。
在全球气候变化背景下,青藏高原正在发生哪些变化、如何更好地保护其生态环境?一、青藏高原的环境问题1、冰川消融同其它冰原地区相比,青藏高原显得更为脆弱,积雪融化速度快得惊人。
截至2010年的一个世纪时间里,青藏高原地区平均温度升高了2.6华氏度,为全球升温速度的2倍。
在部分地区,升温速度甚至更快。
同时,青藏高原的冰川大都处于高海拔低纬度地区,这就意味着这些冰川对于气候变化尤为敏感,因此融化速度会进一步加快。
1984-2014年的约30年间,青藏高原及其相邻地区的冰川面积由5.3万平方公里缩减至4.5万平方公里,退缩了15%。
中国有46000多条冰川,主要分布在青藏高原。
冰川消融短期内会造成江河流水量增加,长此以往,一旦部分冰川消亡或冰川面积减小,其下游径流就会逐渐减少。
2、土地沙化青藏高原处于对流层中上部,大气活动剧烈频繁,为沙尘进入大气并进行远距离传输提供了足够的动力。
此外,青藏高原存在的大片流动沙丘和荒漠化土地又为沙尘天气的发生提供了充足的物源。
如雅鲁藏布江及其支流河谷、黄河、长江源地区都有大片活动沙丘。
此外,高原的沙漠化面积也在剧增。
中国沙尘暴的主要发生区域在青藏高原和北方干旱半干旱地区。
其中,每年的12月到翌年3月,沙尘暴发生中心集中在青藏高原上,并随时间推移中心向北推移。
相对于其他沙尘暴发生区,高原更容易将沙尘等细粒粉尘物质扬升到5500米高空,而此高度的西风急流正是亚洲粉尘远程传输的主要动力,甚至可以将沙尘传往遥远的北太平洋地区。
3、水土流失据2006年的调查数据显示,新中国成立以来,青藏高原上青海省的水土流失面积为38.2万平方公里,占青海省国土面积的49.1%,并且每年还在以3600平方公里的速度在扩大。
青藏高原隆起对气候影响青藏高原隆起对气候影响秦为胜青藏高原位于北纬25°~40°,东经74°~104°之间,是亚洲中部的一个高原地区,它是世界上最高的高原,平均海拔高度在4000米以上,有“世界屋脊”和“第三极”之称。
它的边界,向东是横断山脉,向南和向西是喜马拉雅山脉,向北是昆仑山脉。
它包括中国西藏自治区、青海省的全部和新疆维吾尔自治区、甘肃省、四川省、云南省的部分,不丹、尼泊尔、印度、巴基斯坦等国部分地区,总面积250万平方公里。
青藏高原独特的自然地域单元、地理位置、地质结构、气候特征,独特的生态资源和民族文化,它在人类生存环境和中华民族的未来发展中具有十分特殊的地位。
青藏高原是中华民族的源头之地,也是中华文明的发详地之一。
在华夏文明史上流传千古的伏羲、炎帝、烈山氏、共工氏、四岳氏、金田氏和夏禹等都是古羌人。
青藏高原生态环境保护建设与藏区经济社会和谐发展,对中华民族乃至全球未来发展有着特殊的作用意义。
作为世界“第三极”的青藏高原已成为继南、北极之外又一个气候变化研究的热点地区, 青藏高原的气候变化不仅是全球气候变化的重要部分,而且对全球气候波动也可能起到触发器和放大器的作用。
青藏高原的隆升使地球大气环流系统由准天文风系转变为季风系统,直接影响到全球气候和生态系统的发展格局,它的动力和热力效应使其成为亚洲和北半球大气系统的控制区。
这里广阔的冰川,为古气候学和冰川学研究提供了素材,它对世界气候特别是东亚季风的影响巨大,主要包含以下几个方面:1.动力阻挡作用青藏高原海拔高、面积大,占据对流层中低部,犹如大气海洋中的一个巨大岛屿,对于冬季层结稳定而厚度又不大的冷空气是一个较难越过的障碍,南亚冬季气温比同纬度地区相比偏高原因是北有青藏高原与喜马拉雅山脉阻挡蒙古—西伯利亚的冷空气侵入。
青藏高原的隆起,导致东亚季风区的形成,青藏高原对夏季来自印度洋的暖湿气流的北上,有巨大的阻挡作用。
