2017年春季学期新人教版九年级数学下册:29.1投影教案(二)及单元测试题
- 格式:doc
- 大小:401.00 KB
- 文档页数:16
人教版九年级数学下册:29.1《投影》教学设计3一. 教材分析《投影》是人教版九年级数学下册第29.1节的内容,主要介绍中心投影和平行投影的概念,以及它们在实际生活中的应用。
本节内容是学生对几何学习的一个拓展,也是对现实生活问题解决能力的一个提升。
通过学习本节内容,学生能够理解投影的原理,会用投影的知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的变换、位置关系等有一定的理解。
但投影的概念对于他们来说是比较抽象的,需要通过具体的实例和操作活动来帮助他们理解和掌握。
此外,学生在生活中对投影的直观感受较多,但缺乏对其数学本质的理解。
三. 教学目标1.理解中心投影和平行投影的概念,掌握它们的性质和特点。
2.能够运用投影的知识解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.重点:中心投影和平行投影的概念及其性质。
2.难点:投影在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过设置问题情境,激发学生的探究欲望。
2.利用多媒体演示和实物模型,帮助学生直观理解投影的概念。
3.引导学生通过合作交流,共同探讨投影的性质和应用。
4.注重个体差异,给予学生个性化的指导和建议。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.投影仪。
4.练习题和作业。
七. 教学过程导入(5分钟)教师通过展示一些生活中的投影现象,如电影、幻灯片等,引导学生关注投影的存在。
然后提出问题:“什么是投影?投影有哪些类型?”让学生思考和讨论。
呈现(10分钟)教师通过多媒体演示和实物模型,介绍中心投影和平行投影的概念。
解释投影的原理,展示不同类型的投影现象。
同时,引导学生积极参与,提出问题和猜想。
操练(10分钟)教师给出一些简单的投影题目,让学生分组讨论和解答。
通过实际操作和观察,学生能够更好地理解投影的性质和特点。
巩固(10分钟)教师给出一些实际问题,让学生运用投影的知识解决。
人教版九年级数学下册:29.1《投影》教学设计2一. 教材分析《投影》是人教版九年级数学下册第29.1节的内容,这部分内容是学生学习几何知识的重要环节,也是学生对几何知识进行深入理解的关键部分。
通过学习投影的知识,学生能够理解在特定情况下,物体在光线作用下的影子规律,同时,也为后续的立体几何学习打下基础。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于光线、影子等概念有了一定的了解。
但是,对于三维空间中的投影规律,部分学生可能会感到抽象难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的教学手段,帮助学生理解和掌握投影的知识。
三. 教学目标1.知识与技能:使学生理解投影的概念,掌握正投影和斜投影的特点,能够运用投影的知识解决实际问题。
2.过程与方法:通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作精神和探索精神。
四. 教学重难点1.重点:投影的概念,正投影和斜投影的特点。
2.难点:对三维空间中物体投影的理解和运用。
五. 教学方法采用问题驱动法、合作学习法、直观演示法等教学方法,通过生动形象的教学手段,激发学生的学习兴趣,引导学生主动探索,合作交流,从而达到理解掌握投影知识的目的。
六. 教学准备1.教师准备:投影仪、教具、课件等教学工具。
2.学生准备:预习相关内容,准备问题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如手电筒照在物体上产生的影子,引导学生思考:什么是投影?为什么会产生投影?2.呈现(10分钟)利用课件和教具,呈现正投影和斜投影的图像,引导学生观察并总结正投影和斜投影的特点。
3.操练(10分钟)学生分组,每组利用教具进行投影实验,观察不同角度下的投影效果,巩固对投影的理解。
4.巩固(5分钟)教师提出几个问题,如:正投影和斜投影在哪些情况下会产生?如何判断一个物体的投影?学生回答,教师点评。
新人教版九年级数学下册《二十九章投影与视图29.1投影正投影》教案_329.1 投影(第二课时)——正投影的性质一、教学目标知识与技能:1、进一步理解正投影的概念;2、能根据正投影的性质画出简单平面图形的正投影。
过程与方法:1、在探究物体与其正投影关系的活动中,体会立体图形与平面图形的相互转化关系,培养学生的动手实践能力,发展学生的空间观念。
2、通过探究生活中有关正投影的数学问题,提高数学的应用意识。
情感态度与价值观:通过学习,鼓励学生敢于发表自己的想法,通过积极参与数学活动,增强学习数学的兴趣和信心。
二、学习重点、难点:重点——归纳正投影的性质难点——面的正投影的性质,正确画出简单平面图形的正投影。
