搅拌装置的选择
- 格式:ppt
- 大小:267.00 KB
- 文档页数:3
搅拌器设计选型搅拌器设计选型绪论搅拌作为一种工业生产中常见的操作,可以实现物质的混合、传热和传质等效果。
从化学工业到食品、纤维、造纸、石油和水处理等领域,搅拌操作都被广泛应用。
搅拌操作分为机械搅拌和气流搅拌两种。
相比于气流搅拌,机械搅拌更适用于高粘度液体的搅拌,但气流搅拌在处理腐蚀性液体、高温高压条件下的反应液体时更为便利。
搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。
第一章搅拌装置第一节搅拌装置的使用范围及作用搅拌设备在工业生产中应用广泛,尤其是在化学工业中。
搅拌设备作为反应器的应用率高达99%。
搅拌设备的应用范围广泛,因为其操作条件可控范围广,能够适应多样化的生产。
搅拌设备的作用主要包括:使物料混合均匀、使气体在液相中分散、使固体粒子均匀悬浮、使不相溶的液相均匀悬浮或充分乳化、强化相间的传质和传热等。
搅拌设备在石油化工生产中被广泛应用,例如物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。
制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程都需要各种型式的搅拌设备。
第二节搅拌物料的种类及特性搅拌物料的种类主要是指流体,可以分为牛顿型和非牛顿型。
非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。
在搅拌设备中,搅拌器的作用可以使流体运动。
第三节搅拌装置的安装形式搅拌设备可以按工艺用途、搅拌器结构形式或搅拌装置的安装形式进行分类。
下面仅就搅拌装置的各种安装形式进行分类说明。
文章中没有明显的格式错误和问题段落。
一、在立式中心安装搅拌装置,驱动方式一般为皮带传动和齿轮传动,电机功率一般认为3.7kW以下为小型,5.5~22kW为中型。
本次设计中所采用的电机功率为18.5kW,故为中型电机。
二、将搅拌装置偏心安装在立式上,可以防止液体在搅拌器附近产生“圆柱状回转区”,增加液层间的湍动,提高搅拌效果。
但偏心搅拌容易引起振动,一般适用于小型设备。
三、对于简单的圆筒形或方形敞开的立式设备,可采用倾斜式搅拌,将搅拌器用甲板或卡盘直接安装在设备筒体的上缘,搅拌轴封斜插入筒体内。
反应釜搅拌器的种类与选择1.框架搅拌器:框架搅拌器是一种常用的搅拌器,它由一个平面框架和旋转的叶片组成。
框架搅拌器操作简单且成本低廉,适用于反应物较少、粘度较低的情况。
2.锚式搅拌器:锚式搅拌器是一种结构相对复杂的搅拌器,可以提供较强的剪切力和混合效果。
锚式搅拌器适用于粘度较高的物料,如胶体、乳液等。
3.桥式搅拌器:桥式搅拌器的结构类似于一个悬在反应釜上方的桥,通过悬挂下来的叶片进行搅拌。
桥式搅拌器适用于较大容量的反应釜以及需要更大搅拌区域的情况。
4.螺旋搅拌器:螺旋搅拌器由一根螺旋形状的叶片组成,可以产生强烈的剪切力和混合效果。
螺旋搅拌器适用于粘度较高且容易结块的物料。
5.磁力搅拌器:磁力搅拌器通过磁力驱动,没有机械传动装置,避免了泄露和污染等问题。
磁力搅拌器适用于对反应物料有较高要求的场合,如制药、食品等行业。
选择合适的反应釜搅拌器1.反应物料的特性:包括物料的粘度、密度、粒径等。