青藏高原隆起对中国自然环境的影响青藏高原概述青藏高原旧称青康藏高原(北纬25°~40°,东经74°~104°)是亚洲中部的一个高原地区,它是世界上最高的高原,平均海拔高度在4000米以上,有“世界屋脊”和“第三极”之称。
青藏高原实际上是由一系列高大山脉组成的高山“大本营”,地理学家称它为“山原”。
高原上的山脉主要是东西走向和西北—东南走向的,自北而南有祁连山、昆仑山、唐古拉山、冈底斯山和喜马拉雅山。
这些大山海拔都在五六千米以上。
所以说“高”是青藏高原地形上的一个最主要的特征。
青藏高原在地形上的另一个重要特色就是湖泊众多。
高原上有两组不同走向的山岭相互交错,把高原分割成许多盆地、宽谷和湖泊。
这些湖泊主要靠周围高山冰雪融水补给,而且大部分都是自立门户,独成“一家”。
著名的青海湖位于青海省境内,为断层陷落湖,面积为4456平方公里,高出海平面3175米,最大湖深达38米,是中国最大的咸水湖。
其次是西藏自治区境内的纳木湖,面积约2000平方公里,高出海平面4 650米,是世界上最高的大湖。
这些湖泊大多是内陆咸水湖,盛产食盐、硼砂、芒硝等矿物,有不少湖还盛产鱼类。
在湖泊周围、山间盆地和向阳缓坡地带分布着大片翠绿的草地,所以这里是仅次于内蒙古、新疆的重要牧区。
它包括中国西藏自治区全部、和青海省、新疆维吾尔自治区、甘肃省、四川省、云南省的部分,不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦、吉尔吉斯斯坦的部分或全部,总面积250万平方公里。
一、青藏高原隆起对地貌的影响我国现代地貌格局与特点的最终形成是在漫长地质历史时期中的内、外营力做共同做用的结果,燕山运动以前形成的山脉高原在进入第三纪时,已经长期侵蚀夷平。
与现代地貌关系最密切的是喜马拉雅运动和新构造运动期间隆起的青藏高原,与高原巨大高度,广阔面积屹立在我国西南部构成第一级阶梯,最后奠定了我国现代地貌格局。
高原形成后,它以巨大的高度与帕米尔高原同列为世界屋脊。
青藏高原的隆升对中国地理格局和中国气候的影响131210005 天文雷晗青藏高原是中国最大、世界海拔最高的高原,大部分在中国西南部,包括西藏自治区和青海省的全部、四川省西部、新疆维吾尔自治区南部,以及甘肃、云南的一部分。
整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦、吉尔吉斯斯坦的部分,总面积250万平方公里。
中国境内面积240万平方公里,平均海拔4000~5000米,是亚洲许多大河的发源地。
青藏高原有确切证据的地质历史可以追溯到距今4-5亿年前的奥陶纪,其后青藏地区各部分都曾有过地壳升降。
在2.8亿年前的早二叠世,现在的青藏高原地区是波涛汹涌的辽阔海洋,称为特提斯。
2.4亿年前,由于板块运动,分离出来的印度板块以较快的速度向北移动、挤压,在北部发生了强烈的褶皱断裂和抬升,促使昆仑山和可可西里地区隆升,随着印度板块继续向北插入古洋壳下并推动着洋壳不断发生断裂,约在2.1亿年前,特提斯北部再次进入构造活跃期,北羌塘地区、喀喇昆仑山、唐古拉山、横断山脉脱离了海浸;到了距今8000万前,印度板块继续向北漂移,又一次引起了强烈的构造运动。
冈底斯山、念青唐古拉山地区急剧上升,藏北地区和部分藏南地区也脱离海洋成为陆地。
高原的地貌格局基本形成。
青藏高原的抬升过程不是匀速的运动,不是一次性的猛增,而是经历了几个不同的上升阶段。
每次抬升都使高原地貌得以演进。
距今一万年前,高原抬升速度加快,以平均每年7厘米速度上升,使之成为当今地球上的“世界屋脊”。
