什么叫超声波电动机
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
超声波电机等效电路介绍超声波电机是一种利用超声波技术驱动电机运动的装置,它能够实现高效、精准的动力传输。
超声波电机利用超声波振动产生电磁感应,从而驱动电机运动。
为了更好地了解超声波电机的工作原理和性能,需要进行等效电路建模。
等效电路模型超声波电机可以用等效电路模型来描述,这有助于我们更好地理解其工作原理和性能。
超声波电机的等效电路模型一般包括以下几个部分:1. 激励电源激励电源为超声波电机提供动力驱动。
它可以是直流电源、交流电源或其他形式的能量输入。
2. 超声波振荡器超声波振荡器是超声波电机的核心部件,它通过产生超声波振动,实现与电机之间的能量转换。
超声波振荡器可以采用压电材料或磁致伸缩材料。
3. 电磁感应装置超声波电机通过电磁感应装置将超声波振动转换为电磁力,从而驱动电机运动。
电磁感应装置一般由线圈和磁铁组成。
4. 电机电机是超声波电机的输出部件,它将电磁力转换为机械运动。
电机可以是直流电机、交流电机或其他类型的电机。
超声波电机的等效电路模型基于以上几个部分,可以建立超声波电机的等效电路模型。
其主要包括以下几个元件:1. 电源模型超声波电机所采用的电源可以用电源模型来描述。
对于直流电源,可以将其视为恒定电压源;对于交流电源,可以视为交流电压源。
电源模型可以用符号表示,如下所示:------|+|------V | ||-|其中,V表示电源的电压。
2. 振荡器模型超声波电机的振荡器可以用振荡器模型来描述。
振荡器模型包括一个表示振荡频率的元件,并与电源模型相连。
振荡器模型可以用符号表示,如下所示:--------|+|-----------------|+|--------| | | ||-| f |-|| |--------- ----------其中,f表示振荡频率。
3. 电磁感应装置模型超声波电机的电磁感应装置可以用电感和电阻模型来描述。
电感模型表示电磁感应装置的电感特性,电阻模型表示电磁感应装置的电阻特性。
电机学超声波电机2012年11月20日简介超声波电机(Ultrasonic Motor,简称USM)是20世纪80年代中期发展起来的一种全新概念的新型驱动装置。
超声波电机是利用压电陶瓷的逆压电效应——在交变电场作用下,陶瓷会产生伸缩的现象——直接将电能转变成机械能,这种电机的工作频率一般在20kHz以上,故称为压电超声波电机。
超声波电动机的不同命名:如振动电动机(Vibration Motor)、压电电动机(Piezoelectric Motor)、表面波电动机(Surface Wave Motor)、压电超声波电动机(Piezoelectric Ultrasonic Motor)、超声波压电驱动器/执行器(Ultrasonic piezoelectric actuator)等等。
超声波电机实物图如下:一.发展1.探索阶段(1948年——20世纪70年代末)1)超声波电动机的概念出现于1948年,英国的Williams和Brown 申请了“压电电动机(Piezoelectric Motor)”的专利,提出了将振动能作为驱动力的设想,然而由于当时理论与技术的局限,有效的驱动装置未能得以实现。
2)1961年,Bulova Watch Ltd.公司首次利用弹性体振动来驱动钟表齿轮,工作频率为360Hz,这种钟表走时准确,每月的误差只有一分钟,打破了那个时代的纪录,引起了轰动。