对于粘度较低的物料,可以选择框架搅拌器;对于粘度较高的物料,可以选择锚式搅拌器或螺旋搅拌器。
2.反应速率和混合效果:不同种类的搅拌器对反应速率和混合效果的影响不同。
一般来说,锚式搅拌器和螺旋搅拌器可以提供较好的反应速率和混合效果。
3.反应釜尺寸和形状:反应釜尺寸和形状对搅拌器的选择有一定影响。
对于较大容量的反应釜,可以选择桥式搅拌器;对于封闭较小的反应釜,可以选择磁力搅拌器。
4.工艺要求和操作方式:根据不同的工艺要求和操作方式,选择合适的搅拌器。
例如,对于有洁净要求的场合,可以选择磁力搅拌器避免泄露和污染等问题。
综上所述,反应釜搅拌器的种类繁多,选择合适的搅拌器需要考虑反应物料的特性、反应速率和混合效果、反应釜尺寸和形状以及工艺要求等因素。
通过合理选择和设计搅拌器,可以提高反应釜的效率和产品质量。
搅拌设备设计手册一、搅拌设备的概述搅拌设备是化工、医药、食品、冶金等行业常见的重要设备之一,其作用是将固体颗粒或粉末与液体或不同粒度的固体颗粒进行均匀混合或搅拌,以达到理想的混合效果。
搅拌设备大致可分为机械式搅拌设备和非机械式搅拌设备两大类。
机械式搅拌设备主要由搅拌器、传动装置和搅拌容器组成,而非机械式搅拌设备则主要利用气流、液流或超声波等手段进行搅拌。
二、搅拌设备的设计原则1. 混合均匀性:搅拌设备的设计首要考虑因素是混合均匀性。
搅拌设备在搅拌过程中应该保证各种物料能够均匀分布,从而达到预期的混合效果。
2. 操作稳定性:搅拌设备在运行过程中应该保持稳定的操作状态,避免因为设备本身的不稳定而影响搅拌效果。
3. 能耗优化:优化搅拌设备的能耗是设计的重要目标之一。
合理设计传动系统、选用高效搅拌器以及优化搅拌容器结构都能有效降低设备的能耗。
4. 设备维护:搅拌设备的设计应该便于维护和清洁,以便于日常的操作和设备维护。
5. 安全性考虑:搅拌设备的设计应该符合相关的安全规范,保证设备运行过程中不会对操作人员和设备造成危险。
三、搅拌设备的设计要点1. 搅拌器设计:搅拌器是搅拌设备的核心组成部分,其设计应该充分考虑物料的特性以及搅拌的目的。
根据不同的混合要求,可以选择桨叶式搅拌器、螺旋式搅拌器、离心式搅拌器等不同类型的搅拌器。
2. 传动系统设计:传动系统是搅拌设备的动力来源,其设计应该考虑到搅拌器的工作转速、扭矩传递等参数。
在设计过程中应该选择合适的电机、减速机以及传动带等传动部件。
3. 搅拌容器设计:搅拌容器的设计应该充分考虑到物料的特性、搅拌过程中的压力、温度等因素。
对于易结块或粘性物料,搅拌容器的内壁应设计成光滑并防粘涂层。
4. 设备清洁设计:为了方便设备的清洁和维护,搅拌设备的设计应该充分考虑到设备内部结构的平滑度,以及清洁口的设置等。
5. 安全附件设计:在搅拌设备中应该加入相应的安全附件,如防爆设备、过载保护装置等,以保障设备在工作中的安全性。
反应釜搅拌器的分类与选型和特点一、反应釜搅拌器的分类根据搅拌器的形式和结构,反应釜搅拌器可以分为以下几种类型:1.锚式搅拌器:锚式搅拌器是最常见的一种反应釜搅拌器。
它的结构形式类似于锚,可以将被搅拌的物料从容器底部向上推动,实现物料的搅拌和混合。
锚式搅拌器适用于粘稠度较高的物料。
2.桨叶式搅拌器:桨叶式搅拌器由几个平直的搅拌桨组成,通过转动将物料进行搅拌和混合。
它适用于较小粘稠度的物料,混合效果好且能耗较低。