今天的青藏高原中部以风化为主,而边缘仍在不断上升。
青藏高原在隆升过程中上升了约2000米,这对我国地理格局和气候都造成了一定影响。
从地理格局上说。
青藏高原的隆升造成了它自身的高海拔,从而在整体上造成了我国西高东低的地势分布,促进了我国三层阶梯地理格局的形成。
奇高海拔低气温所造成的多冰川特性为亚洲诸河流提供了丰富水源,于国内而言,它塑造了整个中国的山水系统,是长江与黄河的源头所在,高海拔影响了河流的流向,辅助塑造了河流沿岸地形地貌,也阻挡了西伯利亚的南下气流,客观上部分造成了黄土高原的形成。
青藏高原的隆起对东亚大气环流及气候的影响青藏高原体积巨大,平均海拔4000m以上,本身就是一个独特的高原气候区域。
这里,气压低,大风多,日照长,年辐射强,年均温低,气候温凉,常年无夏,日较差大,年较差小,多对流性降水,降雪日多,具有与周围环境不同的气候特征。
青藏高原不仅本身形成了独特的高原气候,而且对加强东亚季风环流起着重要作用,对我国气候有着极大影响。
青藏高原的存在,使东亚季风产生很大的动力扰动和热力影响,对东亚季风起着维持和加强作用。
青藏高原的作用主要通过动力作用和热力作用两个方面表现岀来:1 •青藏高原地形对对流层低层风场的动力作用。
主要表现为高原附近西风气流的绕流分支现象和对南北气流的屏障作用。
①迫使西风气流分流。
由于青藏高原是一个高大突起的大陆块,对于500mb以下东西风环流有显著的分支、绕流、和汇合作用。
分支和汇合作用在高原迎风面形成“死水区”,绕流形成北脊、南槽的环流形势,对高原及其邻近地区天气气候都有重要影响。
冬季,当西风带南移控制中国广大地区上空时,青藏高原使4000m以下的西风环流在高原西端分成南北两支。
北支在高原西北部为西南气流,绕过新疆北部以后转为西北气流,流线呈反气旋性弯曲;南支在高原西南为西北气流,绕过高原南侧以后转为西南气流,流线呈气旋性弯曲,在孟加拉湾附近曲率最大,并形成低槽。
两支气流在长江中下游流域汇合向东流去。
值得指出的是,这种分支现象从10月份开始一直可以继续到次年6月,不仅在对流层下部常有这种现象存在,而且可以影响到9公里的高度或者更高些,从平均风速场来看,冬季南支西风要强于北支。
在高原地形的规定下,西风带分流作用在某种程度上说,是使西风带的范围向南扩展了,其南界可达北纬15°〜20°。
这导致了冬季风可以向南扩散得更远。
同时,南支西风气流・・・・■■・.・・■■a』・・・i■一■丄ia・・I」■ ■“・・・・■!■・・・・』■・. ・・■■&』」・・・・・■!」■・・・・・4』」・・・一・1«111・・・・』.■■・・a・・・_・■』・・・・if・・・■■■」』・.・・・$■■■■・・・・u・・・的消长,又是冬夏季风交替的一个重要因素。
青藏高原的隆起对环境的影响青藏高原是世界上最大的高原,是印度洋板块向北漂移与亚欧板块发生大陆对撞的产物,地势高峻,均匀海拔 4000~ 5000 米,有众多矗立于雪线之上高于6000 ~ 8000 米的顶峰。
高原的外缘,高峰环绕,壁立千仞,以3000~ 7000 米的高差矗立于四周盆地、平原之上,烘托出高原挺秀的宏伟之势。
高原面积250 万平方公里,东西长3000 公里,南北宽1500公里,跨15 个纬度。
青藏高原的隆起和形成是晚重生代亚洲地质史上最重要的地质事件。
青藏高原隆起不仅改造了高原自己的自然环境,也对四周地区的环境产生了巨大的影响。
此中有些影响是更天性的,如亚洲东部和南部强盛的季风就是高原隆起的结果。
