【综合拓展类作业】
(2)设利润为w 当22≤x≤30 时 ,w=(x-20)(-x+70)=-x²+90x-1400=-(x45)²+625 ∵在22≤x≤30 范 围 内 ,w 随着x的增大而增大, ∴当x=30 时 ,w 取得最大值为400;
当30<x≤45 时 ,w=(x-20)(-2x+100)=-2x²+140x-2000=2(x-35)²+450 ∴当x=35 时 ,w 取得最大值为450 ∵450>400,
篱笆总长为900 m (篱笆的厚度忽略不计),当AB=_ 150 _m 时,矩形土
地ABCD 的面积最大.
B
F
C
【知识技能类作业】选做题:
3. 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不 同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近 似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A, B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90 米), 以最高点O 为坐标原点,以平行于AB 的直线为x轴建立平面直角坐标系,则此抛物 线钢拱的函数表达式为( B )
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
解:1)S=x(24 -4x)=-4x²+24x(0<x<6)
2)当
时,
3)∵墙的可用长度为8米 ∴0<24 -4x ≤8 ∴4≤x<6 ∴当x=4cm时,S最大值=32平方米
有关抛物线形的实际问题的一般解题思路。 (1)建立适当的平面直角坐标系。 (2)根据题意找出已知点的坐标。 (3)求出抛物线解析式。 (4)直接利用图象解决实际问题。