3.湍流搅拌器:湍流搅拌器通过高速旋转的叶片产生湍流效应,能将搅拌物料在极短的时间内充分混合均匀,适用于粘稠度较低的物料。
4.锥形搅拌器:锥形搅拌器由锥形结构的叶片组成,通过旋转实现物料的混合和搅拌。
它适用于高粘稠度的物料,混合效果好且能耗较低。
5.高剪切搅拌器:高剪切搅拌器通过高速旋转的刀片或齿轮将物料切割、撞击和搅拌,适用于高粘稠度和粉状物料。
根据搅拌器的驱动方式,反应釜搅拌器可以分为以下几种类型:1.机械驱动搅拌器:机械驱动搅拌器通过电动机驱动搅拌轴进行物料搅拌。
它结构简单、搅拌效果好且稳定,但需要电源供给。
2.气动驱动搅拌器:气动驱动搅拌器通过气动马达驱动搅拌轴进行物料搅拌。
它适用于易燃易爆场所和无电源供给的环境,但需要气源供给。
3.磁力驱动搅拌器:磁力驱动搅拌器通过磁力偶合将驱动力传递给搅拌器,不需要机械传动装置。
它适用于需要避免机械密封和减少泄漏的场所,但成本较高。
二、反应釜搅拌器的选型在选择合适的反应釜搅拌器时,需要考虑以下几个因素:1.物料性质:根据物料的粘稠度、流动性、颗粒大小等特性选择合适的搅拌器类型。
例如,粘稠度较高的物料适合使用锚式搅拌器或锥形搅拌器,流动性较好的物料适合使用桨叶式搅拌器或湍流搅拌器。
2.反应要求:根据反应过程中的混合要求选择合适的搅拌器类型。
例如,对混合均匀度要求较高的反应需要选择湍流搅拌器或锥形搅拌器,对混合时间要求较短的反应需要选择高剪切搅拌器。
如何选购搅拌机购买一台高质量的搅拌机对于很多家庭或者商业场所来说是非常重要的。
不仅可以提高食物的制作效率,还可以确保食物的口感和质量。
然而,在市场上有各种各样不同品牌和型号的搅拌机,选择一款适合自己需求的搅拌机是一个挑战。
本文将向您介绍一些选购搅拌机的方法和注意事项,帮助您找到一款完美的搅拌机。
一、确定使用需求在选购搅拌机之前,我们应该首先确定自己的使用需求。
搅拌机的功能种类很多,有基本的搅拌、打碎、搅打功能,也有可选配的搅拌杯、绞肉功能等。
所以,首先要考虑自己的具体需求,确定是否需要特殊功能以及使用频率等。
另外,还要考虑搅拌机的容量大小,是否适合自己的家庭或商业需求。
二、选择适当的功率搅拌机的功率对于其搅拌效果和耐久性起着关键作用。
功率越高,搅拌机的搅拌速度越快,打磨效果也越好。
一般来说,家用搅拌机的功率在400瓦到800瓦之间就可以满足大多数家庭的需求了。
如果您需要高效率的搅拌,比如经常制作面包、果汁或冰沙等,可以选择更高功率的搅拌机。
三、考虑材质和质量选购搅拌机时,应该注意搅拌机的外壳和搅拌杯的材质。
外壳要选择耐用、易清洁的材质,如不锈钢或者高强度塑料。
搅拌杯一般有塑料、玻璃和不锈钢材质可选。
塑料搅拌杯轻便易清洁,但易受刮花和变黄;玻璃搅拌杯坚固容易清洁,但比较重,不适合运动瓶;不锈钢搅拌杯坚固耐用,但不透明,不便于观察搅拌过程。
此外,还要注意搅拌机的底座是否稳固,是否存在明显的异响和抖动等情况。
四、关注细节和功能除了基本的搅拌功能外,一些额外的功能和细节设计也是选购搅拌机时需要考虑的因素。
比如,一些搅拌机配备了预设程序,可以根据不同的食物类型自动调节时间和速度;还有一些搅拌机带有温度控制功能,可以烹饪或保温食物。
此外,一些搅拌机还配备了安全锁定装置,避免误操作和意外发生。
这些额外的功能和设计可以提高搅拌机的使用体验。
五、参考用户评价和口碑在选购搅拌机前,不妨参考其他用户的评价和口碑。
