蛋白质合成、加工和转运的过程
- 格式:docx
- 大小:7.65 KB
- 文档页数:2
蛋白质合成的基本过程蛋白质合成是细胞内基本的生物化学过程之一。
蛋白质是细胞内最重要的生物大分子之一,它们在细胞的结构、功能和代谢中发挥着至关重要的作用。
蛋白质由一种或多种氨基酸经过合成而成,合成蛋白质的过程称为蛋白质合成。
本文将介绍蛋白质合成的基本过程。
蛋白质合成的基本过程可以分为两个主要的步骤:转录和翻译。
一、转录转录是指在细胞核中,由DNA模版合成mRNA的过程。
转录是蛋白质合成的第一步,它在细胞核内进行。
转录的基本过程包括下列几个步骤:1. DNA的解旋:DNA双链在转录起始点附近被解旋,形成一个转录气泡。
气泡中包含有相关的转录因子和RNA聚合酶。
2. RNA的合成:DNA的一个链上的碱基按照与其互补的规则与mRNA的核苷酸配对。
形成的mRNA链被RNA聚合酶逐渐合成。
3. 剪切和修饰:产生的原始mRNA包含着不仅的外显子和内含子,经过剪切和修饰过程,最终形成只包含外显子的成熟mRNA。
二、翻译翻译是指在细胞质中,由mRNA的序列指导tRNA转运氨基酸,最终合成蛋白质的过程。
翻译是蛋白质合成的第二步,它在细胞质中进行。
翻译的基本过程包括下列几个步骤:1. 启动子的识别:mRNA与小核(ribosome)的结合,通过特定序列的启动子的识别,从而确定翻译的起始位点。
2. 肽链的合成:在rRNA的作用下,tRNA带着氨基酸与mRNA的密码子配对,形成肽键,合成新的肽链。
此过程一直延续直到遇到停止密码子为止。
3. 多肽链的转运:合成的多肽链依次从小核中释放出来,并在细胞质中经过进一步的修饰和折叠,发挥其特定的生物学功能。
总结:蛋白质合成的基本过程包括转录和翻译两个步骤。
在转录过程中,DNA模版被转录成mRNA,并经过剪切和修饰生成成熟mRNA。
而在翻译过程中,mRNA的信息被转换成氨基酸序列,最终合成蛋白质。
蛋白质合成是细胞内不可或缺的生物化学过程,对于细胞的正常功能和生存至关重要。
了解蛋白质合成的基本过程有助于我们更好地理解细胞内的生物学活动。
细胞内蛋⽩质的合成与运输_论⽂细胞内蛋⽩质的合成与运输摘要:蛋⽩质是⼀切⽣命的物质基础,这不仅是因为蛋⽩质是构成机体组织器官的基本成分,更重要的是蛋⽩质本⾝不断地进⾏合成与分解。
这种合成、分解的对⽴统⼀过程,推动⽣命活动,调节机体正常⽣理功能,保证机体的⽣长、发育、繁殖、遗传及修补损伤的组织。
根据现代的⽣物学观点,蛋⽩质和核酸是⽣命的主要物质基础。
关键字:多肽链、蛋⽩质、翻译、核糖体、运输途径、运输⽅式,研究前景前⾔:国家重⼤科学研究计划对中国的四项重要科学研究所涉及的领域分别作了详细说明,四个项⽬分别是蛋⽩质研究,量⼦调控研究,纳⽶研究,发育与⽣殖研究。
尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有⼀半以上基因的功能是未知的。
⽬前功能基因组中所采⽤的策略,如基因芯⽚、基因表达序列分析等,都是从细胞中mRNA的⾓度来考虑的,其前提是细胞中mRNA的⽔平反映了蛋⽩质表达的⽔平。
但事实并不完全如此,从DNA mRNA蛋⽩质,存在三个层次的调控,即转录⽔平调控,翻译⽔平调控,翻译后⽔平调控。
从mRNA⾓度考虑,实际上仅包括了转录⽔平调控,并不能全⾯代表蛋⽩质表达⽔平。
⽏庸置疑,蛋⽩质是⽣理功能的执⾏者,是⽣命现象的直接体现者,对蛋⽩质结构和功能的研究将直接阐明⽣命在⽣理或病理条件下的变化机制。
蛋⽩质本⾝的存在形式和活动规律,如翻译后修饰、蛋⽩质间相互作⽤以及蛋⽩质构象等问题,仍依赖于直接对蛋⽩质的研究来解决。
虽然蛋⽩质的可变性和多样性等特殊性质导致了蛋⽩质研究技术远远⽐核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个⽣命过程。
