核电子学0_2(2007)
- 格式:ppt
- 大小:706.00 KB
- 文档页数:22
习题解答第一章绪论1、核信息的获取与处理主要包括哪些方面的?①时间测量。
核信息出现的时间间隔是测定核粒子的寿命或飞行速度的基本参数,目前直接测量核信息出现的时间间隔已达到皮秒级。
②核辐射强度测量。
核辐射强度是指单位时间内核信息出现的概率,对于低辐射强度的测量,要求测量仪器具有低的噪声本底,否则核信息将淹没于噪声之中而无法测量。
对于高辐射强度的测量,由于核信息十分密集,如果信号在测量仪器中堆积,有可能使一部分信号丢失而测量不到,因此要求仪器具有良好的抗信号堆积性能。
对于待测核信息的辐射强度变化范围很大的情况(如核试验物理诊断中信号强度变化范围可达105倍),如测量仪器的量程设置太小,高辐射强度的信号可能饱和;反之,如量程设置太大,低辐射强度的信号又测不到,因此对于这种场合的测量则要求测量仪器量程可自动变换。
③能谱测量。
辐射能谱上的特征是核能级跃迁及核同位素差异的重要标志,核能谱也是核辐射的基本测量内容。
精确的能谱测量要求仪器工作稳定、能量分辨力达到几个电子伏特,并具有抑制计数速率引起的峰位和能量分辨力变化等性能。
④位置测量。
基本粒子的径迹及空间位置的精确测定是判别基本粒子的种类及其主要参数的重要手段。
目前空间定位的精度可达到微米级。
⑤波形测量。
核信息波形的变化往往反映了某些核反应过程的变化,因此核信息波形的测量是研究核爆炸反应过程的重要手段,而该波形的测量往往是单次且快速(纳秒至皮秒级)的。
⑥图像测量。
核辐射信息的二维空间图像测量是近年来发展起来的新技术。
辐射图像的测量方法可分为两类:第一种是利用辐射源进行透视以摄取被测物体的图像;第二种是利用被测目标体的自身辐射(如裂变反应产生的辐射)以反映目标体本身的图像。
图像测量利用计算机对摄取的图像信息进行处理与重建,以便更准确地反映实际和提高清晰度。
CT技术就是这种处理方法的代表。
2、抗辐射加固主要涉及哪些方面?抗辐射加固的研究重点最初是寻找能减弱核辐射效应的屏蔽材料,后来在电路上采取某些抗辐射加固措施,然后逐渐将研究重点转向对器件的抗辐射加固。
第一章1.1 核电子学与一般电子学的不同在哪里?以核探测器输出信号的特点来说明。
在核辐射测量中,最基本的特点是它的统计特性、非周期性、非等值性,核电子学分析这种信号,经处理得到有用的信息。
1.4 当探测器输出等效电流源时,求此电流脉冲在探测器输出回路上的输出波形并讨论R0C0<<τ的情况。
V0(s) = I0(s)·[R0∥(1/sc)]= I0[1/(s+1/τ)]·[R0(1/sc0)/( R0+(1/sc0))=( I0/ c0)·{1/[(s+1/τ) (s+1/ R0 c0)]}∴当R0 c0<<τ时,τ-R0 c0≈τ∴1.5 如图,设,求输出电压V(t)。
1.6 表示系统的噪声性能有哪几种方法?各有什么意义?输入端的噪声电压是否就是等效噪声电压?为什么?ENV ENC ENN ENE η (FWHM)NE不是1.7 设探测器反向漏电流I D=10-8A,后级电路频宽为1MHz,计算散粒噪声相应的方根值和相对于I D的比值。
==1.8 试计算常温下(设T=300K)5MΩ电阻上相应的均方根噪声电压值(同样设频宽为1MHz),并与1MHz能量在20pF电容上的输出幅值作比较。
∵∴1.9求单个矩形脉冲f(t)通过低通滤波器,RC=T,RC=5T,及RC=T/5,时的波形及频谱。
Ut1.10 电路中,若输入电压信号V i(t)=δ(t),求输出电压信号V0(t),并画出波形图,其中A=1为隔离用。
1.12 设一系统的噪声功率谱密度为,当此噪声通过下图电路后,求A点与B点的噪声功率谱密度与噪声均方值。
对A点:噪声均方值:对B点:噪声均方值:第二章2.1 电荷灵敏前置放大器比电压灵敏前置放大器有什么优点?为什么把反馈电容称为积分电容,作用是什么?优点:V OM稳定性高,能用高能量分辨能谱系统C f起积分作用,当A很大时,2.2 试对下图典型的电荷灵敏前置放大器电路在输入冲击电流I(t)=Q·δ(t)时,(1)求Vo(t)的一般表达式(2)当C f=1pF, R f=109Ω时,画出大致波形并与R f→∞时作比较。