3)前苏联学者V. V. Lavrinenko 于1964年设计了第一台压电旋转电机,此后前苏联在超声波电机研究领域一度处于世界领先水平,如设计了用于微型机器人的有2 或3 个自由度的超声波电机、人工超声肌肉及超声步进电机等。
不过,由于语言等方面的原因, 前苏联的一些重要研究成果并未被西方科学界所充分了解。
4)1969 年,英国Salfod 大学的两名教授介绍了一种伺服压电电机,这种电机采用二片式压电体结构,其速度、运动形式和方向都可以任意变化,响应速度也是传统结构电机所不能及的。
微特电机课程论文超声波电动机学院:专业班级:学号:姓名:指导教师:日期:摘要超声波电机是一个机电耦合系统,涉及到振动学、摩擦学、材料学、电力电子技术、自动控制技术和实验技术等。
超声波电动机利用压电材料的逆压电特性,激发电机定子的机械振动,通过定转子之间的摩擦力,将电能转换为机械能输出,驱动转子的定向运动。
与传统电机相比,它具有体积小、低速大转矩、反应速度快、不受磁场影响、保持力矩大等优点,是一项跨学科的高新技术。
近几年来超声波电动机已成为国内外在微型电机方面的研究热点。
关键字:超声波电机、逆压电效应、机械振动、高新技术。
一、超声波电动机简介超声波电动机(Ultrasonic Motor缩写USM)是以超声频域的机械振动为驱动源的驱动器。
由于激振元件为压电陶瓷,所以也称为压电马达。
80年代中期发展起来的超声波电机(Ultrasonic motor,USM)是基于功能陶瓷的超声波频率的振动实现驱动的新型驱动器。
超声电机是一个典型的机电一体化产品,由电机本体和控制驱动电路两部分组成。
产品涉及到振动学、波动学、材料学、摩擦学、电子科学、计算技术和实验技术等多个领域。
超声波电动机打破了由电磁效应获得转速和转矩的传统电机的概念,它利用压电材料的逆压电效应,使振动体在超声频段内产生振动,通过定子与动子间的摩擦输出能量。
二、超声波电动机的分类1. 环状或盘式行波型超声波电动机由底部粘接着压电陶瓷元件的环状定子和环状转子构成。
对极化后的压电陶瓷元件施加—定的高频交变电压,在定子弹性体中形成沿圆周方向的弯曲行波。
对定、转子施加一定的预压力,转子受到与行波传播方向相反的摩擦力作用而连续转动,定子上的齿槽用于改善电机的工作性能。
2. 直线式行波型超声波电动机(1)双Langevin振子型:利用两个Langevin压电换能器,分别作为激振器和吸振器,当吸振器能很好地吸收激振器端传来的振动波时,有限长直梁似乎变成了—根半无限长梁,这时,在直梁中形成单向行波,驱动滑块作直线运动。
超声电机原理
超声电机是一种利用超声波产生的机械振动来实现运动的电机。
它具有体积小、效率高、响应速度快、噪音小等优点,因此在各种
领域得到了广泛的应用。
超声电机的工作原理主要包括超声波的产生、传播和转换成机械振动三个方面。
首先,超声电机的工作原理涉及到超声波的产生。
超声波是指
频率高于20kHz的声波,它可以通过压电效应或磁致伸缩效应来产生。
在超声电机中,常用的是压电效应。
当施加电压到压电陶瓷上时,会产生压电效应,使其产生机械振动,从而产生超声波。
这种
超声波具有高频率、短波长的特点,可以实现精细的机械控制。
其次,超声电机的工作原理还涉及到超声波的传播。
超声波在
传播过程中会受到介质的影响,不同介质对超声波的传播速度和衰
减程度都有影响。
因此,在超声电机中需要考虑介质的选择以及超
声波的传播路径,以确保超声波能够准确地传播到需要的位置。
最后,超声电机的工作原理还包括超声波的转换成机械振动。
当超声波传播到需要的位置时,可以通过压电陶瓷或磁致伸缩材料
将超声波转换成机械振动。
这种机械振动可以驱动机械装置实现运
动,如旋转、线性运动等。
由于超声波具有高频率和短波长的特点,因此可以实现微小的机械振动,从而实现精密的位置控制。