⼀、蛋⽩质⽣物合成过程遗传密码表在mRNA的开放式阅读框架区,以每3个相邻的核苷酸为⼀组,代表⼀种氨基酸或其他信息,这种三联体形势称为密码⼦(codon)。
如图,通常的开放式阅读框架区包含500个以上的密码⼦。
遗传密码的特点⼀⽅向性:密码⼦及组成密码⼦的各碱基在mRNA序列中的排列具有⽅向性(direction),翻译时的阅读⽅向只能是5ˊ→3ˊ。
一、准备(一)肽链的合成是由氨基端向羧基端进行的,速度很快,大肠杆菌每秒可聚合20个氨基酸。
信使RNA是从5’向3’翻译的。
(二)氨基酸的活化:由氨酰tRNA合成酶催化,分两步:1. 形成氨基酸-AMP-酶复合物:氨基酸的羧基与5’磷酸形成高能酸酐键而活化。
2.转移:氨基酸转移到转运RNA3’末端,与3’或2’羟基结合。
总反应为:氨基酸+tRNA+ATP=氨酰tRNA+AMP+PPi此酶专一性很高,只作用于L-氨基酸,每种氨基酸都有一个专一的酶。
酶有校对机制,一方面对转运RNA有专一性,另一方面还有水解位点,可水解错误酰化的氨基酸。
(三)转运RNA的作用:起接头作用,根据密码子决定氨基酸的去向。
转运RNA反密码子的某些突变可抵销一些有害突变,称为校正突变。
二、肽链合成的起始(一)起始信号:起始密码子是AUG,其上游约10个核苷酸处有一段富含嘌呤的序列,可与16S rRNA的3’端互补,与起始有关。
(二)起始复合物的形成:1.起始氨基酸:是N-甲酰甲硫氨酸,其转运RNA也有所不同,称为tRNAf,与甲硫氨酸结合后被甲酰化酶以甲酰四氢叶酸甲基化,生成fMet-tRNAf。
2.30S起始复合物:信使RNA先与小亚基结合,在起始因子3(IF3)的参与下形成mRNA-30S-IF3复合物,然后在IF1和IF2参与下与fMet-tRNAf和GTP结合,并释放IF3,形成30S起始复合物。
3.30S起始复合物与大亚基结合,水解GTP,释放IF1和IF2,形成70S起始复合物。
此时转运RNA占据肽酰位点,空着的氨酰位点可接受另一个转运RNA,为肽链延长作好了准备。
三、肽链的延伸(一)转运RNA进入氨酰位点:需ATP和两种延伸因子参加。
EFTu与GTP 结合,再与转运RNA形成复合物,才能与起始复合物结合。
然后释放出EFTu-GDP,与EFTs和GTP反应,重新生成EFTu-GTP,参加下一轮反应。
EFTu水解GTP前后构象不同,错误的转运RNA会离去,而正确的则与两种状态都有强相互作用。
蛋白质合成的步骤
蛋白质是生命体中最基本的分子之一,它们由氨基酸组成,通过蛋白质合成过程合成。
蛋白质合成的步骤包括:
1. 转录
蛋白质合成的第一步是转录,即将DNA中的基因信息转录成RNA。
这个过程由RNA聚合酶完成,它会在DNA上找到一个起始点,然后开始合成RNA。
RNA聚合酶会将RNA与DNA分离,然后将RNA与DNA互补配对,合成RNA链。
2. 剪切
在RNA合成完成后,需要对其进行剪切。
这个过程由剪切体完成,它会将RNA中的非编码区域剪切掉,只留下编码区域。
这个编码区域被称为外显子,它包含了蛋白质合成所需的信息。
3. 转运
转运是将RNA从细胞核中转移到细胞质中的过程。
这个过程由核孔蛋白完成,它会将RNA从核孔中运输到细胞质中。
4. 翻译
翻译是将RNA转化为蛋白质的过程。
这个过程由核糖体完成,它
会将RNA中的信息翻译成氨基酸序列。
核糖体会在RNA上找到一个起始点,然后开始翻译。
它会将氨基酸一个一个地加入到蛋白质链中,直到遇到终止密码子为止。
5. 折叠
折叠是蛋白质合成的最后一步,它是将蛋白质链折叠成特定的三维结构。
这个过程由分子伴侣完成,它会帮助蛋白质链正确地折叠成特定的结构。
