201x届高考数学一轮复习 第八章 解析几何 第1讲 直线的倾斜角与斜率、直线的方程 文 新人教版
- 格式:ppt
- 大小:13.43 MB
- 文档页数:16
第八章平面解析几何第1讲直线的倾斜角、斜率与直线的方程[考纲解读] 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式,并能根据两条直线的斜率判断这两条直线的平行或垂直关系.(重点)2.掌握直线方程的几种形式(点斜式、两点式及一般式等),并了解斜截式与一次函数的关系.(难点)[考向预测] 从近三年高考情况来看,本讲是命题的热点,但很少独立命题.预测2021年高考对本讲内容将考查:①直线倾斜角与斜率的关系、斜率公式;②直线平行与垂直的判定或应用,求直线的方程.试题常以客观题形式考查,难度不大。
1。
直线的斜率(1)当α≠90°时,tanα表示直线l的斜率,用k表示,即错误!k =tanα。
当α=90°时,直线l的斜率k不存在.(2)斜率公式给定两点P1(x1,y1),P2(x2,y2)(x1≠x2),经过P1,P2两点的直线的斜率公式为错误!k=错误!.2.直线方程的五种形式名称已知条件方程适用范围点斜式斜率k与点(x1,y1)错误!y-y1=k(x-x1)直线不垂直于x轴斜截式斜率k与直线在y轴上的截距b错误!y=kx+b直线不垂直于x轴两点式两点(x1,y1),(x2,y2)错误!错误!=错误!(x1≠x2,y1≠y2)直线不垂直于x轴和y轴截距式直线在x轴、y轴上的截距分别为a,b错误!错误!+错误!=1(a≠0,b≠0)直线不垂直于x轴和y轴,且不过原点一般式—错误!Ax+By+C=0(A2+B2≠0)任何情况1.概念辨析(1)直线的斜率为tanα,则其倾斜角为α。
( )(2)斜率相等的两直线的倾斜角不一定相等.( )(3)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.( )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.()答案(1)×(2)×(3)×(4)√2.小题热身(1)直线l经过原点和点(-1,-1),则直线l的倾斜角是( )A.45° B.135°C.135°或225° D.60°答案A解析由已知,得直线l的斜率k=错误!=1,所以直线l的倾斜角是45°.(2)在平面直角坐标系中,直线错误!x+y-3=0的倾斜角是()A.错误!B。
⾼考数学⼀轮复习第⼋章平⾯解析⼏何8.1直线的倾斜⾓与斜率、直线的⽅程课时提升作业理直线的倾斜⾓与斜率、直线的⽅程(25分钟50分)⼀、选择题(每⼩题5分,共35分)1.直线x+y+1=0的倾斜⾓是( )A. B. C. D.【解析】选D.由直线的⽅程得直线的斜率为k=-,设倾斜⾓为α,则tanα=-,⼜α∈[0,π),所以α=.2.设直线ax+by+c=0的倾斜⾓为α,且sinα+cosα=0,则a,b满⾜( )A.a+b=1B.a-b=1C.a+b=0D.a-b=0【解析】选D.由题意得sinα=-cosα,显然cosα≠0,则tanα=-1,所以-=-1,a=b,a-b=0.3.下列命题中,正确的是( )A.直线的斜率为tanα,则直线的倾斜⾓是αB.直线的倾斜⾓为α,则直线的斜率为tanαC.直线的倾斜⾓越⼤,则直线的斜率就越⼤D.直线的倾斜⾓α∈∪时,直线的斜率分别在这两个区间上单调递增【解析】选D.因为直线的斜率k=tanα,且α∈∪时,α才是直线的倾斜⾓,所以A不对; 因为任⼀直线的倾斜⾓α∈[0,π),⽽当α=时,直线的斜率不存在,所以B不对;当α∈时,斜率⼤于0;当α∈时,斜率⼩于0,C不对.4.倾斜⾓为120°,在x轴上的截距为-1的直线的⽅程是( )A.x-y+1=0B.x-y-=0C.x+y-=0D.x+y+=0【解析】选 D.由于倾斜⾓为120°,故斜率k=-.⼜直线过点(-1,0),所以⽅程为y=-(x+1),即x+y+=0.5.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则实数a的值是( )A.1B.-1C.-2或-1D.-2或1【解析】选D.显然a≠0,由题意得a+2=,解得a=-2或1.6.(2016·西安模拟)点A(1,1)到直线xcosθ+ysinθ-2=0的距离的最⼤值是( )A.2B.2-C.2+D.4【解析】选C.由点到直线的距离公式,得d==2-sin,⼜θ∈R,所以d max=2+.7.已知a,b均为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0互相平⾏,则2a+3b的最⼩值为( )A.5B.25C.13D.15【解析】选B.