总的来说,超声电机的工作原理是通过产生、传播和转换超声
波来实现机械振动,从而实现运动控制。
它具有许多优点,如体积小、效率高、响应速度快、噪音小等,因此在精密仪器、医疗设备、光学设备等领域得到了广泛的应用。
随着科技的不断发展,相信超
声电机在未来会有更广阔的应用前景。
超声波电机在医疗领域的应用摘要:本文主要介绍了一种利用逆压电效应获得驱动力的的新型电机——超声波电机。
通过说明超声波电机的特定优点及工作原理,分析并展望了超声波电机在医疗领域等方面的应用。
关键词:超声波电机;医疗领域;注射器;内窥镜探头;多自由度关节1 引言超声波电动机是一种借助摩擦传递弹性超声波振动来获得驱动力的新型电机,和传统的电磁式电机的工作机理不同,超声波电机内部没有线圈和磁体,不需要通过电磁作用产生驱动力,这使其它具有低速大转矩、体积小、重量轻、无电磁干扰、响应速度快、运行时无噪声、断电自锁等特定优点。
上个世纪八十年代,日本的指田年生首次提出并制造出了一种可应用的驻波型超声波电机。
继而,国内外开始投入了很多力量对超声波电机进行应用研究。
在过去的几十年里,医疗领域是微电机技术应用最具代表性的领域之一,超声波电机在医疗领域的应用研究也一直都是焦点。
人们利用微型超声波电机攻克了一些医疗领域的技术难题。
2 超声波电机的原理2.1压电效应一般在电场作用下,某些电介质在沿一定方向上受到外力作用而变形,带电粒子发生极化,某些介质也可以在纯机械应力作用下发生极化,并同时在两端表面内出现正负相反的电荷,这种现象称为正压电效应;反之,将电介质置于外电场中,在电场的作用下,这些介质会发生位移,随之电介质发生形变,当电场去掉后变形也消失,这种现象称为逆压电效应,也叫电致伸缩效应。
正压电效应和逆压电效应统称为压电效应。
2.2超声波电机的工作原理超声波电机是基于压电材料的逆压电效应或电致伸缩效应使其电机定子产生微观机械振动,从而使用定子表面质点形成椭圆运动,然后通过定子和转子之间的摩檫力,将电能转换为机械能输出,从而驱动转子的运动。
超声波电机内部结构一般由振动体(定子)和移动体(转子)组成,振动体由压电陶瓷和金属弹性材料组成,移动体有弹性体和摩擦材料等组成。
3 医疗领域的发展随着我国经济的发展和人民生活的改善,医疗服务的需求逐步增加,我国的医疗领域技术也面临着新的挑战。
超声波电机工作原理
超声波电机是一种利用超声波振动产生机械运动的电机,其工作原理基于超声波的压电效应和谐振效应。
以下是超声波电机的基本工作原理:
1. 压电效应:超声波电机的关键部件是由压电陶瓷构成的振动片。
压电陶瓷具有压电效应,即当施加电场时,陶瓷发生机械变形,而当施加机械应力时,陶瓷产生电场。
2. 超声波振动产生:通过在压电陶瓷上施加高频交变电压,可以使陶瓷片振动,产生超声波。
这种超声波通常在20 kHz以上,远远超出人耳可听范围。
3. 谐振效应:超声波电机采用谐振效应,即在特定的频率下,振动片的振动幅度达到最大值。
通过调整施加在压电陶瓷上的电压频率,使其与振动片的谐振频率匹配,可以提高振动效率。
4. 工作部件:超声波电机中通常包含振动片、导向块和负载。
振动片振动时,通过导向块将振动传递到负载上,从而实现机械运动。
5. 无刷结构:由于超声波电机是通过振动产生机械运动,通常不需要传统电机中的刷子和换向器。
因此,超声波电机具有无刷结构,减少了摩擦和磨损。
超声波电机的优点包括高效率、精密控制、低噪音、无电磁干扰等特点。
它在一些需要高精度、低噪音、快速响应的应用领域得到广泛应用,如光学设备、精密仪器、医疗器械等。
超声波电机的结构