如果蛋白质链没有正确地折叠,它可能会失去功能或者产生毒性。
蛋白质合成的步骤包括转录、剪切、转运、翻译和折叠。
这些步骤是相互关联的,每个步骤都非常重要,缺少任何一个步骤都会影响蛋白质的合成和功能。
细胞内各种蛋白质的合成和转运途径引言:细胞是生物体的基本单位,其中蛋白质是构成细胞的重要组成部分。
细胞内的蛋白质合成和转运途径是维持细胞正常功能的关键过程。
本文将介绍细胞内蛋白质合成的主要途径,包括转录、翻译和后转录修饰,以及蛋白质的转运途径,包括核糖体、内质网和高尔基体等。
一、蛋白质合成的途径1. 转录蛋白质合成的第一步是转录,即将DNA中的基因信息转录成RNA。
在细胞核中,DNA的双链解旋,RNA聚合酶结合到DNA上,根据DNA模板合成mRNA。
mRNA是一条单链RNA,它携带着从DNA中转录得到的基因信息。
2. 翻译翻译是蛋白质合成的第二步,即将mRNA上的基因信息翻译成蛋白质。
翻译发生在细胞质中的核糖体中。
核糖体由rRNA和蛋白质组成,它能够识别mRNA上的密码子,并将相应的氨基酸连接起来,形成多肽链。
翻译的过程包括起始、延伸和终止三个阶段,通过tRNA和蛋白因子的参与完成。
3. 后转录修饰蛋白质合成的最后一步是后转录修饰,即对新合成的蛋白质进行修饰和折叠。
这一过程发生在内质网和高尔基体中。
内质网是一个复杂的膜系统,它能够将新合成的蛋白质进行折叠和修饰,如糖基化、磷酸化等。
高尔基体则进一步对蛋白质进行修饰,并将其定位到细胞的不同位置。
二、蛋白质的转运途径1. 核糖体核糖体是蛋白质合成的场所,它位于细胞质中。
在核糖体中,mRNA上的密码子与tRNA上的反密码子互补配对,通过蛋白因子的辅助,将氨基酸连接成多肽链。
核糖体能够识别起始密码子和终止密码子,从而控制蛋白质的合成过程。
2. 内质网内质网是一个复杂的膜系统,它位于细胞质中。
内质网上的核糖体能够合成蛋白质,并将其进行折叠和修饰。
折叠不正确的蛋白质将被内质网上的分解酶降解,而正确折叠的蛋白质则会进一步转运到高尔基体或其他细胞器。
3. 高尔基体高尔基体是一个复杂的膜系统,它位于细胞质中。
高尔基体接收来自内质网的蛋白质,并对其进行进一步修饰和定位。
细胞内各种蛋白质的合成和转运途径细胞是生命的基本单位,其中蛋白质是细胞的重要组成部分。
蛋白质的合成和转运是维持细胞正常功能的关键过程。
本文将从蛋白质的合成和转运途径两个方面进行探讨,旨在揭示细胞内蛋白质的合成和转运机制。
一、蛋白质的合成蛋白质的合成发生在细胞内的核糖体中,包括转录和翻译两个过程。
转录是指DNA序列的信息被转录成RNA分子的过程,而翻译是指RNA分子被翻译成蛋白质的过程。
1. 转录转录是蛋白质合成的第一步,它在细胞核中进行。
转录的过程包括三个主要步骤:起始、延伸和终止。
起始阶段,RNA聚合酶与DNA上的启动子结合,开始合成RNA分子;延伸阶段,RNA聚合酶沿着DNA模板链进行核苷酸的配对合成RNA链;终止阶段,RNA聚合酶在遇到终止信号后停止合成RNA链,释放出已合成的RNA分子。
2. 翻译翻译是蛋白质合成的第二步,它在细胞质中的核糖体中进行。
翻译的过程包括三个主要步骤:启动、延伸和终止。
启动阶段,核糖体与起始tRNA和mRNA上的起始密码子结合,形成翻译复合体;延伸阶段,核糖体沿着mRNA链解读密码子,将相应的氨基酸带入核糖体,形成多肽链;终止阶段,核糖体在遇到终止密码子时停止翻译,释放出已合成的多肽链。
二、蛋白质的转运途径蛋白质合成完成后,需要经过一系列的转运途径才能到达其最终的功能位置。
蛋白质的转运途径包括:核糖体输出通路、内质网转运途径、高尔基体转运途径和细胞膜转运途径。
1. 核糖体输出通路核糖体输出通路是蛋白质从核糖体转运到细胞质的途径。
在核糖体输出通路中,合成的蛋白质通过核孔复合体进入细胞质,并与分子伴侣蛋白结合形成复合物,以保护和引导蛋白质的正确折叠和定位。