可以在各大电商平台或者家电论坛上查看用户的评价和反馈,了解相关产品的优缺点。
混凝土搅拌站设备的选型及应用摘要:随着社会经济的不断发展,人民生活水平逐渐提升。
各种混凝土制造的建筑和铺设的道路大量出现在大众视野中。
混凝土在施工的应用中越来越广泛,因此,混凝土搅拌站的建设标准,以及怎样对搅拌设备进行选型和配置也成了如今亟待解决的热点问题。
本文对选择混凝土搅拌站时的建设标准及设备的选型和配置进行了浅显的探究,以期能给混凝土搅拌站地选择人员提供更多的理论依据和相应建议。
关键词:混凝土搅拌站;设备选型;建设标准一、混凝土拌和站的建设标准为了确保施工顺利高效的进行,满足施工过程中混凝土供应连续、及时的要求,混凝土拌和站在建设时应该符合以下标准:(1)在选址方面:混凝土拌和站在选址时首先要远离闹区和人口众多的地方,以免大量噪音打扰居民正常生活,并要远离生态敏感区;其次要保证水源获取和设备通电的便利,紧邻施工现场,保证物料供应的及时性,能在短时间内运送材料。
(2)在拌和站的设计方面:拌和站的建设设计首先应该遵循环境友好、资源节约、物尽其用的原则,加强防震减灾的工作。
分别设立生活区域和生产区域,根据地理位置和地形条件进行组织的施工设计,制订规划与管理制度。
除此之外,拌和站内部还要设立消防设施、外部还要有围墙保护,进出拌和站的道路也要进行硬化,保障员工生命安全的同时为他们提供良好的施工环境,在一定程度上促进施工的高效展开。
二、混凝土拌和站设备的选型原则选用一套高质量最适合场地施工的混凝土拌和站设备需要从以下几个原则出发进行考虑:(一)总体选型原则(1)从生产规模来看。
混凝土拌和设备的生产能力和效率要与总体的生产规模相适应。
具体来说,生产规模年产量在20万m3以下的,混凝土拌和站设备的生产率相应的在90m3/h以上;年生产数量在20-30万m3,对应的设备生产率大概在120m3/h左右;年产量超过30万m3的拌和设备生产率一般为150m3或者200m3/h。
(2)从整体设备的技术性能来看。
从设备的稳定性、通用性和科学性这四方面综合考虑,设备应该满足先进、科学、环保的要求,能够拥有高自动化程度和较高的管理水平。
搅拌装置密封装置的选择机械密封类型分湿式和干式两大类,有接触式和非接触式等分类。
接触式湿密封简称“机械密封”,接触式干密封简称“干运转密封”,非接触式干密封简称“干气密封”。
搅拌设备选用机械密封时应按下列要求选取。
一、液体润滑(湿式)接触式机械密封1、机械密封处搅拌轴线速度应小于2m/s。
2、当工作压力大于0.6MPa(表)时,宜采用平衡型机械密封。
3对于密封要求较高的场合(如搅拌介质有毒、易爆、强腐蚀、介质润滑不良、高温、低温、高压及真空操作等)应采用双端面机械密封。
4、对于搅拌介质与密封装置接触(如底入式搅拌)且介质内含有固体颗粒的情况,应采用双端面密封,密封与介质侧应有隔离固体颗粒的措施,防止其阻塞浮动环,造成大量泄漏。
5、当搅拌容器内介质或隔离液温度高于80℃时,机械密封宜采取冷却措施。
6、双端面机械密封通过辅助系统调整隔离液的压力、温度,其组合型式、技术要求、试验方法,应符合《釜用机械密封辅助装置》(HG/T 2122-2003)的规定或参见本章辅助系统部分。
二、干式机械密封(接触式和非接触式)的规定。
1、干运转带封、密封处搅拌轴线速度应小于2m/s。