超声波电机(Ultrasonic Motor)是一种利用超声波振动能量进行驱动的特殊电机。
它主要由定子、转子和其他辅助部件组成。
一、定子
定子是超声波电机的主要组成部分之一,通常由金属材料制成。
定子通常具有两个或多个振荡器,这些振荡器是用来产生超声波振动的。
定子上的振荡器通常是通过在金属材料上刻蚀或钻孔来制造的,这样可以在定子上形成一系列的振动节点和振动位移。
二、转子
转子是超声波电机的另一个重要组成部分,它通常由非金属材料制成,如陶瓷、玻璃或碳纤维等。
转子通常具有一个或多个超声波振动膜片,这些膜片是用来接收定子产生的超声波振动并转换成转动的动力。
转子上的膜片通常是通过在非金属材料上切割或钻孔来制造的,这样可以在转子上形成一系列的振动节点和振动位移。
三、辅助部件
除了定子和转子之外,超声波电机还需要一些辅助部件来确保其正常运转。
这些辅助部件包括:
1.驱动电路:用于产生高频振荡信号,驱动定子产生超
声波振动。
2.位置传感器:用于检测转子的位置和速度,确保电机
能够准确地控制转子的运动。
3.散热器:用于降低电机内部的温度,防止过热对电机
造成损坏。
4.轴承:用于支撑转子,减少摩擦和磨损,提高电机的
使用寿命。
总之,超声波电机是一种利用超声波振动能量进行驱动的特殊电机,它主要由定子、转子和辅助部件组成。
这些组成部分协同工作,使得超声波电机能够实现高精度、高速度和高效率的驱动。
超声电机原理超声电机是一种利用超声波振动产生的驱动力来驱动转子旋转的电机。
它具有体积小、转速高、响应速度快等特点,在现代工业生产中得到了广泛的应用。
超声电机的工作原理主要包括超声波振动产生、超声波传递和转子驱动三个方面。
首先,超声电机的工作原理是利用压电效应产生超声波振动。
压电效应是指某些晶体在受到外力作用时会发生形变,产生电荷分布不均,从而产生电场的现象。
当外加电压作用于压电晶体时,晶体会发生机械振动,产生超声波。
这种超声波的频率通常在20kHz以上,能够提供足够的驱动力来驱动转子旋转。
其次,超声波通过传感器传递到转子上。
传感器通常由压电陶瓷和金属片组成,当超声波传递到传感器上时,压电陶瓷会产生振动,从而使金属片发生弯曲变形。
这种弯曲变形会产生一个周期性的力,作用在转子上,从而驱动转子旋转。
由于超声波的频率很高,转子可以以非常快的速度旋转,因此超声电机具有响应速度快的特点。
最后,转子受到超声波的驱动而旋转。
超声波通过传感器传递到转子上后,产生的周期性力会使转子发生旋转。
由于超声波的频率高,转子旋转的速度也会非常快,可以达到几千转/分钟甚至更高的转速。
这种高速旋转的特点使得超声电机在一些需要高速驱动的场合具有很大的优势。
总的来说,超声电机是一种利用超声波振动产生的驱动力来驱动转子旋转的电机。
它的工作原理主要包括超声波振动产生、超声波传递和转子驱动三个方面。
超声电机具有体积小、转速高、响应速度快等特点,在现代工业生产中得到了广泛的应用。
希望通过本文的介绍,读者对超声电机的工作原理有了更深入的了解。
超声波电动机及其驱动控制器通用技术条件超声波电动机及其驱动控制器通用技术条件是指超声波电动机及其驱动控制器的技术规范和标准,它们是超声波电动机及其驱动控制器生产和使用的基础。
超声波电动机及其驱动控制器是一种新型的电动机和控制器,它们具有高效、低噪音、低振动、高精度等优点,广泛应用于机器人、医疗设备、精密仪器等领域。
超声波电动机是一种利用超声波振动产生的机械振动来驱动转子旋转的电动机。
它的工作原理是利用超声波振动产生的机械振动来驱动转子旋转,从而实现电动机的转动。
超声波电动机具有高效、低噪音、低振动、高精度等优点,广泛应用于机器人、医疗设备、精密仪器等领域。