三、学具准备:铅笔、正方形纸板、泡沫塑料、竹签、作图工具。
教学辅助:多媒体四、教学过程:(一)提出问题上一节课,我们探索了投影线的变化对投影的影响。
今天我们接着该研究什么?目的:让学生有提出研究问题的机会,加强知识之间的联系,逐步学会研究问题。
为解决问题,学生会自动回忆上节课的内容。
教师亦可顺势让学生回顾投影线的变化对投影的影响。
这样,自然而然的复习了投影的分类,教师还可以追问分类的依据以及彼此的区别和联系。
出示课件展示结果。
投影线的变化中心投影平行投影正投影斜投影回到原来的问题“今天研究什么问题?”回忆至此,学生的思维可能还是跟不上,毕竟他们对于,多种要素构成对象的研究方法不熟悉。
若是如此,教师可以引导学生进一步回顾投影的要素。
投影的三要素呈现在课件中:投影线的变化投影物体投影面中心投影平行投影正投影斜投影提出“除了投影线的变化会对投影的影响以外,还有什么?”现在,再让学生提出问题,学生应该有两种想法“研究投影物体的变化对投影的影响”或是“研究投影面的变化对投影的影响”。
从中,选出今天的研究方向,即第一个。
设计意图:这样来提出一节课的问题,比较自然恰当。
学生从中感受到的是,问题的来源;感受到的是,所研究的问题是前面所研究问题的延续;感受到的是,怎样研究“投影”——分别研究它的组成要素。
课题:2.9投影(2)一、教学目标:1、了解正投影的概念;2、能根据正投影的性质画出简单的平面图形的正投影3、培养动手实践能力,发展空间想象能力.二、教学重、难点教学重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影教学难点:归纳正投影的性质,正确画出简单平面图形的正投影三、教学过程:(一)复习引入新课下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2) (3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影.(二)合作学习,探究新知1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面,(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状通过观察,我们可以发现:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB = A1B1(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB > A2B2(3)当线段AB垂直于投影面P时,它的正投影是一个点A32、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面结论:(1)当纸板P平行于投影面Q时. P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面Q时. P的正投影与P的形状、大小发生变化;(3)当纸板P垂直于投影面Q时. P的正投影成为一条线段.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.3、例1画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P图(1);(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线A E垂直于投影面P图 (2).分析口述画图要领解答按课本板书4、练习5、谈谈收获三、作业。
春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。
人教版数学九年级下册29.1《投影》教学设计一. 教材分析人教版数学九年级下册29.1《投影》是本册的一个重点章节,主要介绍了中心投影和平行投影的概念,以及物体在投影中的基本性质。
本节内容是学生学习立体几何的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何的知识有了一定的了解。
但投影的概念对学生来说较为抽象,不易理解。
因此,在教学过程中,教师需要利用实物和模型帮助学生建立投影的概念,并通过大量的练习让学生熟练掌握投影的性质和计算方法。
三. 教学目标1.了解中心投影和平行投影的概念,掌握它们的特点。
2.能够运用投影的性质解决一些简单的问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.投影的概念。
2.投影的性质。
3.中心投影和平行投影的区别。
五. 教学方法1.实物演示法:通过实物和模型展示投影的原理,让学生直观地理解投影的概念。
2.讲解法:对投影的性质和计算方法进行详细讲解,让学生掌握投影的基本知识。
3.练习法:布置适量的练习题,让学生在实践中巩固投影的知识。
六. 教学准备1.准备一些实物和模型,如立方体、球体等,用于展示投影的原理。
