1.核外电子排布规律
- 格式:pptx
- 大小:1.03 MB
- 文档页数:8
【21】以第1、2、3周期的元素为例,了解原子核外电子排布规律。
1.核外电子排布的一般规律。
(1)各电子层最多容纳的电子数目为2n2。
(2)最外层不超过8个电子(K层例外)。
(3)次外层电子数目不超过18个,倒数第三层电子数目不超过32个。
核外电子排布规律的依据:(1)核外电子运动的特点①电子的质量很小,运动空间很小,但电子的运动速度很快,接近于光速。
②在高速的运动时,不能找到运动轨迹,不能准确地测量和计算出电子的确切位置。
(2)核外电子总是尽先排布在能量最低电子层里,然后由里到外,依次排布在能量逐步升高的电子层里。
总之,是核外电子运动的客观事实。
2.元素的性质与元素的原子核外电子排布的关系。
(1)稀有气体的不活泼性。
稀有气体元素的原子最外层有8个电子(氦是2个)处于稳定结构,因此化学性质稳定,一般不跟其它物质发生化学反应。
(2)非金属性与金属性(一般规律)最外层电子数得失电子趋势元素的性质金属元素4易得非金属性3.第1、2、3周期的元素(短周期元素)微粒结构特点(1)稀有气体原子的电子层结构与同周期的非金属元素形成的阴离子的电子层结构相同,与下一周期的金属元素形成的阳离子的电子层结构相同(所谓电子层结构相同是指:电子层数相同;电子总数相同;各层电子数相同)。
①与He核外电子排布相同的离子有:H-、Li、Be2②与Ne电子层结构相同的离子有:F-、O2-、N3-、Na、Mg2、A3③与Ar原子电子层结构相同的离子有:C-、S2-、和Y n-的核外电子排布相同,则下列关系式中正确的是()A a=b+m+nB a=b-m+nC a=b+m-nD a=b-m-n【解析】由元素X、Y的核电荷数分别是a和b,离子X m和Y n-的核外电子排布相同,可得:a-m=b+n,即a=b+m+n。
【答案】A【点评】离子X m和Y n-可表示为:a X m和b Y n-。
a X m意为a X原子失去m个电子形成的阳离子,所以a X m的电子数为a-m;b Y n-意为b Y原子得到n个电子形成的阴离子,所以b Y n-的电子数为b+n。
《原子核外电子排布应遵循的三大规律》(一)泡利不相容原理:1.在同一个原子里,没有运动状态四个方面完全相同的电子存在,这个结论叫泡利不相容原理。
泡利:奥地利物理学家,1945年获诺贝尔物理学奖。
2.根据这个原理,如果有两个电子处于一个轨道(即电子层电子亚层电子云的伸展方向都相同的轨道),那么这两个电子的自旋方向就一定相反。
3.各个电子层可能有的最多轨道数为,每个轨道只能容纳自旋相反的两个电子,各电子层可容纳的电子总数为2个。
(二)能量最低原理:1.在核外电子的排布中,通常状况下,电子总是尽先占有能量最低的原子轨道,只有当这些原子轨道占满后,电子才依次进入能量较高的原子轨道,这个规律叫能量最低原理。
2.能级:就是把原子中不同电子层和亚层按能量高低排布成顺序,象台阶一样叫做能级。
(1)同一电子层中各亚层的能级不相同,它们是按s,p,d,f的次序增高。
不同亚层:ns< np< nd< nf(2)在同一个原子中,不同电子层的能级不同。
离核越近,n越小的电子层能级越低。
同中亚层:1s< 2s< 3s;1p< 2p< 3p;(3)能级交错现象:多电子原子的各个电子,除去原子核对它们有吸引力外,同时各个电子之间还存在着排斥力,因而使多电子原子的电子所处的能级产生了交错现象。
例如:E3d >E4S , E4d >E5S,n≥3时有能级交错现象。
3.电子填入原子轨道顺序:1s 2s2p 3s3p 4s3d4p 5s4d5p6s4f5d6p 7s5f6d7p,能级由低渐高。
(三)洪特规则:1.在同一亚层中的各个轨道上,电子的排布尽可能单独分占不同的轨道,而且自旋方向相同,这样排布整个原子能量最低。
