北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)
- 格式:doc
- 大小:259.00 KB
- 文档页数:15
1.3 勾股定理的应用基础题知识点1立体图形中两点之间的最短距离1.如图,若圆柱的底面周长是30 cm,高是40 cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处作装饰,则这条丝线的最小长度是( )A.80 cm B.70 cmC.60 cm D.50 cm2.如图是棱长为1的正方体木块,一只蚂蚁现在A点,若在B处有一食物,它想尽快吃到食物,设蚂蚁沿正方体表面爬行的最短路程为a,则a2=________.3.如图是一个三级台阶,它的每一级的长、宽、高分别为20 dm、3 dm、2 dm,A和B是这个台阶的两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶面爬行到B点的最短路程是多少?知识点2勾股定理在生活中的应用4.如图,湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )A.30米B.40米C.50米D.60米5.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为( ) A.5 cm B.100 cmC.120 cm D.130 cm6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高0.9 m,宽1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需________长.8.一渔船从点A出发,向正北方向航行5公里到B点,然后从B点向正东方向航行12公里至C点,则AC长为________公里.9.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶端A在AC上运动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑竿顶端A 下滑多少米?中档题10.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走________公尺后,他与神仙百货的距离为340公尺( ) A.100 B.180C.220 D.26011.(济南中考)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)为( )A.12 m B.13 mC.16 m D.17 m12.(东营中考)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行________米.13.如图是延安某地一个农家的窑洞的洞门示意图,其上方为半圆形,若长方形的对角线AC=2.5米,AD=1.5米,则洞口的面积为________平方米(π取3).14.如图,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有一苍蝇从A 点出发,沿长方体的表面到达C 点处,则苍蝇所经过的最短距离为________.15.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点,且PC =23BC.一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是多少?综合题16.印度数学家什迦罗(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.参考答案1.D 2.53.经分析,如图,应把台阶看成是纸片折成的,拉平(没高度)成一张长方形(长为3×3+2×3=15 dm ,宽为20 dm)的纸. 所以AB 2=152+202=625(dm 2).所以AB =25 dm ,即蚂蚁沿着台阶面爬行到B 点的最短路程是25 dm.4.C5.D6.D 7.1.5 m 8.139.因为AB =DE =2.5,BC =1.5,∠C =90°, 所以AC =AB 2-BC 2= 2.52-1.52=2. 因为BD =0.5,所以在Rt △ECD 中,CE =DE 2-CD 2= 2.52-(CB +BD )2= 2.52-(1.5+0.5)2=1.5. 所以AE =AC -EC =0.5. 答:滑竿下滑了0.5米.10.C 11.D 12.10 13.4.5 14.5 cm15.画侧面展开图,如图,因为圆柱的底面周长为6 cm , 所以右图中AC =3 cm , 又因为PC =23BC ,所以PC =23×6=4(cm).在Rt △ACP 中,AP 2=AC 2+CP 2,得AP =5 cm.16.如图,由题意知,AC =2,AD =0.5.在Rt △ACD 中,由勾股定理,得CD 2=AC 2-AD 2=22-0.52=3.75. 设湖水深BD 为x 尺,则BC 为(x +0.5)尺.在Rt △BCD 中,由勾股定理,得BD 2+CD 2=BC 2,即x 2+3.75=(x +0.5)2,解得x=3.5.答:湖水深3.5尺.。
1.3勾股定理的应用-勾股定理与最短路径问题一、选择题1.如图,圆柱的底面周长是24,高是5,一只在A点的蚂蚁沿侧面爬行,想吃到B点的食物,需要爬行的最短路径是( )A.9B.13C.14D.252.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为( )A.12cm B.14cm C.20cm D.24cm3.如图所示的圆柱体中底面圆的半径是4,高为3,若一只小虫从A点出发沿着圆柱体的侧面π爬行到C点,则小虫爬行的最短路程是( )A.5B.5C.73D.44.今年9月22日是第三个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为10cm的圆柱粮仓模型,如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为( )A.20πcm B.40πcm C.102cm D.202cm5.已知长方体的长2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是( )A.29cm B.5cm C.37cm D.4.5cm6.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为( )A.8cm B.10cm C.12cm D.15cm7.小南同学报名参加了南开中学的攀岩选修课,攀岩墙近似一个长方体的两个侧面,如图所示,他根据学过的数学知识准确地判断出:从点A攀爬到点B的最短路径为( )米.A.16B.82C.146D.1788.如图,桌面上的长方体长为8,宽为6,高为4,B为CD的中点.一只蚂蚁从A点出发沿长方体的表面到达B点,则它运动的最短路程为( )A.229B.45C.10D.3149.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是( )A.1089B.505C.120D.13010.如图,圆柱的高为4cm,底面半径为3πcm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径、问:蚂蚁食到食物爬行的最短距离是( )cm.A.5B.5πC.3+4πD.3+8π二、填空题11.如图,一个长方体盒子的长、宽、高分别为5cm、4cm、3cm,有一只甲虫从顶点A沿盒的表面爬到顶点B处,那么它所爬行的最短路线的长是 cm.12.如图所示,一圆柱高AB为2cm,底面直径BC为4cm,一只蚂蚁从点A出发沿圆柱表面爬行到点C,则蚂蚁爬行的最短路程是 cm(π取3).13.如图所示是一个长方体纸盒,纸盒的长为12cm,宽为9cm,高为5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点G,蚂蚁爬行的最短路程是 cm.14.如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为 .15.如图,长方体盒子的长、宽、高分别是9cm,9cm,24cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,它至少要爬行 cm.16.如图所示,有一个正方体盒子,其棱长为2dm,一只虫子在顶点A处,一只蜘蛛在顶点B 处,蜘蛛沿着盒子表面准备偷袭虫子,那么蜘蛛要想最快地捉住虫子,它所走的最短路程是 dm.(结果保留根号)17.如图,圆柱形容器外壁距离下底面3cm的A处有一只蚂蚁,它想吃到正对面外壁距离上底面3cm的B处的米粒,若圆柱的高为12cm,底面周长为24cm.则蚂蚁爬行的最短距离为 cm.18.如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C'处,若长方体的长AB=4cm,宽BC=2cm,高BB'=1cm,则蚂蚁爬行的最短路径长是 .三、解答题19.如图,一个圆柱体高20cm,底面半径为5cm,在圆柱体下底面的A点处有一只蜘蛛,它想吃到上底面与A点相对的B点处的一只已被粘住的苍蝇,这只蜘蛛从A点出发,沿着圆柱体的侧面爬到B点,最短路程是多少?(π取3)20.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程是多少?21.