2、干气密封(非接触式),搅拌轴转速应小于3m/s,且搅摔容器内压力应小于1MPa3、双端面干式密封(包括接触式或非接触式),应配备带压的密封气辅助系统。
4、双端面干式密封宜设有内置轴承。
5、密封气压力应在各种操作工况下均高于搅拌容器内的压力。
对于干运转密封(接触式),密封气与搅拌容器内的压差应为0.1~0.2MPa;对于干气密封(非接触式),密封气与搅拌容器内的压差应为0.25~0.35MPa。
6、采用干式机械密封时,搅拌容器应设有适当的排气和稳压措施,以保证密封气的内漏不至于造成搅拌容器内压力的变化。
7、当有要求时,干运转接触式密封底部可增加密封磨损时磨屑收集装置,避免机械密封本身在运转过程中产生的磨屑进入搅拌容器内污染物料。
三、机械密封材料的选择要求1、应满足耐腐蚀的要求。
反应釜的搅拌装置设计搅拌装置是反应釜的重要组成部分,它的设计功能是为了实现反应釜内物料的混合和传质。
在反应釜的搅拌装置设计中,需要考虑到以下几个方面:搅拌类型选择、搅拌器结构设计、搅拌速度与功率计算以及搅拌装置的材质选择。
首先,对于搅拌类型的选择,常见的搅拌方式包括机械搅拌、气体搅拌和超声波搅拌等。
机械搅拌是最常用的搅拌方式,可以通过搅拌叶片和搅拌轴实现对物料的混合。
气体搅拌适用于反应釜内的气-液、气-固体体系,通过气泡的形成和破裂来实现搅拌目的。
而超声波搅拌则利用超声波的高频振动实现对反应釜内溶液的搅拌和混合。
在设计搅拌装置时,需要根据反应釜内物料的性质和反应条件选择适合的搅拌方式。
其次,搅拌器结构设计对搅拌效果和物料的传质起着重要的影响。
常见的搅拌器结构包括螺旋桨搅拌器、锚形搅拌器和推进器搅拌器等。
螺旋桨搅拌器的设计可以实现对物料的剪切和混合,适用于高粘度的物料。
锚形搅拌器则适用于低粘度的物料,通过锚形叶片的运动实现对物料的混合。
而推进器搅拌器则适用于对反应釜内物料进行推动和混合。
在搅拌器结构设计时,需要考虑到物料的粘度、密度和体积等因素。
第三,搅拌速度与功率的计算是搅拌装置设计的重要内容。
搅拌速度的选择需要根据物料的性质和反应需求来确定。
一般来说,低速搅拌适用于高粘度的物料,高速搅拌适用于低粘度的物料。
搅拌时产生的功率可以通过搅拌器叶片的形状和数量来确定。
搅拌功率的计算可以通过流体力学原理进行,通过计算可以确定电动机的功率和转速。
最后,搅拌装置的材质选择也是设计的关键。
搅拌装置需要使用耐腐蚀的材料,以保证反应釜的使用寿命和反应的安全性。
常见的搅拌装置材料包括不锈钢、聚合物和陶瓷等。
具体的材质选择需要根据物料的性质和反应条件来确定。
综上所述,反应釜的搅拌装置设计涉及搅拌类型选择、搅拌器结构设计、搅拌速度与功率计算以及搅拌装置的材质选择等方面。
通过合理的搅拌装置设计,可以实现反应釜内物料的混合和传质,提高反应效果和生产效率。
高效混凝沉淀操作规程高效混凝沉淀操作规程混凝沉淀是一种常见的水处理工艺,用于去除水中的悬浮物和溶解性有机物。
在进行混凝沉淀操作时,需要遵循一定的操作规程,以确保工艺的高效进行。
以下是一份关于高效混凝沉淀操作规程的建议,共计1200字。
1. 安全措施混凝沉淀操作涉及到化学品的使用和处理,因此需要遵循相关的安全措施。
操作人员应佩戴防护眼镜、手套和口罩,避免直接接触化学品。
在操作过程中,要小心,避免溅入眼睛或皮肤。
遇到意外溅入,应立即用大量清水冲洗,并及时就医。
2. 混凝剂选择根据水质的不同,选择合适的混凝剂。