超声波电动机的驱动控制器是一种用于控制超声波电动机转速和方向的电子设备。
它的主要功能是控制超声波电动机的转速和方向,从而实现超声波电动机的精确控制。
超声波电动机的驱动控制器具有高效、低噪音、低振动、高精度等优点,广泛应用于机器人、医疗设备、精密仪器等领域。
超声波电动机及其驱动控制器通用技术条件包括以下方面:1. 性能指标:超声波电动机及其驱动控制器的性能指标包括转速、转矩、功率、效率、噪音、振动等。
2. 外观尺寸:超声波电动机及其驱动控制器的外观尺寸应符合国家标准和行业标准。
3. 工作环境:超声波电动机及其驱动控制器的工作环境应符合国家标准和行业标准。
4. 安全性能:超声波电动机及其驱动控制器的安全性能应符合国家标准和行业标准。
5. 可靠性能:超声波电动机及其驱动控制器的可靠性能应符合国家标准和行业标准。
6. 电气性能:超声波电动机及其驱动控制器的电气性能应符合国家标准和行业标准。
7. 环保性能:超声波电动机及其驱动控制器的环保性能应符合国家标准和行业标准。
总之,超声波电动机及其驱动控制器通用技术条件是超声波电动机及其驱动控制器生产和使用的基础,它们的制定和实施对于推动超声波电动机及其驱动控制器的发展和应用具有重要意义。
超声波电机的发展及应用1.超声波电动机原理超声波电动机(Ultrasonic Motor缩写USM)是以超声频域的机械振动为驱动源的驱动器。
是国外近20年发展起来的一种新型电机。
与传统的电机不同,超声波电机无绕组和磁极,无需通过电磁作用产生运动力。
一般由振动体(相当于传统电机中的定子,由压电陶瓷和金属弹性材料制成)和移动体(相当于传统电机中的转子,由弹性体和摩擦材料及塑料等制成)组成。
在振动体的压电陶瓷振子上加高频交流电压时,利用逆压电效应或电致伸缩效应使定子在超声频段(频率为20KHZ以上)产生微观机械振动。
并将这种振动通过共振放大和摩擦耦合变换成旋转或直线型运动。
逆压电效应能够在振动体内激发出几十千赫的超声波振动 ,使振动体表面起驱动作用的质点形成一定运动轨迹的超声波频率的微观振动(振幅一般为数微米) ,如椭圆、李萨如轨迹等 ,该微观振动通过振动体和移动体之间的摩擦作用使移动体沿某一方向做连续宏观运动。
因此 ,超声波电机是将弹性材料的微观形变通过共振放大和摩擦耦合转换成转子或滑块的宏观运动。
近几年发展出了多种超声波电机,如环形行波USM、步进USM、多自由度USM等,且行波型USM 已有较成熟的设计。
下面来说明一下行波型USM的原理。
行波型USM要旋转,需要具备两个条件:与转子相接触的定子表面质点须做椭圆运动 ,定子、转子之间的接触面须有摩擦力。
图 1 中的弹性体为定子 ,其上部为转子 ,定子、转子间夹一层摩擦材料。
摩擦材料一般粘接在转子表面上。
利用电能激励压电陶瓷复合振子 ,使之产生超声振动 ,并在弹性体内产生行波。
当电信号频率调整到与定子(弹性体) 的机械共振频率一致时 , 定子的振动幅度最大 , 并形成行波。
在行波的弯曲传播过程中 ,定子表面的质点就会形成椭圆振动轨迹。
当无数个这样的粒子都以同相位振动时 ,就会在定子表面形成力矩 ,力矩方向与行波传播方向相反。
该力矩依靠定子、转子间的摩擦力驱动转子运动。
超声波电机的研究现状及应用前景摘要:超声波电机是一种通过摩擦传递弹性超声振动以获得功率的驱动机构。
压电陶瓷在高频替代电压作用下产生相反的压电效应,从而激发超声频段内弹性定子的微幅振动。
定子驱动的表面粒子的椭圆运动通过摩擦转换为转子的旋转(或线性)运动。
超声波电机具有低速大转矩、无噪声、停电后自燃、快速响应、无磁场干扰等特点。