2.准备投影的PPT课件,用于辅助教学。
3.准备一些投影的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过展示一些实物和模型,如立方体、球体等,让学生观察它们在光线照射下的投影,引发学生对投影的兴趣。
然后提问:“你们知道什么是投影吗?”让学生回顾已知的投影知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT课件,向学生介绍中心投影和平行投影的概念,以及它们的特点。
同时,通过动画演示,让学生直观地理解投影的原理。
在此过程中,教师讲解投影的性质,如相似性、直线与平面的交角等。
3.操练(10分钟)教师布置一些投影的练习题,让学生独立完成。
人教初中数学九年级下册《29-1 投影》(教案)一. 教材分析人教初中数学九年级下册《投影》这一章节主要介绍了投影的概念、特点以及各种类型的投影。
通过学习,学生能够理解投影的定义,掌握正投影和斜投影的性质,能够运用投影的知识解决实际问题。
本节课的内容是学生对几何学习的一个拓展,也是对立体几何学习的铺垫。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何有较深入的了解。
但投影概念的引入,需要学生对三维空间有一定的认识,这对于学生来说是一个新的挑战。
因此,在教学过程中,需要引导学生从二维平面几何过渡到三维空间几何,建立空间观念。
三. 教学目标1.了解投影的概念,掌握正投影和斜投影的性质。
2.能够识别各种类型的投影,并运用投影的知识解决实际问题。
3.培养学生的空间观念,提高学生的几何思维能力。
四. 教学重难点1.投影的概念和性质。
2.不同类型投影的识别和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索、发现和解决问题。
2.利用多媒体教学,展示各种类型的投影,帮助学生建立空间观念。
3.采用合作学习的方式,让学生在讨论中加深对投影知识的理解。
六. 教学准备1.多媒体教学设备。
2.投影相关图片和实例。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的投影实例,如影子、建筑物的投影等,引导学生关注投影现象,激发学生的学习兴趣。
提问:你们对这些投影有什么观察和思考?2.呈现(10分钟)介绍投影的定义,展示正投影和斜投影的性质。
通过多媒体动画演示,让学生直观地感受不同类型的投影。
同时,给出一些投影的性质和规律,引导学生进行思考。
3.操练(10分钟)让学生分组讨论,识别给出的各种投影实例,并解释其投影类型。
每组选出一个代表进行汇报,其他组进行评价和补充。
4.巩固(10分钟)给出一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,涵盖投影的概念、性质以及应用。
29. 1 投影第1课时投影、平行投影和中心投影教学目标知识技能1.经历实践探索,了解投影、投影面、平行投影和中心投影的概念.2.通过观察、比较,了解平行投影和中心投影的含义.数学思考与问题解决先联系生活中的实例,初步感知投影,再通过图片认识中心投影和平行投影的区别与联系.情感态度使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.重点难点重点:理解平行投影和中心投影的特征.难点:在投影面上画出物体的平行投影或中心投影.教学设计一、引入新课日晷是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.(教师出示图片,引入新课.学生观察思考,初步感知.)设计意图:通过介绍日晷引入新课,让学生初步感知投影,为本节课学习做好铺垫.二、探究新知1.影子随处可见,请问你能举出生活中关于物体在光线的照射下形成影子的实例吗?投影定义:一般地,用光线照射物体,在某个平面(地面或墙壁)上得到的影子,叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.2.观察下列图片,你认为太阳光线有什么特征?太阳离我们非常遥远,太阳光线可以看成平行光线,像这样的由平行光线形成的投影是平行投影.3.由同一点(点光源)发出的光线形成的投影叫做中收投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.(教师引导学生大胆举出身边的例子.生小组内合作交流,师生共同归纳得出投影及相关的概念.教师投影,引导学生观察、分析,归纳平行投影的概念.教师结合实例引导学生识记中心投影.学生观察,理解记忆中心投影.)设计意图:让学生亲自观察、分析、探究出结论.激发学生学习数学的兴趣,培养学生的观察能力、实践能力.三、学以致用例1(补充) 如下图中的两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线,它们是平行投影还是中心投影?并说明理由.图(1) 图(2) 解:分别连接标杆的顶端与投影上的对应点(如下图).