2.轨道表示式和电子排布式:轨道表示式:一个方框表示一个轨道电子排布式:亚层符号右上角的数字表示该亚层轨道中电子的数目3.洪特规则的特例:同一电子亚层中当电子排布全充满、半充满、全空比较稳定。
原子核外电子排布规律①能量最低原理:电子层划分为K〈L<M<O<P〈Q,对应电子层能量增大;原子核外电子排布按照能量较低者低优先排布原则。
②每个电子层最多只能容纳2n2个电子。
③最外层最多只能容纳 8个电子(K层为最外层时不能超过2个)次外层最多只能容纳18个电子(K层为次外层时不能超过2个倒数第三层最多只能容纳32个电子注意:多条规律必须同时兼顾、简单例子得结构特点:(1)离子得电子排布:主族元素阳离子跟上一周期稀有气体得电子层排布相同,如钠离子、镁离子、铝离子与氖得核外电子排布就是相同得。
阴离子更同一周期稀有气体得电子排布相同:负氧离子,氟离子与氖得核外电子排布就是相同得。
(2)等电子粒子(注意主要元素在周期表中得相对位置)①10电子粒子:CH、N、NH、NH、NH、O、OH、HO、HO、F、HF、Ne、Na、Mg、Al等。
②18电子粒子:SiH、P、PH、S、HS、HS、Cl、HCl、Ar、K、Ca、PH等。
特殊情况:F、HO、CH、CHOH③核外电子总数及质子总数均相同得阳离子有:Na、NH、HO等;阴离子有:F、OH、NH; HS、Cl等。
前18号元素原子结构得特殊性:(1)原子核中无中子得原子:H(2)最外层有1个电子得元素:H、 Li、Na;最外层有2个电子得元素:Be、Mg、He(3)最外层电子总数等于次外层电子数得元素:Be、Ar(4)最外层电子数等于次外层电子数2倍得元素:C ;就是次外层电子数3倍得元素:O ;就是次外层电子数4倍得元素:Ne(5)最外层电子数就是内层电子数一半得元素:Li、P(6)电子层数与最外层电子数相等得元素:H、Be、Al(7)电子总数为最外层电子数2倍得元素:Be(8)次外层电子数就是最外层电子数2倍得元素:Li、Si元素周期表得规律:(1)最外层电子数大于或等于3而又小于8得元素一定就是主族元素,最外层电子数为1或2得元素可能就是主族、副族或0族元素,最外层电子数为8得元素就是稀有气体(He例外)(2)在元素周期表中,同周期得ⅡA、ⅢA族元素得原子序数差别有:①第2、3周期(短周期)元素原子序数都相差1;②第4、5周期相差11;③第6、7周期相差25(3)同主族、邻周期元素得原子序数差①位于过渡元素左侧得主族元素,即ⅠA、ⅡA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素总数;相差得数分别为2,8,8,18,18,32②位于过渡元素左侧得主族元素,即ⅢA~ⅦA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素种数。
原子核外电子排布应遵循的三大规律(一)泡利不相容原理:
1.在同一个原子里,没有运动状态四个方面完全相同的电子存在,这个结论叫泡利不相容原理。
泡利:奥地利物理学家,1945年获诺贝尔物理学奖。
2.根据这个原理,如果有两个电子处于一个轨道(即电子层电子亚层电子云的伸展方向都相同的轨道),那么这两个电子的自旋方向就一定相反。
3.各个电子层可能有的最多轨道数为,每个轨道只能容纳自旋相反的两个电子,各电子层可容纳的电子总数为2个。
(二)能量最低原理:
1.在核外电子的排布中,通常状况下,电子总是尽先占有能量最低的原子轨道,只有当这些原子轨道占满后,电子才依次进入能量较高的原子轨道,这个规律叫能量最低原理。
2.能级:就是把原子中不同电子层和亚层按能量高低排布成顺序,象台阶一样叫做能级。
(1)同一电子层中各亚层的能级不相同,它们是按,,d,f的次序增高。
不同亚层:nE4S , E4d >E5S,n≥3时有能级交错现象。
3.电子填入原子轨道顺序:1 22 33 43d4 54d5 64f5d6 75f6d7,能级由低渐高。
(三)洪特规则:
1.在同一亚层中的各个轨道上,电子的排布尽可能单独分占不同的轨道,而且自旋方向相同,这样排布整个原子能量最低。
2.轨道表示式和电子排布式:
轨道表示式:一个方框表示一个轨道
电子排布式:亚层符号右上角的数字表示该亚层轨道中电子的数目
3.洪特规则的特例:
同一电子亚层中当电子排布全充满、半充满、全空比较稳定。
核外电子的排布规律多
电子原子核外电子的排布应遵循以下三个原理:①能量最低原理,核外电子总是首先占据能量最低的轨道,按照近似能级图,电子由低到高进入轨道的顺序为
1s2s2p3s3p4s3d4p5s4d5p……。
因能级交错,其中E4s<E3d……,电子先排满4s后再进入3d,例如钪元素核外21个电子依次填充的轨道为1s22s22p63s23p64s23d1。
②保里不相容原理,在同一原子中没有运动状态完全相同的电子,即同一个原子中的电子,描述其运动状态的四个方面不可能完全相同,在同一轨道上的电子必须自旋方向相反,每个轨道只能容纳2个电子。
根据保里不相容原理,各电子层最多容纳的电子总数为2n2;周期表中各周期含有元素的数目以及填充的能级如下:
③洪特规则,电子进入同一亚层的各个轨道(也称等价轨道)时,总是尽先分占不同轨道,而且自旋方向相同,例如氮原子核外电子排布的轨道表示式为:N原子的价电子中有3个未成对电子,这与N原子的成键情况和化合物的组成、结构有密切的关系。
洪特还指出,等价轨道上的电子排布处于以下状态比较稳定。
例如铬原子的电子排布式是ls22s22p63s23p63d54s1,而不是ls22s22p63s23p63d44s2。
精心整理原子核外电子排布规律①能量最低原理:电子层划分为K<L<M<O<P<Q,对应电子层能量增大;原子核外电子排布按照能量较低者低优先排布原则.②每个电子层最多只能容纳2n2个电子。
③最外层最多只能容纳8个电子(K层为最外层时不能超过2个)次外层最多只能容纳18个电子(K层为次外层时不能超过2个倒数第三层最多只能容纳32个电子注意:多条规律必须同时兼顾。
简单例子的结构特点:(1)离子的电子排布:主族元素阳离子跟上一周期稀有气体的电子层排布相同,如钠离子、镁离子、铝离子和氖的核外电子排布是相同的。
阴离子更同一周期稀有气体的电子排布相同:负氧离子,氟离子和氖的核外电子排布是相同的。
(2)等电子粒子(注意主要元素在周期表中的相对位置)①10电子粒子:CH4、N-3、NH-2、NH3、NH+4、O-2、OH-、H2O、H3O+、F-、HF、Ne、Na+、Mg+2、Al+3等。
②18电子粒子:SiH4、P-3、PH3、S-2、HS-、H2S、Cl-、HCl、Ar、K+、Ca+2、PH+4等。
特殊情况:F2、H2O2、C2H6、CH3OH③核外电子总数及质子总数均相同的阳离子有:Na+、NH+4、H3O+等;阴离子有:F-、OH-、NH-2;HS-、Cl-等。
前18号元素原子结构的特殊性:(1)原子核中无中子的原子:11H(2)最外层有1个电子的元素:H、Li、Na;最外层有2个电子的元素:Be、Mg、He(3)最外层电子总数等于次外层电子数的元素:Be、Ar(4)最外层电子数等于次外层电子数2倍的元素:C;是次外层电子数3倍的元素:O;是次外层电子数4倍的元素:Ne(5)最外层电子数是内层电子数一半的元素:Li、P(6)电子层数与最外层电子数相等的元素:H、Be、Al(7)电子总数为最外层电子数2倍的元素:Be(8)次外层电子数是最外层电子数2倍的元素:Li、Si元素周期表的规律:(1)最外层电子数大于或等于3而又小于8的元素一定是主族元素,最外层电子数为1或2的元素可能是主族、副族或0族元素,最外层电子数为8的元素是稀有气体(He例外)(2)在元素周期表中,同周期的ⅡA、ⅢA族元素的原子序数差别有:①第2、3周期(短周期)元素原子序数都相差1;②第4、5周期相差11;③第6、7周期相差25(3)同主族、邻周期元素的原子序数差①位于过渡元素左侧的主族元素,即ⅠA、ⅡA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素总数;相差的数分别为2,8,8,18,18,32②位于过渡元素左侧的主族元素,即ⅢA~ⅦA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素种数。