当前,亚洲季风区以全世界约十分之一的土地面积养活这占世界多半以上的人口,物种资源丰富、单位面积生产量高,都是季风的恩赐。
并且高原几乎占冬季中纬度对流层厚度的 1/3 以上,成为中纬度大气环流中的一个宏大的阻碍物。
对中国天气以致亚洲天气的形成无疑起着巨大的作用。
一、青藏高原隆起与亚洲季风青藏高原的隆起对亚洲季风的形成无疑拥有巨大的作用,这是地质历史记录和模拟试考证了然的。
老第三纪不存在亚洲季风已经是不争的事实,广阔的干旱带(包含膏盐堆积)从西藏向来延长到长江中下游。
究其原因,不单是因为当时还没有高大的青藏高原,还在于亚洲西部古地中海还有很海洋疆,欧洲与亚洲隔着一个海峡而被孤立。
亚洲东部和南部的边沿海还没有开裂,所以海陆对峙不强,难以引起深入内地的季风现象。
渐新世中国东南部明显变润湿,东部季风已经出现,但其原因并不是是青藏高原隆起,而更可能是亚洲中部地中海缩短、欧洲与亚洲连结形成超级大陆的结构。
中新世的开始是和喜马拉雅山的隆起同时发生的,人们有原因把西南季风的开始与高原隆起联系起来。
今世的亚洲季风能够分为三个子系统,即印度洋西南季风、东亚季风和高原季风。
东亚季风中的夏季风一支来自南中国海的越赤道气流,与南半球澳大利亚冬季的高气压相关,另一支来自西太平洋副热带高压西侧的的偏南气流。
谈青藏高原对中国气候的影响青藏高原是世界上最大的高原,地势高峻,平均海拔4000~5000米,有许多耸立于雪线之上高逾6000~8000米的山峰。
高原的外缘,高山环抱,壁立千仞,以3000~7000米的高差挺立于周围盆地、平原之上,衬托出高原挺拔的雄伟之势。
高原面积250万平方公里,东西长3000 公里,南北宽1500公里,跨15个纬度。
而且高原几乎占冬季中纬度对流层厚度的1/3以上,成为中纬度大气环流中的一个庞大的障碍物。
对中国气候的形成无疑起着巨大的作用。
1、阻挡高原两侧冷峻气流的交换,扩大西风带的影响范围巨大的青藏高原就像河流中央没有露出水面的大石头对河流的影响一样,使冬季500mb(3~4公里)以下的西风带发生分支、绕流,而形成南北两支气流。
北支气流一部分沿阿尔金山成东风吹入塔里木盆地,一部分沿祁连山成西或偏西北风吹入河西走廊,二者在高原东部汇合成西北气流,流线呈反气旋弯曲,形成动力高压背,使高原地面冷高压进一步加强,并有利于冬季风南下。
高原的约束使冬季风的势力较强。
南支气流在高原西南面为西北气流,绕过高原南侧转为西南气流,流线呈气旋性弯曲,产生动力性低压槽,在槽前暖湿气流的影响下,我国南方与北方冬季气候有较大差异。
南北两支气流在长江中下游汇合,形成北半球最为强大的西风带。
青藏高原的存在使冷空气由于受高原地形的阻挡和挤压,向我国东部地区倾泻到更南的纬度。
高原东侧的西南地区,地处高原西风带的背风位置,风速较小,天气、气候别具一格。
青藏高原的动力作用还表现在它对于近地面气流的屏障作用。
东西方向上,它阻滞了随西风气流东移的天气系统,南北方向上它直接阻挡着我国西部对流层冷暖空气的南北交流。
冬季高原阻挡冬季风南下,使南侧的印度与同纬度其它地区相比温度高,气压低,气温年较差小。
同时西风带气压系统受高原阻挡在其西侧停留、减弱、消亡,而东侧的四川盆地一带则又相对平静,气流扰动较少,风力较弱。
高原北侧又不易受南来暖湿气流影响。
青藏高原隆升对亚洲季风-干旱环境演化的影响刘晓东(中国科学院地球环境研究所,西安,710075)摘要:青藏高原隆升是新生代最重要的地质事件之一,对亚洲乃至全球气候和环境演化都产生了深刻的影响。
近40年来国内外学者利用各种地质记录和气候数值模拟研究了青藏高原隆升的气候环境效应,丰富了对亚洲季风变迁和亚洲内陆干旱化机制的认识,但至今仍存在许多需深入思考和探讨的问题。