如图所示,有一个圆柱,底面圆的直径AB=16,高BC=12cm,在BC的中点P处有一块π蜂蜜,聪明的蚂蚁总能找到距离食物的最短路径,求蚂蚁从A点爬到P点的最短距离.22.如图,长方体的长为20cm,宽为10cm,高为15cm,点B与点C之间的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖.(1)求出点A到点B的距离;(2)求蚂蚁从点A爬到点B的最短路程是多少?23.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上底面距离为4cm 的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为多少?24.如图所示,一个无盖四棱柱容器,其底面是一个边长为3cm的正方形,高为20cm.现有一根彩带,从底面A点开始缠绕四棱柱,刚好缠绕4周到达B点(假设彩带完美贴合四棱柱).(1)请问彩带的长度是多少?(2)如图所示,一只蚂蚁在容器外A点发现容器的内部距离顶部2cm处有一滴蜂蜜,它想以最短的路程到达C处.请问蚂蚁走的最短路程是多少呢?(注:以上两问均要画出平面展开示意图,再解答)答案一、选择题B.D.A.D.B.D.B.C.B.A.二、填空题11.74.12.6.13.285.14.20cm.15.30.16.25.17.65.18.5cm.三、解答题19.如图所示,将圆柱体侧面展开,连接AB,则AB的长即为蜘蛛爬行的最短路程.根据题意得AC=20cm,BC=πR=5π=5×3=15cm,在Rt△ABC中,由勾股定理得AB2=BC2+AC2=152+202=625,所以AB=25cm,即最短路程是25cm.20.如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN=122+162=20(cm);如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=182+102=2106(cm).如图3中,MN =222+62=2130(cm ),∵20<2106<2130,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20cm .21.将圆柱体的侧面展开,如图所示:AB =12底面周长=12×π×16π=8(cm ),AP =12BC =6(cm ),所以AP =82+62=10(cm ),故蚂蚁从A 点爬到P 点的最短距离为10cm .22.(1)将长方体沿CF 、FG 、GH 剪开,向右翻折,使面FCHG 和面ADCH 在同一个平面内,连接AB ,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:AB=BD2+AD2=152+152=152cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:AB=BH2+AH2=202+102=105cm,则需要爬行的最短距离是152cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:AB=BB′2+AB′2=252+52=526cm,综上所述,点A到点B的距离为:152cm,105cm,526cm;(2)由(1)知,∵点A到点B的距离为:152cm,105cm,526cm;∴152<105<526,∴则需要爬行的最短距离是152cm.23.如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=202―162=12(cm),则该圆柱底面周长为24cm.24.(1)如图,将长方体的侧面沿AB展开,取A′B′的四等分点C、D、E,取AB的四等分点C′、D′、E′,连接B′E′,D′E,C′D,AC,则AC+C′D+D′E+E′B′=4AC为所求的最短细线长,∵AC2=AA′2+A′C2,AC=122+52=13,∴AC+C′D+D′E+E′B′=4AC=52,答:彩带的长度是52cm;(2)如图,将四棱柱展开,找到C的对称点C′,连接AC′,则AC′即为蚂蚁走的最段路程,在直角△AMC中,AM=6cm,MC′=20+(20﹣18)=22cm,由勾股定理得:AC′2=AM2+MC′2=62+222=520,则AC′=2130cm,答:蚂蚁走的最短路程是2130cm.。
第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为 __________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是_________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.3cm,c=3 cm,则△ABC中最小的角为______度.4.△ABC中,三边长分别为a=6 cm,b=35.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC 中AD ⊥BC 于D ,AB=3,BD=2,DC=1, 则AC 等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ). A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( ).A.210B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( ). A.1 B.3C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ). A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
八上1.3勾股定理的应用一.选择题(共10小题)1.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m2.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm3.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米4.如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm5.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D 点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm6.已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.167.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对8.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺9.一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里10.如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m二.填空题(共10小题)11.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.13.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)14.在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.15.小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?(填“能”或“不能”).16.一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有km.17.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是m/s.18.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.19.如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离.20.如图示(单位:mm)的矩形零件上两孔中心A和B的距离为mm.三.解答题(共10小题)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?23.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?24.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?25.八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.26.有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?27.如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?28.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB 的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.29.