常用的混凝剂有铝盐和铁盐。
铝盐一般用于脆性悬浮物和胶体颗粒的混凝,铁盐则主要用于有机物的沉淀。
根据水质的特点,选择适宜的混凝剂,以提高混凝沉淀效果。
3. 混凝剂投加量控制混凝剂的投加量对混凝沉淀效果有重要影响。
投加量过低会导致混凝效果不佳,投加量过高则会造成混凝剂浪费。
因此,在投加混凝剂时要进行充分的试验和调整,控制投加量在适宜范围内。
一般来说,根据水质浑浊度和有机物含量的不同,投加量可以在10-50 mg/L之间。
4. 混凝剂溶液调配混凝剂溶液的调配要按照一定的比例进行。
首先,准备一定量的混凝剂,然后加入适量的清水,充分搅拌,使混凝剂充分溶解。
调配好的混凝剂溶液应储存在干燥、阴凉的地方,并及时使用。
注意,混凝剂溶液应避免与其他化学品接触,以免产生不良反应。
5. 搅拌装置选择用于混凝沉淀的搅拌装置选择要合理。
一般来说,可以选择机械搅拌或气液混合搅拌。
机械搅拌可以在水中投加混凝剂的同时,通过搅拌来促使混凝剂充分与水中的悬浮物和溶解性有机物混合。
气液混合搅拌则是通过向水中通入压缩空气,生成气泡来实现混凝作用。
根据具体情况,选择合适的搅拌装置,以获得最佳的混凝效果。
6. 沉淀槽设计沉淀槽是混凝沉淀工艺的核心设备,其设计应合理。
沉淀槽应具有足够的容积和停留时间,以确保混凝剂与悬浮物、溶解性有机物充分接触,并发生沉淀。
搅拌器的选择与使用是个非常复杂的问题,目前国内有关这方面的设计资料都比较简单,大部分计算公司都来自国外50-70年代,在应用中发现,理论与实际的差别非常大,因此,目前搅拌器的设计采用的是理论与实践相结合。
现有搅拌器的形式大致分飞桨式、推进式、锚框式、螺带式以及复合式,出锚框、螺带往往应用在高粘度介质的搅拌外,大部分工况都采用桨式与推进式的混合型搅拌器,一般情况下转数在30--300转范围内,搅拌桨线速度在5米/每秒以下为宜,搅拌器的直径一般选用1/3罐径左右,建议安装挡板。
从混合效果看,对于匀相液液混合,在搅拌功率一定时是,尽量选择大浆径,低转速。
而对以非匀相及防止底部沉积的固液混合在搅拌功率一定的情况下,尽量提高转数,在选用功率时注意,一般情况下电机功率达到1.5倍搅拌作业功率即可,过大只会曾加电力消耗和运行成本,目前,考核搅拌效率的难度很大,用户对于搅拌器的研究做注重混合的均匀程度,而忽略了单位时间内电力的消耗及单元操作时间,因为,往往工艺给出的操作时间远远大于搅拌混合所需的时间,这是因为,很多化工单元是液液反应,反应时间和搅拌作业时间差距很大。
在容器的设计中往往忽略了挡板的作用,实际上,增加挡板后,可以显著增加液体的轴向流和径向流,而且还可以产生湍流效果,因此,挡板是非常重要的,虽然增加挡板后,搅拌功率明显提高,但是单位作业时间也会显著下降,混合效果明显提高,现在应用最广泛的搅拌桨形式是变截面搅拌桨并配合挡板使用。
在选搅拌之前,除了关注物料有几相、体积、密度、粘度、混合要求等等之外。
还应该关注反应机理。
有的反应速度是由反应本身决定的,例如有的有机反应本身就进行的很慢,在这种条件下增强(或减弱)搅拌效果对反应收率、反应时间的影响不大;而有的反应,速度主要是由扩散控制的,反应本身进行的很快,在这种情况下增加搅拌效果则反应收率以及反应时间都会有很好的改善。
我见过改变搅拌效果后,收率提高十几个点的情况,也见过加强搅拌后几乎对反应没什么影响的情况。
搅拌器电机选用的基本原则