061300103 张欣欣第四次作业1.根据核探测器输出信号的特点,说明核电子学和一般电子学的区别。
在核科学与技术的实际应用中, 都需要采用电子学方法对核辐射进行测量, 都需要对核探测器输出的信号进行处理与分析。
整个过程可简单描述为:用电子学方法收集辐射粒子在探测器内产生的电荷而形成电信号,经过信号模拟处理(放大或成形)和数字化之后,送入专用的数字化处理系统或计算机进行处理和分析,从而得到这些辐射粒子所携带的各种物理信息(能量、时间和空间等方面特性)。
简单流程示意如下:辐射→探测器→形成电信号→模拟处理→数字化→计算机或专用设备数据采集→在线分析。
其中从形成电信号道数据采集和再现分析这一过程就是核电子学的研究范围。
由于探测器输出信号往往比较小, 一般情况下, 首先要通过放大器进行放大。
核辐射探测器的输出信号是一系列幅度大小不一、波形不尽一致、前后间隔疏密不匀出现的时间随机分布的电荷或电流脉冲。
探测器输出信号为随机脉冲,具有时间特性、幅度分布的非周期性及非等值性。
则,由于信号统计性,要求核电子学用独特方法处理和研究。
2.核电子学中遇到的噪声主要有几类?产生的原因是什么?对于幅度分析和时间分析,那些噪声比较重要?在核电子学中遇到的噪声主要有三类:散粒噪声、热噪声和低频噪声。
对于幅度分析和时间分析,散粒噪声和热噪声最重要。
1.散粒噪声(探测器漏电流的噪声、场效应管栅极漏电流噪声):在电子器件中,载流子产生和消失的随机性,使得流动着的载流子数目发生波动,有时多些,有时少些,由此引起的电流瞬时涨落称为散粒噪声。
2.热噪声(场效应管的沟道热噪声、电阻原件的热噪声):由导体或电阻中载流子的热运动,使电路中的电流产生涨落造成。
与电路的外加电压和平均电流无关,主要与温度有关。
3.低频噪声(场效应管闪烁噪声):低频噪声即1/f噪声,又名闪变噪声或过量噪声,其噪声电压随频率的降低而增大,它的功率密度一般随1/ f而变化,在合成炭质电阻和晶体管,场效应管中,还存在一种随频率降低而增大的低频噪声。
核电子学复习整理第一章一、名词解释探测效率:探测器探测到的粒子数与此时实际入射到探测器中的粒子总数的比值。
散粒噪声:(在电子器件或半导体探测器中)由于载流子产生和消失的随机涨落形成通过器件的电流的瞬时波动,或输出电压的波动,叫做散粒噪声。
分辨率:识别两个相邻的能量、时间、位置(空间)之间最小差值的能力。
(主要有能量分辨率、时间分辨率、空间分辨率)死时间校正:在监察信号的时间TIp内,如果再有信号输入都要被舍弃,因此监察时间就是堆积拒绝电路所产生的死时间。
计时电路就不应该把这个时间计入测量时间,而应从总的测量时间中扣除这个死时间得到活时间。
由测到的总计数除以活时间就是信号计数率。
这种办法称为死时间校正。
二、填空题1.核电子学是核科学与电子学相结合的产物;2.探测器按介质类型及作用机制主要分为:气体探测器、闪烁体探测器、半导体探测器;3.核电子学中主要的噪声指三类:散粒噪声、热噪声、低频噪声;4.核辐射探测器的输出信号特点是:随机分布的电荷或电流脉冲。
(时间特性、幅度上是非周期非等值的);5.功率谱密度为常数即S(W)=a的噪声为白噪声。
三、简答题1.简述核电子学的信号特点。
答:1.随机性;2.信号弱,跨度大;3.速度快。
2.简述白噪声与干扰以及两者的区别。
答:干扰:主要是指空间电磁波感应,工频交流电网的干扰,以及电源纹波干扰等外界因素。
(可在电路和工艺上予以减小或消除)噪声:是由所采用的元器件本身产生的。
(可以设法减小但无法消除)白噪声定义为功率谱密度为常数的噪声。
3.降低前置放大器噪声的措施有哪些?答:1.输入级采用低频噪声器件;2.低温运行;3.减少冷电容Cs;4.反馈电阻Rf和探测器负载电阻RD选用低噪声电阻,阻值一般在109欧~1020欧左右。
除此之外,用滤波网络来限制频带宽度,也可进一步抑制噪声。
4.构成核电子学的测量系统的三部分是哪些?答:1.模拟信号获取和处理,2.模数变换,3.数据的获取和处理三个部分5.简述前置放大器的作用。