原子核外电子排布规律①能量最低原理:电子层划分为K<L<M<O<P<Q,对应电子层能量增大;原子核外电子排布按照能量较低者低优先排布原则.②每个电子层最多只能容纳2n2个电子。
③最外层最多只能容纳 8个电子(K层为最外层时不能超过2个)次外层最多只能容纳18个电子(K层为次外层时不能超过2个倒数第三层最多只能容纳32个电子注意:多条规律必须同时兼顾。
简单例子的结构特点:(1)离子的电子排布:主族元素阳离子跟上一周期稀有气体的电子层排布相同,如钠离子、镁离子、铝离子和氖的核外电子排布是相同的。
阴离子更同一周期稀有气体的电子排布相同:负氧离子,氟离子和氖的核外电子排布是相同的。
(2)等电子粒子(注意主要元素在周期表中的相对位置)①10电子粒子:CH4、N-3、NH-2、NH3、NH+4、O-2、OH-、H2O、H3O+、F-、HF、Ne、Na+、Mg+2、Al+3等。
②18电子粒子:SiH4、P-3、PH3、S-2、HS-、H2S、Cl-、HCl、Ar、K+、Ca+2、PH+4等。
特殊情况:F2、H2O2、C2H6、CH3OH③核外电子总数及质子总数均相同的阳离子有:Na+、NH+4、H3O+等;阴离子有:F-、OH-、NH-2; HS-、Cl-等。
前18号元素原子结构的特殊性:(1)原子核中无中子的原子:11H(2)最外层有1个电子的元素:H、 Li、Na;最外层有2个电子的元素:Be、Mg、He(3)最外层电子总数等于次外层电子数的元素:Be、Ar(4)最外层电子数等于次外层电子数2倍的元素:C ;是次外层电子数3倍的元素:O ;是次外层电子数4倍的元素:Ne(5)最外层电子数是内层电子数一半的元素:Li、P(6)电子层数与最外层电子数相等的元素:H、Be、Al(7)电子总数为最外层电子数2倍的元素:Be(8)次外层电子数是最外层电子数2倍的元素:Li、Si元素周期表的规律:(1)最外层电子数大于或等于3而又小于8的元素一定是主族元素,最外层电子数为1或2的元素可能是主族、副族或0族元素,最外层电子数为8的元素是稀有气体(He例外)(2)在元素周期表中,同周期的ⅡA、ⅢA族元素的原子序数差别有:①第2、3周期(短周期)元素原子序数都相差1;②第4、5周期相差11;③第6、7周期相差25(3)同主族、邻周期元素的原子序数差①位于过渡元素左侧的主族元素,即ⅠA、ⅡA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素总数;相差的数分别为2,8,8,18,18,32②位于过渡元素左侧的主族元素,即ⅢA~ⅦA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素种数。
核外电子的排布规律————————————————————————————————作者:————————————————————————————————日期:2核外电子的排布规律一、能量最低原理所谓能量最低原理是,原子核外的电子,总是尽先占有能量最低的原子轨道,只有当能量较低的原子轨道被占满后,电子才依次进入能量较高的轨道,以使原子处于能量最低的稳定状态。
原子轨道能量的高低为:1.当n相同,l不同时,轨道的能量次序为s<p<d<f。
例如,E3S<E3P<E3d。
2.当n不同,l相同时,n愈大,各相应的轨道能量愈高。
例如,E2S<E3S<E4S。
3.当n和l都不相同时,轨道能量有交错现象。
即(n-1)d轨道能量大于ns轨道的能量,(n-1)f轨道的能量大于np轨道的能量。