很明显,下图(1)的投影线互相平行,是平行投影.下图(2)的投影线能相交于一点,是中心投影.图(1) 图(2) 例2(补充) 如下图是一棵小树在路灯下的影子.请画出形成树影的光线,确定光源的位置.解:如下图,连接CB,并延长相交路灯杆于点O,则OC就是形成树影的光线,点O就是光源所在的位置.(教师出示问题,引导学生分析解决,师生共同点评.学生尝试分析,小组内交流后,解决例题.教师投影例2,学生作图解决.)设计意图:通过设置例题,达到巩固平行投影、中心投影的目的,同时也提高了学生的应用意识和能力.四、巩固练习1.教材第88页练习.答案:2.贝贝和他爸爸在阳光下的沙滩上漫步,他不想让爸爸看到他的影子,那么你能画出贝贝的大致活动范围吗?(用线段表示其影子)答案:只要贝贝的影子与爸爸的影子重合,爸爸就看不到贝贝的影子.所以,贝贝的大致活动范围是爸爸的影子除了从头部到N的线段,即MN上.(教师引导、点拨方法,总结规律,共性问题做好补教,组织学生独立完成练习后,小组交流.学生独立思考解决问题,小组内交流.) 设计意图:通过引导学生自主、合作、探究,培养学生分析问题、解决问题的意识和能力.通过练习,及时反馈学生学习的情况,便于教师把握教学效果,并能及时查漏补缺,进一步优化教学.五、师生小结1.通过这节课,同学们学到了什么?2.对本节课你有什么困惑?3.布置作业:教材习题29.1第1,2题.(学生总结发言.教师补充完善.教师布置作业.学生按要求课外完成.)设计意图:梳理学习的内容、方法,形成知识体系.养成系统整理知识的习惯.加强教学反思,进一步提高教学效果.板书设计一、引入新课三、学以致用二、探究新知例1(补充)例2(补充)投影:投影线:四、巩固练习投影面:平行投影:五、师生小结中心投影:第2课时正投影教学目标知识技能1.了解正投影的概念.2.能根据正投影的性质画出简单的图形的正投影.数学思考与问题解决联系生活中的实例,初步感知正投影.情感态度使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心,培养动手实践能力,发展空间想象能力.重点难点重点:正投影的含义及能根据正投影的性质画出简单的图形的正投影.难点:归纳正投影的性质,正确画出简单图形的正投影.教学设计一、复习引入1.什么叫做投影、投射线、投影面、中心投影、平行投影?2.下面两个图都是表示一块三角板在光线照射下形成的投影,它们的投影线与投影面的位置关系有什么不同?(教师出示问题、图片,引入新课.学生回顾回答、观察思考,初步感知.)设计意图:通过有针对性的问题的复习引入新课,让学生初步感知正投影,为本节课学习做好铺垫.二、探究新知1.课前小组活动:让太阳光照射一根竹筷,在矩形的白纸上形成投影;让太阳光垂直照射矩形白纸,改变竹筷的位置、方向,再观察竹筷影子的变化.2.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面.三种情形下的铁丝的正投影各是什么形状?结论:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB____A1B1;(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB____A2B2;(3)当线段AB垂直于投影面P时,它的正投影是________.3.课前小组活动:让太阳光照射一块正方形硬纸板,在矩形的白纸上形成投影;让太阳光垂直照射矩形白纸,改变硬纸板的位置、方向,再观察其影子的变化.4.教师出示教材第90页图29.1-7.把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.三种情形下纸板的正投影各是什么形状?结论:(1)当纸板P平行于投影面Q时,P的正投影与P形状、大小________;(2)当纸板P倾斜于投影面Q时,P的正投影与P形状、大小________;(3)当纸板P垂直于投影面Q时,P的正投影是________.归纳:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(教师引导学生课前实践、体验,课堂汇报交流.学生小组内合作交流,师生共同归纳总结.教师出示问题.学生小组讨论解决.教师引导学生课前实践、体验,课堂汇报交流.学生小组内合作交流,师生共同归纳总结.)设计意图:通过课前实践活动,激发学生学习正投影的好奇心、求知欲,为探索物体的正投影的性质打下基础.将课外的实物操作抽象为课堂中的直观图片,体现数学的模型作用.让学生亲自观察、分析、探究出结论,激发学生学习数学的兴趣,培养学生的观察能力、实践能力.三、学以致用例:(教材例题)画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P;(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P.解:(1)如下图(1),正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系.