2. 内质网转运途径内质网转运途径是蛋白质从核糖体进入内质网的途径。
在内质网转运途径中,合成的蛋白质通过信号肽识别和内质网蛋白质质量控制系统的检查,进入内质网腔室,并在内质网中进行折叠和修饰。
3. 高尔基体转运途径高尔基体转运途径是蛋白质从内质网进入高尔基体的途径。
蛋白质的合成蛋白质的种类是由基因决定的,也就是说人类基因组有多少个基因,人体就有多少种蛋白质,只是蛋白质表达的时期和部位不同.根据人类基因组计划分析得知:全部人类基因组约有2.91Gbp,约有39000多个基因;也就是说人体蛋白质的种类有39000多种蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰一.氨基酸的活化分散在胞液中的各种氨基酸需经特异的氨基酰-tRNA合成酶催化,ATP供能,并需Mg2+或Mn2+参与在氨基酸的羧基上进行活化,生成中间复合物()后者再与相应的tRNA作用,将氨基酰转移到tRNA分子的氨基酸臂上,即3′末端腺苷酸中核糖的3′(或2′)羟基以酯键相结合形成氨基酰-tRNA【氨基酰tRNA的生成】tRNA各种tRNA的一级结构互不相同,但它们的二级结构都呈三叶草形三叶草形结构的主要特征是:含有四个螺旋区、三个环和一个附加叉四个螺旋区构成四个臂,其中含有3′末端的螺旋区称为氨基酸臂,因为此臂的3′-末端都是C-C-A-OH序列,可与氨基酸连接三个环分别用Ⅰ、Ⅱ、Ⅲ表示环Ⅰ含有5,6二氢尿嘧啶,称为二氢尿嘧啶环(DHU环)环Ⅱ顶端含有由三个碱基组成的反密码子,称为反密码子环;反密码子可识别mRNA分子上的密码子,在蛋白质生物合成中起重要的翻译作用环Ⅲ含有胸苷(T)、假尿苷(ψ)、胞苷(C),称为假尿嘧啶环(TψC环);此环可能与结合核糖体有关tRNA在二级结构的基础上进一步折叠成为倒“L”字母形的三级结构起始因子原核起始因子只有三种(IF1、IF2、IF3)真核起始因子(简称为eIF)种类多且复杂,已鉴定的真核起始因子共有12种延长因子原核生物(简称EF)由三部分组成:EF-Tu,EF-Ts,和EF-GEF-Tu它介导氨酰-tRNA进入核糖体的空位EF-Ts充当EF-Tu亚基的鸟嘌呤核苷酸交换因子,催化EF-Tu释放GDPEF-G催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来真核生物(简称eEF)真核生物中分为:eEF-1和eEF-2eEF-1有两个亚基,α和βγα相当于原核生物中的EF-Tu亚基,它介导氨酰-tRNA进入核糖体的空位Βγ相当于原核生物中EF-Ts,核苷酸交换因子α,催化GDP从α上释放eEF-2相当于原核生物的EF-G,催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来终止因子(释放因子)原核生物细胞的释放因子(简称RF):识别终止密码子引起完整的肽链和核糖体从mRNA 上释放的蛋白质释放因子1(RF1):能识别终止密码子UAA和UAG而终止蛋白质合成的细菌释放因子释放因子2(RF2):能识别终止密码子UAA和UGA而终止蛋白质合成的细菌释放因子释放因子3(RF3):与延长因子EF-G有关的细菌蛋白质合成终止因子当它终止蛋白质合成时,它使得因子RF1和RF2从核糖体上释放真核生物细胞只有一种终止因子(称为eRF)能识别所有的终止密码子因为它没有与GTP结合的位点,所以它不能帮助完成合成的多肽从P位点的tRNA的释放在真核生物内可能还存在能与eRF合作、帮组多肽从核糖体释放的蛋白质核糖体的活性部位单个核糖体上存在四个活性部位,在蛋白质合成中各有专一的识别作用1.A部位:氨基酸部位或受位:主要在大亚基上,是接受氨酰基-tRNA的部位2.P部位:肽基部位或供位:主要在小亚基上,是释放tRNA的部位3.