在同一周期中,各元素随着原子序数递增核外电子的填充次序为ns,(n-2)f,(n-1)d,np。
核外电子填充次序如图1所示。
3图1 电子填充的次序图2 多电子原子电子所处的能级示意图最外层最多能容纳8电子,次外层最多能容纳18电子。
每个电子层最多容纳的电子数为2n2个(n为电子层数的数值)如: 各个电子层中电子的最大容纳量电子层(n) K(1) L(2) M(3) N(4)电子亚层s s p s p d s p d f 亚层中的轨道数 1 1 3 1 3 5 1 3 5 7 亚层中的电子数 2 2 6 2 6 10 2 6 10 1445每个电子层中电子的最大容纳量(2n 2)2 8 18 32从表可以看出,每个电子层可能有的最多轨道数为n 2,而每个轨道又只能容纳2个电子,因此,各电子层可能容纳的电子总数就是2n 2。
二、鲍利(Pauli )不相容原理鲍利不相容原理的内容 是:在同一原子中没有四个量子数完全相同的电子,或者说在同一原子中没有运动状态完全相同的电子。
例如,氦原子的1s 轨道中有两个电子,描述其中一个原子中没有运动状态的一组量子数(n ,l ,m ,ms )为1,0,0,+1/2,另一个电子的一组量子数必然是1,0,0,-1/2,即两个电子的其他状态相同但自旋方向相反。
核外电子排布规律公式核外电子排布规律是最外层(除K层为2外)电子最多不超过8个,次外层电子数最多不超过18个,倒数第3层不超过32个,每层电子的容纳数,最多不超过2n2。
对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数),如24号元素铬,其原子核外总共有24个电子,然后将这24个电子从能量最低的1s亚层依次往能量较高的亚层上排布,只有前面的亚层填满后,才去填充后面的亚层,每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。
根据原子轨道能级的相对高低,可划分为若干个电子层,同一电子层又可以划分为若干个电子亚层。
电子层排布公式为np>(n-1)d>(n-2)f>ns。
电子层排布公式:E1s<E2s<E2p<E3s<E3p<E4s<E3d<E4p<E5s<E4d<E5p<E6s<E4f <E5d;规则E:np>(n-1)d>(n-2)f>ns根据这个排电子所在的原子轨道离核越近,电子受原子核吸收力越大,电子的能量越低。
反之,离核越远的轨道,电子的能量越高,这说明电子在不同的原子轨道上运动时其能量可能有所不同。
原子中电子所处的不同能量状态称原子轨道的能级。
原子核外电子层最多排布电子的公式是2x(n的平方) 最外层不超过8个,次外层不超过18个,第三层排8个后就要排第四层,第四层排2个后又倒装第三层,各层都装满是 2 8 18 32 50 18 8。
根据洪特规则,d亚层处于半充满时较为稳定,故其排布式应为:1s(2)2s(2)2p(6)3s(2)3p(6)4s(1)3d(5)。
按照人们的习惯“每一个电子层不分隔开来”,改写成1s(2)2s(2)2p(6)3s(2)3p(6)3d(5)4s(1)即可。
原子核外电子排布规律
原子核外电子排布规律:电子总是尽先排布在能量最低的电子层里;每个电子层最多只能排布2n2个电子;K层为最外层时,最多只能容纳两个电子;其它各层为最外层时,最多只能容纳8个电子;次外层最多不超过18个电子。
原子核外电子排布规律是指介绍原子核外电子的排布规律,主要有泡利不相容原理、能量最低原理、洪特定则、不相容原理等。
1、泡利不相容原理:每个轨道最多只能容纳两个电子,且自旋相反配对。
2、能量最低原理:电子尽可能占据能量最低的轨道。
3、洪特规则:当电子排布在同一能级(能量相同)的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同。
原子核atomic nucleus简称“核”。