关键词:超声波电机;压电效应;研究现状;应用前景;超声波电机是一种新型的微型专用电机。
其通过反向偶极子效应和超声振动获得动力的工作原理推翻了传统的发动机概念,吸引了国内外许多学者的广泛关注和研究。
目前,该技术仍处于科学前沿,应用前景广阔,因此具有重要的研究价值。
综述了超声波电机的研究现状及应用前景。
一、国外超声波电机的研究现状人类第一次尝试用弹性振动来获取权力始于钟表。
1961年,日本Bulova Watch公司开始出售一只手动手表,每月误差仅为1分钟,这创造了当时的世界纪录,给全世界学者留下了深刻的印象。
超声波马达的研究也已开始,许多研究人员对此进行了深入研究,并取得了丰硕成果。
提出并制造了一种驻波分电器超声波马达,该马达使用了一种波长为27.8 khz的朗格文激励器,输入功率为90瓦,机械输出功率为50瓦,输出扭矩为0.25n m,输出速度为0.25n m但是,由于振动板和发动机转子之间的接触固定在同一位置,接触表面仍存在严重的摩擦磨损问题。
为了解决摩擦磨损问题,提出并制造了另一种形式的超声波偶极电机。
这种发动机意识到转子是由行波而不是固定点和驻波力矩不断推动的。
从而大大减少定子与转子接触表面的摩擦磨损。
该发动机的工作机构是利用定子表面颗粒在圆周方向上的椭圆运动速度分量驱动转子通过摩擦转动。
佳能公司研制的环形行波超声电机已正式应用于EOS相机目标自动研制系统,标志着超声波电机开始进入实用阶段。
不难看出,上述所有超声波电机都属于接触式超声波电机,即功率是通过定子和转子之间的接触摩擦传递的。
什么叫超声波电动机?
2009年10月14日
超声波电动机是20世纪末发展起来的一种新的微型驱动电机,它的基本结构及工作原理与传统电机完全不同,没有绕组和磁路,不以电磁相互作用来传递能量,而是基于压电材料的逆压电效应(即电致伸缩效应),利用超声波振动来实现机电能量转换。
由于这种新型电机的工作频率一般在20kHz以上,因此称为超声波电机。
超声波电机打破了传统电机必须由电磁效应产生转矩和转速的固有概念。
与电磁式电机相比.超声波电机具有以下特点:
(1)体积小,重量轻。
超声波电机不用线圈,没有绕组和磁路,结构简单、紧凑,与电磁式电机相比,在输出转矩相同的情况下,可以做得更小、更轻、更薄。
超声波电机的转矩密度一般为电磁式电机的几倍到十几倍。
(2)低速大转矩。
超声波电机的最大优点在于它能以极低的速度运行.很容易做到每分钟几十转(甚至更低),并且能保持大转矩的输出。
这样就无需齿轮减速机构,可实现对较大负载的直接驱动。
(3)响应迅速,控制特性好。
超声波电机转子的质量较轻,惯性小,响应速度快,起动和制动的时间均为毫秒级,因此可以实现高精度的速度控制和位置控制。
(4)有断电自锁功能。
由于超声波电动机是依靠定、转子间的摩擦力驱动的,因此定、转子间必须施加一定的轴向压力,以便将压电振子的振动转换为转子的旋转。
这样当切断电源时·由于静摩擦力的作用,转子便可自锁。
(5)与外界无相互电磁干扰。
超声波电机无需励磁.因此它不受外界电磁场的影响。
同时,它对外界也不会产生电磁干扰,特别适合于强磁场的工作环境。
(6)结构形式多样化。
由于超声波电机是将压电振子的机械能通过定、转子之间的摩擦传递给转子,转子可以做旋转运动,也可以做直线运动(这时应称为动子).因此转子
运动的自由度较大,其结构设计的自由度也较大,可适应不同应用场合的需要。
超声波电动机是典型的机电一体化产品,它涉及电机学、振动学、摩擦学、功能材料、电子技术、自动控制技术和检测技术多门学科,虽然它的发明和发展仅有二十多年的历史,但在航空航天、机器人、精密仪器、医疗设备等诸多领域已得到很好的应用,目前仍是国内外研究和开发的热点。