如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.30.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?八上1.3个勾股定理的应用参考答案与试题解析一.选择题(共10小题)1.(2016春•庐江县期末)如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故选D.【点评】本题考查的是勾股定理的正确应用,找出可以运用勾股定理的直角三角形是关键.2.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.3.(2015•岳池县模拟)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.4.(2015•伊宁市校级一模)如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB===30cm.故选B.【点评】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键.5.(2015秋•滨湖区期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.6.(2015秋•新泰市期末)已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.16【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB 为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故选B.【点评】考查了平面展开﹣最短路径问题,本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.7.(2015春•北流市期中)在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对【分析】由题意知树折断的两部分与地面形成一直角三角形,根据勾股定理求出BC的长即可解答.【解答】解:如图所示,AB=10米,AC=6米,根据勾股定理得,BC===8米<9米.故选:A.【点评】此题考查了勾股定理在生活中的应用.善于观察题目的信息是解题以及学好数学的关键.8.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.(2014春•台山市校级期末)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48,36.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×3=48,12×3=36海里,根据勾股定理得:=60(海里).故选C.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.10.(2013秋•东兴市校级期末)如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m【分析】由题意知树枝折断部分、竖直部分和折断部分构成了直角三角形,根据题目提供数据分别求出竖直部分和折断部分,二者的和即为本题的答案.【解答】解:由题意知:AC=1,BC=3,由勾股定理得:AB===,∴树高为:AC+AB=(+1)m,故选C.【点评】本题考查了勾股定理的相关知识,解决本题时,先由勾股定理求得树枝折断部分,然后与竖直部分加在一起即为本题的解.二.填空题(共10小题)11.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.12.(2016春•潮州期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了 2 cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.13.(2016春•武冈市期中)如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是dm .(结果保留根号)【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.14.(2015秋•苏州校级期末)在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高15 米.【分析】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【点评】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.15.(2015秋•东明县期末)小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?能(填“能”或“不能”).【分析】在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.【解答】解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.【点评】本题的关键是求出木箱内木棒的最大长度.16.(2015春•岳池县期末)一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有200 km.【分析】两段航行的路线正好互相垂直,构成直角三角形,利用勾股定理即可解答即可.【解答】解:如图,A为出发点,B为正东方向航行了160km的地点,C为向正北方向航行了120km的地点,故AB=160km,BC=120km,在Rt△ABC中,由勾股定理得:AC===200km.故答案为200.【点评】本题考查直角三角形的性质及勾股定理的应用,关键是要根据题意画出图形即可解答.17.(2015秋•蓝田县期末)如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是20 m/s.【分析】求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC==40(m),故小汽车的速度为v==20m/s.故答案为:20.【点评】本题考查了勾股定理的应用,是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.18.(2015秋•宜兴市校级期中)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10 cm.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.【点评】此题主要考查了立体图形的展开和两点之间线段最短,解题的关键是根据题意画出展开图,表示出各线段的长度.19.(2014秋•平山区校级月考)如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离cm .【分析】将长方体盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【解答】解:如图(1),AG===13cm;(2)AG==cm.故答案为cm.【点评】此题考查了平面展开﹣最短路径问题,解答时要进行分类讨论,利用勾股定理是解题的关键.20.(2012秋•上蔡县校级期中)如图示(单位:mm)的矩形零件上两孔中心A和B的距离为100 mm.【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解答】解:∵AC=120﹣60=60mm,BC=140﹣60=80mm,∴AB===100(mm).故答案为:100.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.三.解答题(共10小题)21.(2016春•浠水县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA ⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.(2016春•重庆校级期中)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?【分析】设旗杆在离底部x米的位置断裂,在直角三角形中利用勾股定理即可得出关于x的一元二次方程,解方程求出x的值,此题得解.【解答】解:设旗杆在离底部x米的位置断裂,在给定图形上标上字母如图所示.∵AB=x,AB+AC=16,∴AC=16﹣x.在Rt△ABC中,AB=x,AC=16﹣x,BC=8,∴AC2=AB2+BC2,即(16﹣x)2=x2+82,解得:x=6.故旗杆在离底部8米的位置断裂.【点评】本题考查了勾股定理的应用,解题的关键是利用勾股定理得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,构建直角三角形,利用勾股定理表示出三边关系是关键.23.(2016春•广州校级期中)一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB 为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?【分析】(1)在Rt△ABO中,根据勾股定理AO=,即可求出梯子顶端距地面的高度;(2)在Rt△A′B′O中,根据勾股定理OB′=,先求出OB′的长,梯子底部在水平方向滑动的长度即是BB′=OB′﹣OB的长,.