通常应根据搅拌轴功率和搅拌设备周围的工作环境等因素选择电动机的型号,并遵循以下基本原则。
①根据搅拌设备的负载性质和工艺条件对电动机的启动、制动、运转、调速等要求,选择电动机类型。
②根据负载转矩、转速变化范围和启动频繁程度等要求,考虑电动机的温升限制、过载能力和启动转矩,合理选择电动机容量,并确定冷却通风方式。
同时选定的电动机型号和额定功率应满足搅拌设备开车时启动功率增大的要求。
③根据使用场所的环境条件,如温度、湿度、灰尘、雨水、瓦斯和腐蚀及易燃易爆气体等,考虑必要的防护方式和电动机的结构型式,确定电动机的防爆等级和防护等级。
处在爆炸和火灾危险环境时,应按照GB50058《爆炸和火灾危险环境电力装置设计规范》的规定:对于气体或蒸汽爆炸危险环境,则根据爆炸危险环境的分区等级和爆炸危险区域内气体或蒸汽的级别、组别和电动机的使用条件,选择防爆电动机的结构型式和相应的级别、组别;对于粉尘爆炸危险环境,则根据爆炸危险环境的分区等级和电动机的使用条件,选择防爆、防护电动机的结构型式和相应的防爆、防护等级;对于火灾危险环境,则根据火灾危险环境的分区等级和电动机的使用条件,选择防护电动机的结构型式和相应的防护等级。
处在化学腐蚀环境时,应按照CD90A6《化工企业腐蚀环境电力设计技术规定》,根据腐蚀环境的分类选择相适应的电动机。
搅拌器如何选型使液体、气体介质强迫对流并均匀混合的器件。
搅拌器的类型、尺寸及转速,对搅拌功率在总体流动和湍流脉动之间的分配都有影响。
一般说来,涡轮式搅拌器的功率分配对湍流脉动有利,而旋桨式搅拌器对总体流动有利。
对于同一类型的搅拌器来说,在功率消耗相同的条件下,大直径、低转速的搅拌器,功率主要消耗于总体流动,有利于宏观混合。
小直径、高转速的搅拌器,功率主要消耗于湍流脉动,有利于微观混合。
搅拌器的放大是与工艺过程有关的复杂问题,至今只能通过逐级经验放大,根据取得的放大判据,外推至工业规模。
搅拌器选型步骤分析介绍:搅拌装置的设计选型与搅拌作业目的紧密结合。
各种不同的搅拌过程需要由不同的搅拌装置运行来实现,在设计选型时首先要根据工艺对搅拌作业的目的和要求,确定搅拌器型式、电动机功率、搅拌速度,然后选择减速机、机架、搅拌轴、轴封等各部件。
其具体步骤方法如下:1.按照工艺条件、搅拌目的和要求,选择搅拌器型式,选择搅拌器型式时应充分掌握搅拌器的动力特性和搅拌器在搅拌过程中所产生的流动状态与各种搅拌目的的因果关系。
2.按照所确定的搅拌器型式及搅拌器在搅拌过程中所产生的流动状态,工艺对搅拌混合时间、沉降速度、分散度的控制要求,通过实验手段和计算机模拟设计,确定电动机功率、搅拌速度、搅拌器直径。
3.按照电动机功率、搅拌转速及工艺条件,从减速机选型表中选择确定减速机机型。
如果按照实际工作扭矩来选择减速机,则实际工作扭矩应小于减速机可用扭矩。
4.按照减速机的输出轴头D和搅拌轴系支承方式选择与D相同型号规格的机架、联轴器。
5.按照机架搅拌轴头DO尺寸、安装容纳空间及工作压力、工作温度选择轴封型式。
6.按照安装形式和结构要求,设计选择搅拌轴结构型式,并校检其强度、刚度。
如按刚性轴设计,在满足强度条件下n/nk≤0.7如按柔性轴设计,在满足强度条件下n/nk>=1.37.按照机架的公称心寸DN、搅拌轴的搁轴型式及压力等级、选择安装底盖、凸缘底座或凸缘法兰8.按照支承和抗振条件,确定是否配置辅助支承。