肽基转移酶部位(肽合成酶),简称T因子:位于大亚基上,催化氨基酸间形成肽键,使肽链延长4.GTP酶部位:即转位酶(EF-G),简称G因子,对GTP具有活性,催化肽键从供体部位→受体部位核糖体上还有许多与起始因子、延长因子、释放因子以及各种酶相结合的位点核糖体的大小是以沉降系数S来表示,S数值越大、颗粒越大、分子量越大原核细胞与真核细胞核糖体的大小亚基是不同的二.核糖体循环(肽链合成)1.肽链启动阶段在蛋白质生物合成的启动阶段,核蛋白体的大、小亚基,mRNA与一种具有启动作用的氨基酸tRNA共同构成启动复合体。
蛋白质合成的基本过程简答
蛋白质合成的基本过程包括三个阶段:氨基酸的活化与转运、核糖体循环和多肽链合成后的加工修饰。
1.氨基酸的活化与转运:氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨酰-tRNA合成酶催化完成。
在此反应中,特异的tRNA3’端CCA上的2’或3’位自由羟基与相应的活化氨基酸以酯键相连接,形成氨酰-tRNA,从而使活化氨基酸能够被搬运至核糖体上参与多肽链的合成。
2.核糖体循环:为蛋白质合成的中心环节,通常将其分为肽链合成的起始、延长和终止三个阶段。
肽链合成的起始是指由核糖体大、小亚基,模板mRNA及起始tRNA组装形成起始复合物的过程。
肽链的延长是指各种氨基酰tRNA按mRNA上密码子的顺序在核糖体上一一对照入座,其携带的氨基酸依次以肽键缩合形成新生的多肽链。
这一过程由注册、成肽和移位三个步骤循环进行来完成。
肽链合成的终止是指mRNA上的终止密码子出现在核糖体的A位,由此释放出已合成多肽链。
3.多肽链合成后的加工修饰:在已合成的多肽链中,需经过多种方式加工修饰才能成为具有生物活性的蛋白质。
加工修饰包括:切除部分氨基酸残基、肽段折叠成天然构象、二硫键的形成等。
这些过程通常需要多种酶催化和特定的细胞内环境条件。
综上所述,蛋白质合成是一个复杂的过程,涉及多个步骤和酶的催化。
通过了解这个过程,人们可以更好地理解细胞代谢和基因表达的调控机制,为未来的生物工程和药物研发提供更多思路和手段。
蛋白质的加工和运输1. 引言蛋白质是生物体内最重要的大分子之一,它们在生命过程中扮演着重要的角色。
蛋白质不仅是细胞结构的组成部分,还参与调节细胞的代谢过程、传递信号和执行功能等。
在细胞内,蛋白质的加工和运输至关重要,它们需要经过一系列的修饰和排序,以确保正确的定位和功能的实现。
本文将介绍蛋白质的加工和运输过程,包括蛋白质的合成、翻译后修饰和定位,以及蛋白质的运输和排序机制。
2. 蛋白质的合成蛋白质的合成是细胞中重要的生化过程之一。
在真核细胞中,蛋白质的合成发生在细胞质中的核糖体上。
蛋白质的合成包括两个主要步骤:转录和翻译。
转录是指DNA上的基因信息被转录成RNA分子的过程。
RNA分子是一条与DNA互补的单链分子,它携带了DNA上的遗传信息。
经过转录后,RNA分子称为mRNA(messenger RNA),它将带着基因信息离开细胞核,进入细胞质。
翻译是指mRNA上的遗传信息被翻译成氨基酸序列的过程。
翻译发生在细胞质中的核糖体上,它将mRNA上的三碱基密码子与特定的氨基酸配对,从而合成蛋白质的氨基酸序列。
3. 蛋白质的翻译后修饰和定位在翻译完成后,蛋白质通常需要经过一系列的修饰和定位才能实现其功能。
3.1 翻译后修饰翻译后修饰是指蛋白质在合成后进一步修饰的过程。
这些修饰包括磷酸化、甲基化、乙酰化等。
磷酸化是指蛋白质上的羟基被磷酸基团取代,这一修饰可以改变蛋白质的结构和功能。
甲基化和乙酰化则是通过将甲基和乙酰基添加到特定的氨基酸上,从而调节蛋白质的活性和稳定性。