【解答】解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.【点评】本题考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求OB′的长度是解题的关键.24.(2015秋•龙口市期末)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【解答】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2…(3分)在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站多少20千米的地方.【点评】考查了勾股定理的应用,本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.25.(2013秋•亭湖区校级期末)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【解答】解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.6=61.6米,答:风筝的高度CE为61.6米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.26.(2014春•江都市校级期中)有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答即可.【解答】解:过A做AE⊥CD,垂足为E,由题意可得AE=6,CE=14﹣1﹣5=8在Rt△ACE中,则t==2秒.答:它至少需要2秒的时间才能赶回巢中.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.27.(2014春•东莞市校级期中)如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?【分析】根据勾股定理求得BE的长,即可求得CE的长,则要求的平行四边形的面积即为CE•AB 的值.【解答】解:由长方形性质知:∠B=90°在Rt△ABE中,∵AB=30m,AE=50m,∴BE===40m.∴CE=BC﹣BE=42﹣40=2m.S四边形AECF=CE•AB=2×30=60m2.答:小路的面积为60m2.【点评】此题主要是勾股定理的运用.勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.28.(2014春•禹州市期中)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.【分析】利用已知得出B′E的长,再利用勾股定理得出即可.【解答】解:由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,AE2+BE2=AB2,∴(AB﹣0.8)2+2.42=AB2解得:AB=4,答:秋千AB的长为4m.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.29.(2014春•台安县期中)如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.【分析】设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.由勾股定理得到AP的长,然后求得PP′长,利用速度路程时间之间的关系求得时间即可.【解答】解:如图,设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.∵由勾股定理得到:PB===80,∴PP′=2PB=2×80=160米,∴影响时间为160÷10=16秒,答:影响时间为16秒.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中整理出直角三角形.30.(2014秋•兴化市校级月考)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?【分析】(1)在直角三角形ABC中,已知AB,AC根据勾股定理即可求出小汽车2秒内行驶的距离BC;(2)根据小汽车在两秒内行驶的距离BC可以求出小汽车的平均速度,求得数值与70千米/时比较,即可计算小汽车是否超速.【解答】解:(1)在直角△ABC中,已知AC=30米,AB=50米,。
2021-2022学年八年级数学上册尖子生同步培优题典【北师大版】专题1.3勾股定理的应用姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•达川区校级月考)如图,原来从A村到B村,需要沿路A→C→B(∠C=90°)绕过村庄间的一座大山.打通A,B间的隧道后,就可直接从A村到B村.已知,AC=12km,BC=16km,那么,打通隧道后从A村到B村比原来减少的路程为()A.5km B.8km C.10km D.20km【分析】直接利用勾股定理得出AB的长,进而得出答案.【解析】由题意可得:AB²=AC2+BC2=122+162=400(km),AB=20km,则打通隧道后从A村到B村比原来减少的路程为:12+16﹣20=8(km).故选:B.2.(2020春•文水县期末)疫情期间,小颖宅家学习.一天,她在课间休息时,从窗户向外望,看到一人为快速从A处到达居住楼B处,直接从边长为24米的正方形草地中穿过.为保护草地,小颖计划在A处立一个标牌:“少走?米,踏之何忍”,已知B、C两处的距离为7米,那么标牌上?处的数字是()A.3B.4C.5D.6【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解析】由题意可知AB²=AC2+BC2=24²+7²=625m,故居民直接到B时要走AB=25m,若居民不践踏草地应走AC+BC=24+7=31mAC+BC﹣AB=31﹣25=6m故在?的地方应该填写的数字为6,故选:D.3.(2021春•长沙期中)如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米【分析】过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【解析】如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD²=AE2+DE2=0.9²+1.2²=6.25,,故选:B.4.(2020春•西城区校级期中)为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)()A.0.7米B.0.8米C.0.9米D.1.0米【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解析】梯脚与墙角距离的平方:2.52−2.42=0.49,∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.5.(2020•巴中)《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.故选:B.6.(2020秋•未央区期中)如图,在灯塔O的东北方向8海里处有一轮船A,在灯塔的东南方向6海里处有一渔船B,则AB间的距离为()A.9海里B.10海里C.11海里D.12海里【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【解析】已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=8海里,OB=6海里,∴AB²=OA2+OB2=8²+6²=100AB=10(海里).故选:B.7.(2020秋•罗湖区期中)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是()A.10米B.15米C.16米D.17米【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB 的长,即攀岩墙的高.【解析】如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故选:B.8.(2020秋•龙泉驿区期中)如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为()A.13cm B.8cm C.7cm D.15cm【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解析】由题意可得:杯子内的筷子长度为:√52+122=13,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm).故选:C.9.(2020秋•历城区期中)古代数学的“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,AB+AC=25尺,BC=5尺,则AC等于()尺.A.5B.10C.12D.13【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(25﹣x)尺,利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(25﹣x)尺,根据勾股定理得:x2+52=(25﹣x)2.