本文试图回顾青藏高原隆升对亚洲季风-干旱环境演化影响的研究,对高原整体隆升、阶段性隆升和区域隆升三类数值模拟试验的结果进行总结,重点分析不同形式的构造隆升在气候和环境效应上的区域差异。
从目前的数值模拟结果来看,海陆分布和喜马拉雅山的隆升可能对南亚季风的建立和发展具有较大的作用,而东亚北方季风的形成发展、高原北侧干旱化加剧和亚洲粉尘循环增强则可能与青藏高原主体、特别是高原北部的隆升关系更为密切。
该文也就青藏高原隆升与其它影响因子作用的对比、南亚季风和东亚季风的起源、高原隆升过程中的反馈效应与气候环境变化的非线性响应、数值模拟与地质记录的对比及其不确定性等进行讨论,并探讨了未来需深化研究的一些问题。
关键词:青藏高原构造隆升亚洲季风内陆干旱环境演化地质记录数值模拟青藏高原的平均海拔超过4000m、范围达2,500,000 km2,是印度-澳大利亚板块向北漂移并与欧亚板块碰撞的产物[1, 2]。
高原隆升不仅是新生代固体地球演化的重大事件之一,也被认为是地球气候和环境演化的重要驱动力。
它不仅改变了青藏地区本身的地貌和自然环境,而且对亚洲季风、亚洲内陆干旱化乃至新生代全球气候变化都有深刻的影响。
近40 年来,国内外诸多学者通过地质记录和气候数值模拟,研究了青藏高原隆升对亚洲季风-干旱环境演化的影响,在高原隆升的气候环境效应方面取得了长足进展。
到目前为止,大量地质证据支持高原隆升与亚洲季风形成发展及内陆干旱化的密切联系(例如,文献[3-5]),但对高原隆升的历史和模式、亚洲季风和内陆干旱化的起源和区域差异等问题的看法还有待统一(例如,文献[6-8])。
青藏高原隆起-我国气候分异胡焕庸线青藏高原隆起我国气候分异加下划线加粗部分是重点内容,斜体是辅助理解的东西,重点部分内容已经比较全了,大家需要根据自己的语速与理解做一下语言组织就可以了。
了解我国气候变化的基本常识——环流系统格局:大家都知道行星风带,在行星风带中,我国受控最核心的是西风带,另外就是在我们南部,特别是西南部,它还应带的一个变形。
行星风带的环流控制,在我国的地域里受控于西风季风,西南季风. 西南季风的形成因素不同于东南季风的形成:南半球信风过赤道后转向,再加上具有海陆格局的条件(陆地海洋热容量不同,形成季节的冷源热源交替),就形成了海陆季风环流,是东亚季风的雏形,还不能说是典型的东亚季风。
再加上地势差异,对于中国,对于东亚季风来讲,最显著的地势是青藏高原的隆起,有了青藏高原的隆起,最显著的差异是有了高原季风,高原季风和海陆季风的相互作用形成了现代的东亚季风的海陆环流。
中国气候基本特征:大陆性季风显著●冬夏盛行风向随季节变化,特别是随季风的进退,降水有明显的季节性变化●大陆性强,气温年较差大,降水集中于夏季●雨热同季,利于农牧业生产,但降水不稳定,加剧旱涝等气象灾害发生的频率和影响范围●近地面:季风环流显著表现在三个季风系统;非季风带-西风环流●高空:冬季-热赤道南移,西风带位置南移,主要是西风环流控制,夏季-北侧仍然是西风控制,中纬-副热带高压控制,南部-赤道低压。
青藏高原隆起对大气环流格局形成的影响,还有对周边区域地理特征形成的影响。
一、青藏高原本身特性:青藏高原本身面积大,东西跨度3000km,南北跨度1500km,占中国陆地面积1/4,南北占西风带宽度1/3,预示着,青藏高原隆起对西风环流产生重要影响;平均海拔在4500米,占对流层高度的1/3,对对流层会进行扰动;纬度在北纬25°—40°,属中低纬度,在西风带向副热带高压带过渡的区域,不仅影响西风带,还影响副热带高压带。
