先进材料成形技术及理论
- 格式:ppt
- 大小:4.33 MB
- 文档页数:20
喷射成形(Spray Forming)技术,也有人称为喷射沉积(Spray Deposition)或喷射铸造(Spray casting)技术,这是廿世纪80年代以来,工业发达国家在传统快速凝固/粉末冶金(RS/PM)工艺基础上发展起来的一种全新的先进材料制备与成形技术。
喷射成形技术的基本原理是用高压惰性气体将金属液流雾化成细小液滴,并使其沿喷嘴的轴线方向高速飞行,在这些液滴尚未完全凝固之前,将其沉积到一定形状的接收体上成形。
这样,通过合理地设计接收体的形状和控制其运动方式,便可以从液态金属直接制备出具有快速凝固组织特征,整体致密的圆棒、管坯、板坯、圆盘等不同形状的沉积坯。
采用喷射成形工艺制备的材料与用传统铸造或变形工艺制备的材料相比,由于在制备过程中的快速冷却使显微组织明显细化、析出相细小且均匀分布,从而使材料的化学成分和组织在宏观和微观上得到有效地控制,因此材料的力学性能几乎没有各向异性,使材料的总体性能得到了明显的提高。
这种新工艺与传统的粉末冶金工艺相比,由于从冶炼到坯件成形可在一个工序完成,省去了粉末冶金制粉、混料、压坯和烧结等多道工序,且可有效地控制材料中的氧含量与纯净度,这可使材料坯件的制造成本大幅度地降低。
当今,各工业发达国家利用喷射成形技术在高速钢、高温合金、铝合金、铜合金等先进材料的开发和生产方面已经取得了很大进展,其中高性能铝合金是喷射成形技术领域中最具吸引力的开发方向。
喷射成形技术的开发和应用喷射成形技术作为一种高新技术,其产品可广泛用于航天、航空、国防、汽车、化工、海洋和石油等工业领域。
国外喷射成形技术的应用开发主要集中在圆锭坯和管坯上,对平板产品的应用较少。
目前,已经能生产直径450mm和长度2500mm的棒材,其收得率可高达70%~80%,所生产的管坯直径为150~1800mm、长度为8000,其收得率为80%~90%。
而成形的合金材料主要有:铝硅合金、铝锂合金、2000及7000系列铝合金、各种铜合金、不锈钢和特种合金等。
先进制造技术先进制造技术AMT(Advanced Manufacturing Tecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。
随着经济技术的高速发展以及顾客需求和市场环境的不断变化,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中。
改革开放以来,我国制造科学技术有日新月异的变化和发展,确立了社会主义市场经济体制,但与先进的国家相比仍有一定差距,为了迎接新的挑战,对先进制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,实现我国机械制造业跨入世界先进行列之梦想。
一、先进制造技术的体系结构及分类先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。
三个层次:一是优质、高效、低耗、清洁的基础制造技术。
二是新型的制造单元技术。
三是先进制造的集成技术。
四个大类:一是现代设计技术二是先进制造工艺技术三是制造自动化技术四是系统管理技术。
1、现代设计技术现代设计技术是先进制造技术的一个组成部分,是制造技术的第一个环节。
根据德国工程师协会文件VDI2225 的调查分析,产品设计成本约占产品成本的5% 7%,但却决定了产品制造成本的75%- 80%。
为此,世界各国都非常重视产品的设计问题。
而现代设计技术在机械设计技术中的地位同样重要。
机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算,并将其转化为具体的描述以人为制造依据的工作过程。
四种常见快速成型技术FDM丝状材料选择性熔覆(Fus ed Dep osi tion Mod eling)快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。
丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。
热塑性丝状材料(如直径为1.78m m的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。
一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。
这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。
这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。
但仍需对整个截面进行扫描涂覆,成型时间长。
适合于产品设计的概念建模以及产品的形状及功能测试。
由于甲基丙烯酸ABS(M AB S)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。
但成型精度相对较低,不适合于制作结构过分复杂的零件。
FD M快速原型技术的优点是:1、操作环境干净、安全可在办公室环境下进行。