解得:x=12,答:折断处离地面的高度为12尺.故选:C.10.(2020春•南岗区校级期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm【分析】当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解析】如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16(cm);当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17(cm),所以h的取值范围是:8cm≤h≤17cm.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•盐池县期末)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯17米.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此利用勾股定理求出水平距离即可.【解析】根据勾股定理,楼梯水平长度为√132−52=12米,则红地毯至少要12+5=17米长,故答案为:17.12.(2021春•越秀区校级期中)如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A 到公路MN的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m 以内都会受到噪音的影响,请你算出该学校受影响的时间为24秒.【分析】设卡车开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由卡车的速度可得出所需时间.【解析】设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB=√1002−802=60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.13.(2020秋•南宫市月考)小明从A处出发沿北偏东40°的方向走了30米到达B处;小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=50.【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解析】∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.14.(2020秋•成华区校级月考)将一根24cm的筷子,置于底面直径为5cm、高为12cm的圆柱体中,如图,设筷子露出在杯子外面长为hcm,则h的最小值11cm,h的最大值12cm.【分析】当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,据此可以得到h 的取值范围.【解析】当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内部分=√122+52=13(cm),故h=24﹣13=11(cm).故h的取值范围是11≤h≤12.故答案为:11cm;12cm.15.(2020秋•太原期中)《九章算术)“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何.”其大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?若设门的宽为x尺,根据题意列出的方程x2+(x+6.8)2=102.(注:1丈=10尺,1尺=10寸)【分析】设长方形门的宽x尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【解析】设长方形门的宽x尺,则高是(x+6.8)尺,根据题意得x2+(x+6.8)2=102,解得:x=2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺,宽是2.8尺.故答案为:x2+(x+6.8)2=102.16.(2020秋•溧水区期中)木工师傅为了让尺子经久耐用,常常在尺子的直角顶点A处与斜边BC之间加一根小木条AD.已知∠BAC=90°,AB=5dm,AC=12dm,则小木条AD的最短长度为6013dm.【分析】首先利用勾股定理求出BC 的长,再利用三角形面积求出即可.【解析】∵∠BAC =90°,AB =5dm ,AC =12dm ,∴BC =√AB 2+AC 2=√52+122=13(dm ),当AD ⊥BC 时,AD 最短,则12AD ×BC =12AB ×AC , 则AD =AB×AC BC =5×1213=6013(dm ). 故答案是:6013.17.(2020秋•广陵区校级期中)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B ′(示意图如图,则水深为 12 尺.【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB '的长为10尺,则B 'C =5尺,设出AB =AB '=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解析】依题意画出图形,设芦苇长AB =AB ′=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.18.(2020秋•泰州期中)如图所示是一个圆柱形饮料罐,底面半径为5cm,高为12cm,上底面中心有一个小圆孔,将一根长24cm的直吸管从小圆孔插入,直到接触到饮料罐的底部,直吸管在罐外的长度hcm (罐的厚度和小圆孔的大小忽略不计),则h的取值范围是11≤h≤12.【分析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高;当吸管底部在A点时吸管在罐内部分最长,此时可以利用勾股定理在Rt△ABO中求出,然后可得罐外部分a长度范围.【解析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高,罐外部分a=24﹣12=12(cm);当吸管底部在A点时吸管在罐内部分最长,即线段AB的长,在Rt△ABO中,AB=√AO2+BO2=√122+52=13(cm),罐外部分a=24﹣13=11(cm),所以11≤h≤12.故答案是:11≤h≤12.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•荥阳市期中)郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【解析】(1)因为△ABC是直角三角形,所以由勾股定理,得AC2=BC2+AB2.因为AC=50米,BC=30米,所以AB2=502﹣302=1600.因为AB>0,所以AB=40米.即A,B两点间的距离是40米.(2)过点B作BD⊥AC于点D.因为S△ABC=12AB•BC=12AC•BD,所以AB•BC=AC•BD.所以BD=AB⋅BCAC=30×4050=24(米),即点B到直线AC的距离是24米.20.(2020秋•太原期中)如图是一块四边形木板,其中AB=16cm,BC=24cm,CD=9cm,AD=25cm,∠B=∠C=90°.李师傅找到BC边的中点P,连接AP,DP,发现△APD是直角三角形,请你通过计算说明理由.【分析】根据勾股定理解答即可.【解析】∵点P为BC中点,∴BP=CP=12BC=12(cm),∵∠B=90°,在Rt△ABP中,根据勾股定理可得:AB2+BP2=AP2,162+122=AP2,解得:AP=20(cm),同理可得:DP=15(cm),∵152+202=252,∴AP2+DP2=AD2,∴△APD是直角三角形,∠APD=90°.21.(2020秋•碑林区校级月考)我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200元,则共需要投入多少钱?【分析】利用勾股定理求出AC,利用勾股定理的逆定理证明∠ADC=90°即可解决问题.【解析】连接AC,在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC=√AB2+BC2=√202+152=25(米).在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=625=AC2.∴△ADC是直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=12×15×20+12×7×24=234(平方米).∴四边形空地ABCD的面积为234平方米.∴200×234=46800(元).答:学校共需投入46800元.22.(2020秋•青羊区校级月考)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.(1)该小学是否受到噪声的影响,并说明理由.(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?【分析】过点A作AC⊥ON于点C,求出AC的长,第一台到B点时开始对学校有噪音影响,第二台到B点时第一台已经影响小学50米,直到第二台到D点噪音才消失.