位于原子的核心部分,由质子和中子两种微粒构成。
而质子又是由两个上夸克和一个下夸克组成,中子又是由两个下夸克和一个上夸克组成。
原子核极小,它的直径在10m~10m之间,体积只占原子体积的几千亿分之一,在这极小的原子核里却集中了99.96%以上原子的质量。
原子核的密度极大,核密度约为
10^17kg/m,即1m的体积如装满原子核,其质量将达到10^14t,即1百万亿吨。
感谢您的阅读,祝您生活愉快。
核外电子的排布规律之一首先,各电子层最多容纳的电子数目是2n2。
其次,最外层电子数目不超过8个(K层为最外层时不超过2个)。
第三,次外层电子数目不超过18个,倒数第三层电子数目不超过32个。
核外电子总是尽先排布在能量最低的电子层里,然后再由里往外依次排布在能量逐步升高的电子层里。
以上几点是互相联系的,不能孤立地理解。
核外电子的排布规律之二核外电子排布遵循泡利不相容原理、能量最低原理和洪特规则。
能量最低原理就是在不违背泡利不相容原理的前提下,核外电子总是尽先占有能量最低的轨道,只有当能量最低的轨道占满后,电子才依次进入能量较高的轨道。
也就是尽可能使体系能量最低。
洪特规则是在等价轨道(相同电子层、电子亚层上的各个轨道)上排布的电子将尽可能分占不同的轨道,且自旋方向相同。
后来量子力学证明,电子这样排布可使能量最低,所以洪特规则可以包括在能量最低原理中,作为能量最低原理的一个补充。
在同一个原子中,离核越近、n越小的电子层能量越低。
在同一电子层中,各亚层的能量按s、p、d、f的次序增高的。
因此,E1s<E2s<E3s……;E4s<E4p <E4d……。
在多电子的原子里的各个电子之间存在相互作用,研究某个外层电子的运动状态时,必须同时考虑到核及其它电子对它的作用。
由于其它电子的存在,往往减弱了原子核对外层电子的作用力,从而使多电子原子的电子能级产生交错现象核外电子的排布规律之三(1)泡利不相容原理泡利不相容原理是奥地利物理学家泡利提出来的。
他指出,在同一个原子中,不可能有运动状态完全相同的两个电子存在。
或者说,运动状态完全相同的电子在同一原子里是不能并存的、是互不相容的。
如果同一原子中的电子前三种运动状态完全一样,那么处于同一轨道上的电子其第四种运动状态——自旋方向必然不同。
由此,可以推论:同一原子中每一个轨道上只能容纳两个自旋方向相反的电子。
根据泡利不相容原理可推算出各个电子层可能容纳的电子数为2n2个。
简述核外电子排布规则
核外电子排布所遵循的三个规则是:能量最低原理、泡利不相容原理和洪特规则。
1、最低能量原理:
电子可看作是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。
当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有要回到基态的趋势。
2、泡利不相容原理:
在同一个原子中没有也不可能有运动状态完全相同的两个电子存在。
3、洪特规则:
有两方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于∶全满(s2、p6、d10、f14)半满(s1、p3、d5、f7)。
扩展资料:
对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数),如24号元素铬,其原子核外总共有24个电子,然后将这
24个电子从能量最低的1s亚层依次往能量较高的亚层上排布,只有前面的亚层填满后,才去填充后面的亚层。
每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。
最外层电子到底怎样排布,还要参考洪特规则,24号元素铬的24个核外电子依次排列为:1s(2)2s(2)2p(6)3s(2)3p(6)4s(2)3d(4)。
核外电子排布一、核外电子排布的规律1,核外电子是分层排列的,从里到外为1,2,3,4,5,6,7。