因为直线ax+by-6=0与直线2x+(b-3)y+5=0互相平⾏,所以a(b-3)-2b=0,且5a+12≠0,所以3a+2b=ab,即+=1,⼜a,b均为正数,则2a+3b=(2a+3b)=4+9++≥13+2=25.当且仅当a=b=5时上式等号成⽴.⼆、填空题(每⼩题5分,共15分)8.已知直线的倾斜⾓是60°,在y轴上的截距是5,则该直线的⽅程为.【解析】因为直线的倾斜⾓是60°,所以直线的斜率为k=tan60°=.⼜因为直线在y轴上的截距是5,由斜截式得直线的⽅程为y=x+5.即x-y+5=0.答案:x-y+5=0【加固训练】过点A(-1,-3),斜率是直线y=3x的斜率的-的直线的⽅程为. 【解析】设所求直线的斜率为k,依题意k=-×3=-.⼜直线经过点A(-1,-3),因此所求直线⽅程为y+3=-(x+1),即3x+4y+15=0.答案:3x+4y+15=09.已知A(3,5),B(4,7),C(-1,x)三点共线,则x= .【解析】因为k AB==2,k AC==-.⼜A,B,C三点共线,所以k AB=k AC,即-=2,解得x=-3.答案:-310.(2016·平顶⼭模拟)与直线x+y-1=0垂直的直线的倾斜⾓为.【解析】因为直线x+y-1=0的斜率为k1=-,所以与直线x+y-1=0垂直的直线的斜率为k2=-=.所以它的倾斜⾓为.答案:(20分钟40分)1.(5分)(2016·保定模拟)直线y=tan的倾斜⾓等于( )A. B. C. D.0【解析】选D.因为tan=,所以y=tan即y=,表⽰⼀条与x轴平⾏的直线,因此直线y=tan的倾斜⾓等于0.2.(5分)已知点A(-1,0),B(cosα,sinα),且|AB|=,则直线AB的⽅程为( )A.y=x+或y=-x-B.y=x+或y=-x-C.y=x+1或y=-x-1D.y=x+或y=-x-【解析】选B.|AB|===,所以cosα=,sinα=±,所以k AB=±,即直线AB的⽅程为y=±(x+1),所以直线AB的⽅程为y=x+或y=-x-.【加固训练】已知直线l过点(0,2),且其倾斜⾓的余弦值为,则直线l的⽅程为( )A.3x-4y-8=0B.3x+4y-8=0C.3x+4y+8=0D.3x-4y+8=0【解析】选D.因为cosα=,α∈[0,π),所以sinα=,k=tanα=,所以直线l的⽅程为y-2=x,即3x-4y+8=0.3.(5分)过点(1,3)作直线l,若经过点(a,0)和(0,b),且a∈N*,b∈N*,则可作出的直线l的条数为( )A.1B.2C.3D.4【解析】选B.由题意得+=1?(a-1)(b-3)=3.⼜a∈N*,b∈N*,故有两个解或4.(12分)已知直线l过点P(0,1),且与直线l1:x-3y+10=0和l2:2x+y-8=0分别交于点A,B(如图).若线段AB被点P平分,求直线l的⽅程.【解析】因为点B在直线l2:2x+y-8=0上,故可设点B的坐标为(a,8-2a).因为点P(0,1)是线段AB的中点,得点A的坐标为(-a,2a-6).⼜因为点A在直线l1:x-3y+10=0上,故将A(-a,2a-6)代⼊直线l1的⽅程,得-a-3(2a-6)+10=0,解得a=4.所以点B的坐标是(4,0).因此,过P(0,1),B(4,0)的直线l的⽅程为+=1,即x+4y-4=0.【加固训练】已知直线l经过A(cosθ,sin2θ)和B(0,1)不同的两点,求直线l倾斜⾓的取值范围.【解析】当cosθ=0时,sin2θ=1-cos2θ=1,此时A,B重合.所以cosθ≠0.所以k==-cosθ∈[-1,0)∪(0,1].因此倾斜⾓的取值范围是∪.5.(13分)已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点.(2)若直线l不经过第四象限,求k的取值范围.(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的⾯积为S,求S的最⼩值及此时直线l的⽅程.【解析】(1)⽅法⼀:直线l的⽅程可化为y=k(x+2)+1,故⽆论k取何值,直线l总过定点(-2,1). ⽅法⼆:设直线l过定点(x0,y0),则kx0-y0+1+2k=0对任意k∈R恒成⽴,即(x0+2)k-y0+1=0恒成⽴,所以x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l总过定点(-2,1).(2)直线l的⽅程为y=kx+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则解得k的取值范围是[0,+∞).(3)依题意,直线l在x轴上的截距为-,在y轴上的截距为1+2k,所以A,B(0,1+2k).⼜-<0且1+2k>0,所以k>0.故S=|OA||OB|=×(1+2k)=≥(4+4)=4,当且仅当4k=,即k=时,取等号.故S的最⼩值为4,此时直线l的⽅程为x-2y+4=0.。