【解析】如图所示:过点A作AC⊥ON于点C,∵∠MON=30°,OA=160米,∴AC=12OA=80米,∵80m<100m,∴该小学会受到噪声影响;(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,∴AB=AD=100米,由勾股定理得:BC=√AB2−AC2=√1002−802=60(米),∴BD=2BC=120米,CD=60米∴影响的时间应是:t=1205=24(秒);答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.23.(2020秋•南山区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【分析】设AB=x,则AC=x+1,依据勾股定理即可得到方程x2+52=(x+1)2,进而得出风筝距离地面的高度AB.【解析】设AB=x,则AC=x+1,由图可得,∠ABC=90°,BC=5,∴Rt△ABC中,AB2+BC2=AC2,即x2+52=(x+1)2,解得x=12,答:风筝距离地面的高度AB为12米.24.(2020春•武汉期中)如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.【分析】根据题意设出E点坐标,再由勾股定理列出方程求解即可.【解析】设AE=x,则BE=20﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=82+x2,在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,由题意可知:DE=CE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距A点13.3km.。
1.3 勾股定理的应用1.若正整数a,b,c是一组勾股数,则下列各组数一定仍然是勾股数的是()A.a+1,b+1,c+1 B.a2,b2,c2C.2a,2b,2c D.a-1,b-1,c-1你能否再多写几组勾股数,从这些勾股数中,你能发现什么规律?2.如图1,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A 有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)3.有一个长宽高分别为2cm,1cm,3cm的长方体,如图2,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由.4.在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?参考答案1.C若a,b,c为一组勾股数,那么ka,kb,kc(k≠0,k为常数)也是勾股数.2.解:如下图:将圆柱沿着过A点的高AC剪开,并将侧面展开.1·2πr=π·r≈18(cm)则AC=24cm,BC=2∴在Rt△ABC中,AB2=AC2+BC2=242+182,∴AB=30(cm)∴它最短的爬行路程约为30×2=60(厘米)3.(1)当蚂蚁在侧面A1ABB1和侧面B1BCC1上爬行时,爬行的最短路线的长设为d1,则d12=(2+1)2+32=18(2)当蚂蚁在侧面A1ABB1和上底面A1B1C1D1上爬行时,由A到C1的最短路线的长设为d2,则d22=22+(3+1)2=20(3)同理可求得蚂蚁在侧面A1ADD1和D1DCC1上爬行时,d32=32+(1+2)2=18,蚂蚁在底面ABCD,侧面D1DCC1上爬行时,d32=22+(1+3)2=20所以,蚂蚁可沿A—M—C1爬行,如下图:或蚂蚁沿A—N—C1爬行,如下图:4.解:设水深为x尺如图,Rt△ABC中,AB=h,AC=h+3,BC=6由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62∴h2+6h+9=h2+36,解得:h=4.5答:水深4.5尺.。
第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为.3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为.4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8 cm,BC=10 cm,求EC的长.FC参考答案:1.(1)13;(2)8;(3)6,8. 2.2.5m . 3.1360cm . 4.D . 5.25km . 6.4. 7.3 cm .1.2 一定是直角三角形吗1.如图在∆ABC 中, ∠BAC = 90︒, AD ⊥BC 于D , 则图中互余的角有 A .2对 B .3对 C .4对 D .5对2.如果直角三角形的两边的长分别为3、4,则斜边长为3.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2222+=+。
4. 已知:钝角∆BAC ,CD 垂直BA 延长线于D ,求证:BC AB AC AB AD 2222=++⋅。
D CO ABD AB C5. 已知:AB AC =,且AB AC ⊥,D 在BC 上,求证:BD CD AD 2222+=。
《勾股定理》同步练习题A 卷(满分100分)一﹑填空题 (每小题2分, 共20分)1. 如图,∠OAB =∠OBC =∠OCD =90°, AB =BC =CD =1,OA =2,则OD 2=____________.2. 如图, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6,则腰AB 的长为____________.3. 如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________________m.4. 正方形的面积为18cm 2, 则正方形对角线长为__________ cm.5.在△ABC 中,∠C =90°,若AB =5,则2AB +2AC +2BC =__________.6. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________ AB 米. 7. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形.8. 木工做一个长方形桌面, 量得桌面的长为60cm , 宽为32cm , 对角线为68cm , 这个桌面__________ (填“合格”或“不合格”).9. 直角三角形一直角边为12cm ,斜边长为13cm ,则它的面积为 . 10. 有六根细木棒,它们的长分别是2,4,6,8,10,12(单位:cm ),首尾连结能搭成直角三角形的三根细木棒分别是 . 二﹑选择题(每小题3分, 共30分)11. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A. 4B. 8C. 10D. 12 12. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度 13. 如图中字母A 所代表的正方形的面积为( )A. 4B. 8C. 16D. 64(1题图) A B C200m 520m(3题图) D CB A O (2题图) A B D(13题图)14. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等腰三角形15. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( )A. 18cmB. 20 cmC. 24 cmD. 25cm 16. 适合下列条件的△ABC 中, 直角三角形的个数为( )①;,,514131===c b a ②6=a ,∠A =45°; ③∠A =320, ∠B =58°;④;,,25247===c b a ⑤.422===c b a ,,A. 2个B. 3个C. 4个D. 5个 17. 在△ABC 中,若12122+==-=n c n b n a ,,,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形18. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60°19. 在△ABC 中,AB =12cm ,BC =16cm,,AC =20cm,,则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 2 20. 如图:有一圆柱,它的高等于8cm ,底面直径等于4cm (3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点 处的食物,需要爬行的最短路程大约( )A. 10cmB. 12cmC. 19cmD. 20cm 三、 解答题 (每小题10分, 共50分)21. 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)22. 如图, 在△ABC 中, AD ⊥BC 于D ,AB =3,BD =2,DC =1, 求AC 2的值. A(20题图)BAB D C23. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?观测点小汽车小汽车24. 小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗? 25. 如图所示的一块地,∠ADC =90°,AD =12m ,CD =9m ,AB =39m ,BC =36m ,求这块地的面积.B 卷 (满分50分)一、填空题(每小题2分,共10分)1. 