常表示为K,L,M,N,O,P,Q。
2,能量较低的电子离核近,能量较高的电子离核远。
排布时电子先尽量排在离核近的区域。
3,第一层最多2个电子,第二层最多8个电子,第三层最多18个电子……,依此类推,每层最多排2×n2个电子(n表示层数)。
4,当电子层有多个时,最外层电子数最多不超过8个,倒数第二层电子数最多不超过18个,倒数第三层电子电子数最多不超过32个。
5,最外层有8个电子的结构叫做稳定结构(氦最外层是2个电子),主要为稀有气体元素的原子,带电荷的离子(原子团除外)。
6,金属原子最外层电子数<4个,常易失去电子。
化学性质不稳定,具还原性。
7,非金属原子最外层电子数≥4个,常容易得到电子,化学性质不稳定,具氧化性。
8,稀有气体最外层电子数是8个( He为2个),电子不得不失,达到了稳定状态,所以稀有气体性质较稳定)。
二、核外电子的排布常用原子结构示意图和离子结构示意图表示1,原子结构示意图和离子结构示意图是表示原子核电荷数和电子层排布的图示形式。
小圈和圈内的数字表示原子核和核内质子数,弧线表示电子层,弧线上的数字表示该层的电子数。
以Na和Na+为例:2,由圆圈内的数值确定原子或离子的名称。
由圆圈内的数值(用A表示)和圆圈外的数值的和(用B表示)的关系,确定微粒的种类。
即:当A﹦B 时,是原子; 当A﹥B时,是阳离子; 当A﹤B时,是阴离子。
3,数量关系:原子结构时,核电荷数==核外电子数,阳离子时,核电荷数==核外电子数﹢电荷数,阴离子时,核电荷数==核外电子数﹣电荷数.三、核外电子排布的应用1,确定元素的种类2,判断元素的化学性质3,完成简单的计算朱汉修2012-12-15。
简单说:(1)主量子数nn相同的电子为一个电子层,电子近乎在同样的空间范围内运动,故称主量子数。
当n=1,2,3,4,5,6,7 电子层符号分别为K,L,M,N,O,P,Q。
当主量子数增大,电子出现离核的平均距离也相应增大,电子的能量增加。
例如氢原子中电子的能量完全由主量子数n决定:E=-13.6(eV)/n^2(2)角量子数l角量子数l确定原子轨道的形状并在多电子原子中和主量子数一起决定电子的能级。
电子绕核运动,不仅具有一定的能量,而且也有一定的角动量M,它的大小同原子轨道的形状有密切关系。
例如M=0时,即l=0时说明原子中电子运动情况同角度无关,即原子轨道的轨道是球形对称的;如l=1时,其原子轨道呈哑铃形分布;如l=2时,则呈花瓣形分布。
对于给定的n值,量子力学证明l只能取小于n的正整数:l=0,1,2,3……(n-1)(3)磁量子数m磁量子数m决定原子轨道在空间的取向。
某种形状的原子轨道,可以在空间取不同方向的伸展方向,从而得到几个空间取向不同的原子轨道。
这是根据线状光谱在磁场中还能发生分裂,显示出微小的能量差别的现象得出的结果。
磁量子数可以取值:m=0,+/-1,+/-2……+/-l(4)自旋量子数ms直接从Schrödinger方程得不到第四个量子数——自旋量子数ms,它是根据后来的理论和实验要求引入的。
精密观察强磁场存在下的原子光谱,发现大多数谱线其实由靠得很近的两条谱线组成。
这是因为电子在核外运动,还可以取数值相同,方向相反的两种运动状态,通常用↑和↓表示。
给你两个更细致的讲解:http://219.226.9.43/Resource/GZ/GZHX/DGJC/G1/D5/tbjx0181ZW_05_0016.htm/Web%20Page/GeneralChem/kechengneirong/08/8-3-2.htm简单的说:原子核外电子数1层:22层:2 83 2 8 84 2 8 18 85 2 8 18 18 86 2 8 18 32 18 8以上的数都是最大的数处于该层的元素的最外层电子逐渐增大,其余层都是最大数(仅限IA~VIIA族,B族元素不全符合)稀有气体的电子排布符合最大数。