2、工艺干净、简单、易于材作且不产生垃圾。
3、尺寸精度较高,表面质量较好,易于装配。
可快速构建瓶状或中空零件。
4、原材料以卷轴丝的形式提供,易于搬运和快速更换。
5、材料利用率高。
6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。
FDM快速原型技术的缺点是:1、做小件或精细件时精度不如SLA,最高精度0.127mm。
2、速度较慢。
SL A敏树脂选择性固化是采用立体雕刻(Stereo litho gra phy)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。
在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。
先进金属复合材料成形技术
先进金属复合材料成形技术是指利用先进的工艺和设备对金属复合材料进行成形加工的技术。
金属复合材料是由金属基体和增强材料(如纤维增强材料)组成的复合材料。
相比于传统的单一金属材料,金属复合材料具有更高的强度、刚度和耐热性能。
然而,由于其复杂的结构和成分,金属复合材料的成形加工相对困难。
先进金属复合材料成形技术主要包括以下几个方面:
1. 粉末冶金成形技术:通过将金属粉末与增强材料混合,然后经过高温和高压的成形过程,使其熔合并固化成型。
这种成形技术适用于复杂形状和大尺寸的金属复合材料制品。
2. 金属复合材料锻造技术:利用锻机对金属复合材料进行锻造成型。
锻造可以改变材料的内部组织结构和形状,从而提高其力学性能和耐热性能。
3. 金属复合材料挤压技术:通过在金属复合材料中施加高压,使其通过模具的通道流动并成形。
挤压成形技术适用于长条形的金属复合材料制品。
4. 金属复合材料注射成型技术:利用注射机将金属复合材料融化后注入模具中进行成型。
注射成型技术可以制造出高精度和复杂形状的金属复合材料制品。
以上是几种常见的先进金属复合材料成形技术,通过这些技术的应用,可以制造出更高性能、更复杂的金属复合材料制品,满足不同领域对于材料强度和耐热性能的要求。
先进材料超塑成形技术先进材料超塑成形技术是一种利用特殊的工艺方法和控制技术,将金属材料在高温和高应变率条件下通过塑性变形成型的一种先进制造技术。
超塑成形技术能够制备出复杂几何形状的零件,并且具有优异的力学性能和表面质量。
本文将对超塑成形技术的原理、应用、发展现状和未来发展进行探讨。
超塑成形技术的原理主要是利用材料在高温和高应变率条件下的特殊塑性行为。
在高温下,材料的塑性变形能力会显著增强,可以实现超塑性变形。
高应变率条件下,由于材料的快速变形速率,可以避免材料的回弹和微观缺陷的形成,从而得到理想的成形零件。
超塑成形技术通常需要在高温下进行,因此需要使用专门设计的设备和控制系统来保持合适的温度和应变率。
超塑成形技术在航空航天、汽车制造、医疗器械等领域具有广泛的应用前景。
在航空航天领域,超塑成形技术可以制造出轻量化的结构件,提高整体效能并减少燃料消耗。
在汽车制造领域,超塑成形技术可以制造出复杂形状和轻质的车身零件,提高车辆的安全性能和燃油经济性。
在医疗器械领域,超塑成形技术可以制造出精密的植入器械和医疗设备,提高治疗效果和患者的生活质量。
目前,超塑成形技术已经得到了广泛的研究和应用。
一些国家和地区已经建立了专门的研究中心和实验室,对超塑成形技术进行深入研究,并推动其产业化发展。
在实践中,超塑成形技术已经成功应用于一些特定领域的生产工艺中,取得了较好的成果。
然而,超塑成形技术还存在一些挑战和限制。
首先,高温和高应变率条件下材料容易发生晶粒长大和孔洞形成等缺陷,导致材料的力学性能下降。
其次,超塑成形技术的设备和工艺复杂,生产周期长,需要大量的热能和人工操作。
此外,超塑成形技术还需要对材料的力学性能和塑性变形行为进行深入研究,以满足不同应用领域对材料的要求。
未来,超塑成形技术的发展方向主要包括材料的改进、工艺的优化和设备的突破。
首先,需要开发出具有优异力学性能和高温稳定性的超塑性材料。
其次,需要改进超塑成形工艺,提高生产效率和产品质量。
材料成形力学材料成形力学是材料科学与工程领域的重要分支,它研究的是材料在受力作用下的变形和破坏规律。
在工程实践中,我们经常需要对各种材料进行成形加工,比如金属材料的锻造、压铸、挤压,塑料材料的注塑成形,陶瓷材料的烧结成形等。
了解材料成形力学对于正确选择成形工艺、提高材料利用率、改善产品质量具有重要意义。
首先,材料成形力学研究的对象是材料在受力作用下的变形行为。
在进行材料成形加工时,我们需要对材料的力学性能有所了解,比如材料的屈服强度、抗拉强度、硬度等。
这些力学性能参数可以帮助我们选择合适的成形工艺和工艺参数,保证材料在成形过程中不会发生过度变形或破坏。
其次,材料成形力学还研究了材料在受力作用下的变形规律。
在材料成形加工过程中,我们需要考虑材料的变形方式和变形机理,以便选择合适的成形工艺和模具结构。
比如在金属材料的挤压成形中,我们需要考虑材料的流动规律和应变分布,以避免产生缺陷和变形不均匀。
另外,材料成形力学还研究了材料在受力作用下的破坏行为。
在进行材料成形加工时,我们需要考虑材料的破坏方式和破坏机理,以避免产生裂纹和断裂现象。