如图,AC ⊥CE ,AD =BE =13,BC =5,DE =7,则AC = .2. 如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B3. 在ΔABC 中,若AB=30,AC=26,BC 上的高为AD=24,则此三角形的周长为 .4. 已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形. 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2. 二、选择题(每小题3分,共15分)6. 在Rt △ABC 中,∠C =90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别A BCDE (1题图)(2题图) 2032A B是( )A. 5、4、3、B. 13、12、5C. 10、8、6D. 26、24、107.如图,在同一平面上把三边为BC =3,AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ) A.125 B. 135 C. 56 D. 2458. 直角三角形有一条直角边的长为11,另外两边的长也是正整数,那么此三角形的周长是( ) A. 120 B. 121 C. 132 D. 1239.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .6cm 2 B .8cm 2 C .10cm 2 D .12cm 2 10.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里 D .40海里三、解答题(11、12题每题8分,13题9分,共25分)11. 如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?12.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.13.如图,A 城气象台测得台风中心在A 城正西方向320km的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km的范围内是(9题图)北 南A东(10题图)(7题图)C ′ BCA受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?参考答案一1、7 ;2、10;3、480; 4、6;5、50;6、15;7、直角;8、合格;9、30;10、6,8,10; 二CDDC DADC AA 三21、13米 22、AC 2=623、20 v 米/秒=72千米/时>70千米/时,超速。
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)一.选择题1.如图,一木杆在离地面4m的A处折断,木杆顶端落在离木杆底端3m的B处,则木杆折断之前的长度为()A.6m B.7m C.8m D.9m2.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.163.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,AC边上中线BE交AD于点O,则△BCE的面积为()A.8B.7C.6D.54.下列各组数中为勾股数的是()A.1,2,3B.2,3,4C.,,D.3,4,55.下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=3:4:5C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=1:1:4二.填空题6.如图,四边形ABCD中,AB⊥BC,AB=4,BC=3,AD=12,CD=13,则四边形ABCD 的面积是.7.如图是“勾股树”的部分图,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为cm2.8.如图,Rt△ABC中,∠ACB=90°,以AC、BC为直径作半圆S1和S2,且S1+S2=2π,则AB的长为.9.如图,《九章算术》中有这样一道古题:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽,则木柱长为尺.10.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于点D,且AB=4,BD=5,则点D到BC的距离为.11.如图,BD是△ABC的角平分线,AB=15,BC=9,AC=12,则BD2的值为.12.如图,圆柱形容器高为22cm,底面周长为30cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm且与蜂蜜相对的点A处,为了吃蜂蜜,蚂蚁从外壁A处沿着最短路径爬到内壁B处,它爬行的最短距离是cm.13.相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD,对角线AC、BD 交于点O.若AD=3,BC=5,AB2+CD2=.14.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为.三.解答题15.疫情期间,老师出了一道题让学生交流,请你帮他们完成解答过程.如图,在△EFG中,EF=15,FG=14,EG=13,求△EFG的面积.16.在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求斜边AB上的高;(2)①当点P在BC上时,PC=;(用含t的代数式表示)②若点P在∠BAC的角平分线上,求t的值.17.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A→C→B→A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.18.如图,AD=4,CD=3,AB=13,BC=12,求△ABC的面积.19.有一块田地的形状和尺寸如图所示,求出它的面积是多少.20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.参考答案一.选择题1.解:∵一棵垂直于地面的大树在离地面4m处折断,树的顶端落在离树杆底部3m处,∴折断的部分长为:=5,∴折断前高度为5+4=9(米).故选:D.2.解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.3.解:∵AB=AC=5,∴△ABC是等腰三角形,∵BC=6,AD⊥BC,∴CD=BC=3,∴AD=4,∴S△ABC==12,∵AC边上中线BE交AD于点O,∴S△BCE=S△ABC=6.故选:C.4.解:A、∵12+22≠32,∴不是勾股数,不符合题意;B、∵22+32≠42,∴不是勾股数,不符合题意;C、∵不是正整数,∴不是勾股数,不符合题意;D、∵32+42=52,∴是勾股数,符合题意.故选:D.5.解:A.∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意;B.∵a:b:c=3:4:5,32+42=52,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C.∵a2=(b+c)(b﹣c),∴a2+c2=b2,∴△ABC是直角三角形,故本选项不符合题意;D.∵∠A:∠B:∠C=1:1:4,∠A+∠B+∠C=180°∴最大角∠C=×180°=120°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.二.填空题6.解:如图,连接AC,在△ABC中,AB⊥BC,AB=4,BC=3,∴AC=5.在△ADC中,AD=12,CD=13,AC=5.∵122+52=132,即AD2+AC2=CD2,∴△ADC是直角三角形,且∠DAC=90°,∴S四边形ABCD=S△ABC+S△ADC=AB•BC+AC•AD=×4×3+×5×12=6+30=36.故答案为:36.7.解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为:49.8.解:由勾股定理得,AC2+BC2=AB2,∴=π(AC2+BC2)=2π,∴AC2+BC2=16,∴AB=4,故答案为:4.9.解:设木柱长为x尺,根据题意得:AB2+BC2=AC2,则x2+82=(x+3)2,解得:x=.答:木柱长为尺.故答案为:.10.解:过点D作DE⊥BC于E,在Rt△ABD中,AB=4,BD=5,则AD=3,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=3,即点D到BC的距离为3,故答案为:3.11.解:∵AB=15,BC=9,AC=12,∴BC2+AC2=92+122=152=AB2,∴∠C =90°,过D 作DE ⊥AB 于E ,∵BD 是△ABC 的角平分线,∴DE =CD ,设DE =CD =x ,∵S △ABC =S △ABD +S △BCD ,∴AC •BC =AB •DE +BC •CD ,∴×12×9=×15x +×9x ,∴x =,∴CD =,∴BD 2=4405, 故答案为:4405.12.解:如图:将杯子侧面展开,作A 关于EF 的对称点A ′,则AF +BF 为蚂蚁从外壁A 处到内壁B 处的最短距离,即A ′B 的长度, ∵A ′B =25(cm ),∴蚂蚁从外壁A 处到内壁B 处的最短距离为25cm ,故答案为:25.13.