青藏高原的隆起与环境效应000000000高原第三次强烈隆升发生在距今15万年左右,这段时间,高原的平均高度已达到4000米以上,一些高山超过了6000米,使高原内部的气候更加寒冷干燥。
地质历史进入全新世(距今一万年前),高原继续抬升,形成了今天高原面平均高度达到4700米。
高原的强烈降升,给亚洲东部的自然环境以深刻的影响,高原的动力作用和势力作用改变了周围地区的环境。
1 青藏高原的隆起及其气候和环境效应2000 m这一高度被认为是高原隆起—黄土堆积的临界高度。
在共和运动时期,喜玛拉雅山由于普遍超过了6000 m而成为阻塞印度洋季风的重大障碍。
近年来随着构造隆升驱动气候变化假说的提出,用以青藏高原为代表的构造隆升导致的各种物理化学过程及其气候效应来解释大冰期的来临和全球气候变化,考虑青藏高原大地形存在时的1月份100 k Pa等压面上的大气环流图式与现今实际观测值近似一致,当不存在青藏高原时,现有的西伯利亚高压就不复存在,由于青藏高原的存在,欧亚大陆的冬季才有西伯利亚高压.青藏高原的隆起增加了冬季雪的覆盖厚度,改变了局部乃至全球的反照率,从而可能对全球气候产生不可忽视的影响。
通过理论分析与数值模拟把晚新生代地球的变冷及区域分异性的增强归因于晚新生代青藏高原及北美西部高原的隆起。
从孢粉植物分异及演变、干旱碎屑及膏盐沉积分布等方面,对柴达木盆地西部新生代气候与地形的演变进行了探讨。
其结果表明,盆地西部新生代两个极端干燥的气候期(膏盐发育期)分别出现在始新世至渐新世及上新世至第四纪。
前者与老第三纪行星环流控制下的副热带干燥带有关,而后者与青藏高原的隆升有关。
通过对柴达木盆地的研究结果表明:青藏高原于25~17第二期强烈隆升即相当于喜马拉雅运动的二期,其所达高度与宽度,足以改变环流形势,它和同时期的热带太平洋的变暖、南极冰盖出现越赤道气流增强、亚洲东缘、东南缘边缘海盆的扩大、亚洲大陆的向西伸展、副特提斯洋的萎缩等因素相结合,共同加强了大陆与大洋的热力差别和动力作用,孕育了以夏季风为主的亚洲季风系统,替代了东亚地面老第三纪的行星风系,导致了东亚干旱草原带大收缩与湿润森林带大发展等重大环境变化。
青藏高原的隆升对中国地理格局和中国气候的影响青藏高原的隆升对中国地理格局和中国气候的影响131210005 天文雷晗青藏高原是中国最大、世界海拔最高的高原,大部分在中国西南部,包括西藏自治区和青海省的全部、四川省西部、新疆维吾尔自治区南部,以及甘肃、云南的一部分。
整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦、吉尔吉斯斯坦的部分,总面积250万平方公里。
中国境内面积240万平方公里,平均海拔4000~5000米,是亚洲许多大河的发源地。
青藏高原有确切证据的地质历史可以追溯到距今4-5亿年前的奥陶纪,其后青藏地区各部分都曾有过地壳升降。
在2.8亿年前的早二叠世,现在的青藏高原地区是波涛汹涌的辽阔海洋,称为特提斯。
2.4亿年前,由于板块运动,分离出来的印度板块以较快的速度向北移动、挤压,在北部发生了强烈的褶皱断裂和抬升,促使昆仑山和可可西里地区隆升,随着印度板块继续向北插入古洋壳下并推动着洋壳不断发生断裂,约在2.1亿年前,特提斯北部再次进入构造活跃期,北羌塘地区、喀喇昆仑山、唐古拉山、横断山脉脱离了海浸;到了距今8000万前,印度板块继续向北漂移,又一次引起了强烈的构造运动。
冈底斯山、念青唐古拉山地区急剧上升,藏北地区和部分藏南地区也脱离海洋成为陆地。
高原的地貌格局基本形成。