比如在塑料材料的注塑成形中,我们需要考虑材料的破坏韧性和破坏强度,以保证产品在使用过程中不会出现断裂现象。
综上所述,材料成形力学是材料科学与工程领域的重要分支,它研究的是材料在受力作用下的变形和破坏规律。
了解材料成形力学对于正确选择成形工艺、提高材料利用率、改善产品质量具有重要意义。
在进行材料成形加工时,我们需要对材料的力学性能、变形规律和破坏行为有所了解,以便选择合适的成形工艺和工艺参数,保证产品具有良好的性能和质量。
因此,深入研究材料成形力学对于推动材料科学与工程领域的发展具有重要意义。
铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。
1、铸造的实质利用了液体的流动形成。
2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。
力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。
1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。
通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。
它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。
生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。
(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。
适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。
钛合金热成形技术概述及解释说明1. 引言1.1 概述钛合金热成形技术是一种利用高温和压力对钛合金进行塑性变形的方法。
通过在特定温度下将钛合金加热到其塑性区域,然后施加压力来实现成形。
这种技术在航空航天、汽车制造、医疗器械等领域中得到广泛应用,并且在近年来取得了显著的发展和突破。
1.2 文章结构本文将从几个方面对钛合金热成形技术进行全面介绍和解释说明。
首先,我们将概述该技术的定义、原理以及其历史发展情况。
然后,我们将详细介绍该技术在不同领域的应用,并探讨其在实际生产中的工艺流程。
接下来,我们将深入分析钛合金热成形技术的优势,并提出当前面临的挑战以及相应的解决方法。
最后,我们将总结主要观点并对该技术未来发展进行展望。
1.3 目的本文旨在全面介绍和解释钛合金热成形技术,并分析其优势和挑战。
通过对该技术的准确理解,读者可以更好地了解钛合金热成形技术在工业生产中的应用和潜力,并为相关领域的研究和实践提供参考依据。
2. 钛合金热成形技术概述2.1 定义和原理钛合金热成形技术是一种通过将钛合金材料加热至其塑性变形温度,然后进行成型的制造工艺。
它基于钛合金在高温下具有良好的塑性和可变形性的特点,通过控制温度和应力来实现对钛合金材料的可控变形。
该技术主要依靠热胀冷缩原理,即在加热过程中,钛合金材料会膨胀并变软,使其容易成形;而在冷却过程中,由于收缩效应,材料会保持所需的形状。
通过精确控制加热、保温、成形和冷却阶段的参数和时间,可以实现对钛合金材料复杂三维几何形状的成型。
2.2 历史发展钛合金热成形技术起源于20世纪50年代。
当时,在航空航天工业领域对功能强大、轻量化及高机械性能要求极高的部件需求推动了该技术的发展。
最初的试验主要集中在单晶和多晶钛合金的热加工方面,通过探索适宜的加热温度和形变速率以及工艺参数的优化,成功实现了钛合金材料的热成形。
随着技术的不断进步和先进材料的开发,钛合金热成形技术得到了广泛应用。
如今,它已在航空、航天、汽车、医疗器械等领域得到广泛应用,并为这些领域带来了许多新的设计可能性和解决方案。
RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
快速成型技术的原理、工艺过程及技术特点:1 快速成型介绍RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPIIN简称RP技术),或RAPID PROTOTYPING MANUFACTURE简G RPMI快速成型(RP技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机" IRP 技术的优越性显而易见:它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD数据,快速制造出新产品的样件、模具或模型。
因此,RP技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。
由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。
2、它具体是如何成形出来的呢?形象地比喻:快速成形系统相当于一台"立体打印机"。
快速成型属于离散/堆积成型。
它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。