解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根据勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34.故答案为:34.14.解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=4,∴BD=BC﹣CD=9﹣4=5.故答案为:5.三.解答题15.解:如图,过点E作EH⊥FG于点H,在Rt△EFH和Rt△EGH中,由勾股定理可得:EH2=EF2﹣FH2,EH2=EG2﹣GH2,∴EG2﹣GH2=EF2﹣FH2,设FH=x,则GH=14﹣x,∵EF=15,FG=14,EG=13,∴132﹣(14﹣x)2=152﹣x2,解得:x=9,∴EH=12,∴S△EFG=×FG•EH=×14×12=84,∴△EFG的面积为84.16.解:(1)在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=8,设边AB上的高为h,则,∴,∴.答:斜边AB上的高为.(2)①当点P在BC上时,点P的运动长度为AB+BP=2t,∴PC=AB+BC﹣(AB+BP)=10+6﹣2t=16﹣2t.故答案为:16﹣2t.②若点P在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC.由①知:PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,,∴Rt△ACP≌Rt△ADP(HL).∴AD=AC=8,又∵AB=10,∴BD=2.在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:.17.解:(1)连接PB,∵∠ACB=90°,AB=10cm,BC=6cm,∴AC=8(cm),∵CP2+BC2=PB2,∵P A=PB=2tcm,∴(8﹣2t)2+62=(2t)2,∴t=;(2)当点P在∠BAC的平分线上时,如图,过点P作PE⊥AB于点E,此时BP=(14﹣2t)cm,PE=PC=(2t﹣8)cm,BE=10﹣8=2(cm),在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣8)2+22=(14﹣2t)2,解得:t=,当t=12时,点P与A重合,也符合条件,∴当t=或12时,点P恰好在∠BAC的平分线上.18.解:∵AD=4,CD=3,∠ADC=90°,∴AC=5,在△ABC中,AC=5,AB=13,BC=12,∵52+122=132,∴AC2+BC2=AB2,即△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=5×12÷2=30.19.解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC=5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=24,答:该四边形面积为24.20.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km.∴BE=15km.(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.。
八年级数学上册《第一章勾股定理的应用》练习题-带答案(北师大版)一、选择题1.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里B.16海里C.20海里D.28海里2.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是( )A.6mB.8mC.10mD.12m3.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A.6秒B.5秒C.4秒D.3秒4.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m5.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8米B.10米C.12米D.14米6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )A.5≤h≤12B.5≤h≤24C.11≤h≤12D.12≤h≤247.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C 两村之间的距离为( )A.250kmB.240kmC.200kmD.180km8.如图,O是Rt△ABC的角平分线的交点,OD∥AC,AC=5,BC=12,OD等于( )A.2B.3C.1D.1二、填空题9.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.10.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.13.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.14.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.三、解答题15.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,请算出旗杆的高度.16.如图①,一架梯子AB长2.5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5m,梯子滑动后停在DE的位置上.如图②所示,测得BD=0.5m,求梯子顶端A下滑的距离.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?18.如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?19.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.C.2.D.3.C4.A.5.B6.C.7.C.8.A.9.答案为:12,24.10.答案为:8.11.答案为:10.12.答案为:13,1.13.答案为:17m.14.答案为:7或25.15.解:设旗杆的高度为x米,根据勾股定理得x2+52=(x+1)2解得:x=12;答:旗杆的高度为12米.16.解:在Rt△ABC中,AB=2.5m,BC=1.5m故AC=2m在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)=2m 故EC=1.5m故AE=AC﹣CE=2﹣1.5=0.5m答:梯子顶端A下落了0.5m.17.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.18.解:过B作BD⊥公路于D.∵82+152=172∴AC2+BC2=AB2∴△ABC是直角三角形,且∠ACB=90°.∵∠1=30°∴∠BCD=180°﹣90°﹣30°=60°.在Rt△BCD中∵∠BCD=60°∴∠CBD=30°∴CD=0.5BC=0.5×15=7.5(km).∵7.5÷2.5=3(h)∴3小时后这人距离B送奶站最近.19.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.20.解:(1)设存在点P,使得PA=PB此时PA=PB=2t,PC=4﹣2t在Rt△PCB中,PC2+CB2=PB2即:(4﹣2t)2+32=(2t)2解得:t =∴当t =时,PA =PB ;(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1在Rt △BEP 中,PE 2+BE 2=BP 2即:(2t ﹣4)2+12=(7﹣2t)2解得:t =83∴当t =83时,P 在△ABC 的角平分线上.。
2020-2020学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D 为底边BC的中点)的长是()A.6米 B.5米 C.3米 D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2 C.3 D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2020-2020学年度北师大版数学八年级上册同步练习:1.3 勾股定理的应用(word解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC∽△BED,可得=,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B.2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.【解答】解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.3.故选:B.【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r 则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。