青藏高原的抬升过程不是匀速的运动,不是一次性的猛增,而是经历了几个不同的上升阶段。
每次抬升都使高原地貌得以演进。
距今一万年前,高原抬升速度加快,以平均每年7厘米速度上升,使之成为当今地球上的“世界屋脊”。
今天的青藏高原中部以风化为主,而边缘仍在不断上升。
青藏高原在隆升过程中上升了约2000米,这对我国地理格局和气候都造成了一定影响。
从地理格局上说。
青藏高原的隆升造成了它自身的高海拔,从而在整体上造成了我国西高东低的地势分布,促进了我国三层阶梯地理格局的形成。
奇高海拔低气温所造成的多冰川特性为亚洲诸河流提供了丰富水源,于国内而言,它塑造了整个中国的山水系统,是长江与黄河的源头所在,高海拔影响了河流的流向,辅助塑造了河流沿岸地形地貌,也阻挡了西伯利亚的南下气流,客观上部分造成了黄土高原的形成。
青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响摘要综合介绍了青藏高原隆升对亚洲季风形成、北半球大气定常行星波建立、区域和全球气候变迁及环境演化的影响,并对近年来的研究进展作了较为详细的评述,指出今后需要深入研究的若干问题。
关键词青藏高原隆升亚洲季风形成气候变迁环境演化古气候模拟1 引言青藏高原(以下简称高原)隆起是地球演化史上一起重大的自然历史事件,高原隆起不仅对高原及其毗邻地区,甚至对北半球、乃至全球的气候与环境都产生了深刻的影响。
现代气象学研究[1~3]表明,青藏高原与亚洲季风活动密切相关。
因此,研究地质时期东亚季风的变迁,必须考虑高原隆起的作用。
多年来有许多科学家从各种角度揭示了高原隆升的地质事实,但由于这一问题的复杂性和不同来源地质观测资料的局限性,使人们对于高原隆起的历史及过程至今仍存在着各种不同的看法(参见李吉均的介绍[4])。
然而,青藏高原隆起对亚洲季风和全球气候及环境演化具有重大影响已成为越来越多的地学科学家的共识.鉴于青藏高原在亚洲季风、全球气候乃至整个地球系统中的重要性,近年来随着全球变化研究的深入,高原隆升再度成为地学界关注的热点.2 高原隆起对大气环流的影响2。
1 高原隆起与亚洲季风系统的形成和发展亚洲季风区是世界上最显著的季风区[5]。
季风区雨热同季,利于植物的生长,养育着众多的人口(中国和印度为世界上两个人口最多的国家)。
分析发现,亚洲季风系统中存在着三个相对独立的子系统:南亚季风[6]、东亚季风[7]和高原季风[8]。
以下仅简单讨论南亚季风和高原季风的形成。
东亚季风的形成则在5。
1节中专门讨论。
2。
1。
1 南亚季风的形成Flohn[9]最早指出青藏高原在大尺度南亚季风中的重要性.后来Manabe等[10,11]利用大气环流模式(GCM)进行了有山、无山的对比试验才使得这一问题得到全面而深入的认识。
青藏高原大地形不仅直接控制着冬季西伯利亚高压的位置和强度,而且决定着夏季风的建立与发展。
青藏高原生态环境保护和可持续发展方案--- 青藏高原气候变化影响及应对举措青藏高原是“世界屋脊”“亚洲水塔”,是我国重要的生态安全屏障,也是中华民族特色文化的重要保护地。
要保护好青藏高原生态环境、积极应对气候变化。
青藏高原各类环境和生态建设工程实施进展顺利,基础科学研究、环境保护工程、环保意识教育等方面取得一定进展,环境质量呈现逐步改善的趋势。
但仍存在对目前青藏高原气候变化的事实及其影响的量化研究不够,对灾害风险预估的科学预判不足等问题。
藏高原气候变化应对措施如下:一、加强生态安全科学研究,积极应对气候变化;加强综合观测体系和能力建设;加强灾害风险评估预判,提高灾害防范能力;加大优化生态安全屏障体系建设支持力度。