3.2 蛋白质的定位蛋白质的定位是指将蛋白质定位到细胞的特定位置。
细胞内蛋白质的定位是由信号序列决定的,这些信号序列可以存在于蛋白质的氨基酸序列中。
这些信号序列被称为信号肽,它们可以将蛋白质定位到细胞质、细胞核、内质网、高尔基体或细胞膜等不同的位置。
定位蛋白质的机制涉及一系列的分子机制,包括信号识别粒子、转运蛋白、蛋白质通道等。
这些机制确保了蛋白质能够准确地定位到其执行功能的位置。
蛋白质从细胞内到细胞外的转运方式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!蛋白质在细胞内合成后,需要通过一系列的转运过程才能最终抵达细胞外。
一、蛋白质的合成
1、核糖体是合成蛋白质的机器,其功能是按照mRNA的指令由氨基酸合成蛋白质。
2、游离核糖体游离于胞质中,合成细胞内的基础蛋白质;附着核糖体,附着在内质网表面,构
成粗面内质网的核糖体,合成分泌蛋白和膜蛋白。
3、蛋白质合成的一般过程:
1)氨基酸的活化。
氨基酸和tRNA在氨酰一tRNA合成酶作用下合成活化的氨酰一
tRNA。
2)起始、延伸和终止。
3)蛋白质合成后的加工。
肽链N端Met的去除;
氨基酸残基的化学修饰,乙酰化、甲基化、磷酸化等;肽链的折叠;二硫键的形成。
二、蛋白质的分泌合成、加工修饰和转运
1、信号肽介导分泌性蛋白在粗面内质网的合成。
1)信号肽是蛋白质合成中最先被翻译出来的一段氨基酸序列,通常由18-30个疏水氨基酸组成,能指引核糖体与内质网结合,并引导合成的多肽链进入内质网
腔。
2)新生分泌性蛋白质多肽链在胞质中的游离核糖体上起始合成。
当新生肽链N端的信号肽被翻译后,可立即被细胞质基质中的信号识别颗粒(SRP)识别、结
合。
3)与信号肽识别结合的SRP,识别结合内质网膜上的SRP-R,并介导核糖体锚泊附着于内质网膜的通道蛋白移位子上。
而SRP则从信号肽一核糖体复合体上解离,
返回细胞质基质中重复上述过程。
4)在信号肽的引导下,合成中的肽链,通过由核糖体大亚基的中央管和移位子蛋白共同形成的通道,穿膜进入内质网网腔。
随之,信号肽序列被内质网膜俄面的信号肽酶且除,
新生肽链继续延伸,直至完成而终止。
最后完成肽链合成的核糖体大、小亚基解聚,并
从内质网上解离。
2、跨膜驻留蛋白的插入和转移决定了蛋白质的两种去处:1)穿过膜进腔,为可溶性蛋
白质,包括分泌蛋白和内质网驻留蛋白。
2)嵌入内质网膜中,形成膜蛋白。
3、粗面内质网与外输性蛋白质的分泌合成、加工修饰和转运过程密切相关。
1)新生多肽链的折叠与装配,与合成同时发生。
内质网为新生多肽链正确的折叠和装配提供了有利的环境。
分子伴侣通过对多肽链的识别结合来协助它们的折叠组装和转运。
2)蛋白质的糖基化。
在粗面内质网网膜腔面的糖基转移酶作用下发生N一连接糖基化。
三、蛋白质的加工、分选和定向运输
1、蛋白质在高尔基体内加工等。
1)糖蛋白的加工合成。
糖基化修饰加工合成的糖蛋白,主要包括N一连接糖蛋白和O一连接糖蛋白两种类型。
前者,糖链合成与糖基化修饰始于内质网,完成
于高尔基复合体;后者,则主要或完全是在高尔基复合体中进行和完成的。
2)蛋白质糖链的加工有严格的区域性和顺序性:甘露糖去除发生在中间扁囊高尔基复合体靠近顺面的部位;N一乙酰葡萄糖胺加入在中间部;半乳糖加入在中
间扁囊区靠近反面的部位。
3)蛋白质的水解加工。
2、分选蛋白质:高尔基体通过对蛋白质的修饰、加工,使其带上能被高尔基复合体网膜上专一
受体识别的分选信号,进而选择、浓缩,形成不同靶向的分泌泡。
四、蛋白质合成的质量监控
1、内质网至高尔基体的蛋白质必须是正确折叠和组装的。
分子伴侣可特异性的识别错
误折叠和未完全折装配的蛋白,并阻留在内质网内。
错误折叠蛋白从内质网腔转到细胞基质,进而被降解,消除了异常蛋白的形成。