二、以第二次青藏科考为契机,将相关资源调查纳入科考范围,汇聚多方科研力量参与,采用实地考察、长期资料数据以及遥感遥测分析相结合的方式,力求弄清家底、辨明现状,为量化分析环境气候变化打好基础;加速推进青藏高原卫星遥感与地面跨部门综合监测系统及其多源信息数据共享工程建设;开展青藏高原环境与气候变化预测预警和适应技术研究,特别是短、中期预测预警技术和对区域经济社会的风险预估,进而研发针对性强的适应技术;加大西藏、青海县级基础设施、设备建设支持力度,尤其是西藏生活垃圾无害化处理和污水处理设施建设等。
三、藏高原区域发育着 4.8 万余条冰川,总面积为 6 万余平方公里,常年积雪覆盖面积大,季节和冻土分布广泛。
加强气候变化及极端灾害对农牧业、水资源、高寒生态系统、人群健康的影响和风险评估,以及冰川跃动、冰崩、冰湖溃决等多灾种综合风险和气候环境承载力评估,强化重大基础设施如川藏铁路、公路、水电站的气候可行性论证。
四、加强气候资源合理利用与生态修复和环境保护,同样是重中之重。
应充分研究利用祁连山、三江源、天山、贺兰山等山区空中水汽条件丰富的有利条件,合理开发利用空中云水资源;全面掌握我国西部风能太阳能水电能源等情况,科学开发和利用西部气候资源;制定青藏高原中长期发展与保护规划,明确生态环境保护和系统治理、气候变化对策研究及科技支撑、基础设施建设、跨区域与国际合作等举措;充分利用气候变化短期内所带来的相对有利的生态环境“窗口期”,加强高原农业气候适应性区划、湿地保护与沙漠化治理,实现生态环境改善。
青藏高原隆起与气候区域分异(一)青藏高原的动力作用对季风的分支作用冬季青藏高原北部对冬季风分支的分点在95 E附近,冷空气堆积并分化为两支:一支沿阿尔金山成东风吹入塔里木盆地;另一支则沿着祁连山成西或偏西北风吹向河西走廊,顺地势南下,形成冬季风通道,加剧了冬季风向东南的势力。
夏季夏季,西南季风抵达孟加拉湾再向北推进时,碰到青藏高原,即分为东、西两支:一支沿喜马拉雅山转为东风向西吹去;另一支则沿着山脉的走向流向我国西南地区,加剧藏东南水汽通道作用,使高原边缘降水增多,并进而因雨影作用使高原内部干旱加剧。
对西风的分支作用青藏高原西部,冬半年西风(西风带南移所致)气流受到高原阻挡,距地面3~4 km高度以下的气流被分为南、北两支。
由于冬季西风带的位臵主要在青藏高原的西端偏南,加之地形的影响,所以南支比北支气流强大得多,故称“南支急流”。
南支在高原西南面,为西北气流;绕过高原南侧转为西南气流,高原南侧成槽,加剧西南干暖气流势力。
北支在高原西北面,为西南气流,绕过新疆北部转为西北气流,进一步加强冬季风的势力;高原北侧成脊,盛行下沉气流,进一步强化西北地区的干旱化。
南、北两支气流在长江中下游汇合,气流相对静止区正好处在四川盆地上空,使其成为我国著名的微风区,四川多云雾也与此有关。
受青藏高原的阻挡,西风气流的分叉、绕行,东流与汇合,形成了北半球最强大的西风带。
分支气流形成于10月,次年4-5月退出,它与东亚季风的进退有一定的关系。
屏障作用北部蒙古一带很少受到南来的暖气流的影响,有利于冷空气的堆积,形成强大的蒙古高气压,盛行下沉气流,加剧了蒙古高原的干旱。
西侧阻挡了从西来的西风带气压系统,有的在高原西侧滞留、减弱,甚至消亡。
东侧的四川、汉中一带,为气流的相对静止区,气流扰动少,风力弱,多小涡旋,少有发展。
南侧印度地区,由于高原阻挡了冬季风的南下,所以比同纬度地区温度高而气压低,温度的年较差小。
(二)青藏高原的的热力作用高原季风青藏高原面与同高度的自由大气相比,有强大的热力差异,这对大气环流产生明显的热力作用。