(2)如下图(2),正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A′B′是正方体的侧棱AB及它所对的另一条侧棱EH的投影., ,图(1) 图(2) (教师出示问题,引导学生分析解决,师生共同点评.学生尝试分析,小组内交流后,解决例题.)设计意图:通过设置例题,达到巩固正投影的目的,同时也提高了学生的应用意识和能力.四、巩固练习1.教材第92页练习.答案:(1)圆柱的正投影是一个矩形.(2)圆柱的正投影是一个圆.2.底面与投影面垂直的圆锥体的正投影是( )A.圆 B.三角形 C.矩形 D.正方形(答案:B)(教师引导、点拨方法、总结规律,共性问题做好补教,组织学生独立完成练习后,小组交流.学生独立思考解决问题,小组内交流.) 设计意图:通过引导学生自主、合作、探究,培养学生分析问题、解决问题的意识和能力.通过练习,及时反馈学生学习的情况,便于教师把握教学效果,并能及时查漏补缺,进一步优化教学.五、师生小结1.通过这节课,同学们学到了什么?2.对本节课你有什么困惑?3.布置作业:必做题:教材习题29.1第3,4题.选做题:教材习题29.1第5题.(学生总结发言.教师补充完善.教师分层布置作业.学生按要求课外完成.)设计意图:梳理知识、总结方法,形成知识体系,养成系统整理知识的习惯.板书设计一、复习引入三、学以致用二、探究新知例1(教材例题)线段的正投影:四、巩固练习正方形的投影:五、师生小结。
新人教版数学九年级下册第二十九章投影教案29.1 投影(一)课题:投影课型:新授课内容:人教版九年级数学下《投影与视图》的第一课时教学目标:知识与技能:(1)通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念;(2)能够确定物体在平行光线和点光源发出的光线在某一平面上的投影。
过程与方法:(1)学习平行投影时,要弄清光线照射角度与影子的关系,同一照射角度下,两个物体的高度与影长成比例,与相似三角形建立联系;(2)通过学生自己动手实验,教师同学们归纳、概括,形成平行投影和中心投影的概念,并把所学知识应用于生活实际之中。
情感、态度与价值观:在实验、探索中获取新知,可激发学生的学习兴趣,体会到教学与生活融为一体,使学生爱学习、爱生活,敢于探索创新,在学习中产生对数学的兴趣,在探索中投入更大的热情。
教学方法:小组探究法。
教学重点难点:重点:投影、平行投影、中心投影的概念。
难点:对投影概念的准确把握,物体与投影的关系。
教学准备:多媒体、手电筒、小棒、三角形纸片教学过程:一、创设情境,导入新课你们喜欢小动物吗?今天老师为大家带来了许多活泼可爱的小动物。
(出示手影)。
谁还愿意上来为大家表演手影?二、合作交流,自主探究1、手影的原理是什么?手影是一种投影现象,那么你认为投影需要哪几个要素?板书光源、物体、投影面)你能大胆猜想,说说什么是投影吗?请大家打开书P106阅读前两段。
阅读后,你有什么收获?(1)生活中有哪些投影现象?生活中的影子与刚才咱们所说的投影有什么区别?小结:我们今天谈到的投影、投影面是一个平面,而生活中的影子可能不在同一个平面上。
(2)如果对大家所提到的投影现象进行分类,你认为应该分为几类?说说你是怎么想的?针对同学的想法,我们一起探讨一下,它们有什么不同?请大家分组进行讨论。
2、探究新知(1)合作交流探索中心投影和平行投影的定义活动一:取一些长短不等的小棒及三角形,用手电筒去照射这些小棒和纸片。
29.1 投影(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十九章“投影与视图”29.1 投影(第二课时),内容包括:理解正投影的概念.2.内容解析在学习本课时之前,学生已经具有一定的关于平面图形与立体图形的知识,并且在七年级上册接触过“从不同方向观察物体”和“点、线、面、体”之间的联系及基本几何体的平面展开图等反映平面图形与立体图形之间的联系问题,上一节课,学生又学习了投影的一些基础知识包括投影、中心投影、平行投影的概念,在此基础上,这节课主要学习正投影概念及探究正投影的成像规律,以正投影为平台,进一步深入研究投影的性质更深一层理解立体图形与平面图形的相互转化关系,培养学生的空间观念,这为过渡到三视图的学习起着铺垫的作用,更为高中学习立体几何打下基础.基于以上分析,确定本节课的教学重点:理解正投影的概念及根据正投影的性质画简单图形的正投影.二、目标和目标解析1.目标1. 理解正投影的概念;2. 能根据正投影的性质画出简单图形的正投影.3. 学生学会关注生活中有关投影的数学问题,增强数学的应用意识.2.目标解析达成目标1)的标志是:理解正投影的概念.达成目标2)3)的标志是:会根据正投影的性质画简单图形的正投影.三、教学问题诊断分析本节课先研究线、平面图形的正投影,进而继续探究立体图形正投影。
而学生对这个知识无从下手,从研究平面图形到研究立体图形,本节内容对学生来说有一定难度,要加强与实际的联系,因此运用多媒体,制作演示动画课件等,通过学生观察,动手实践,结合已有的生活经验,将原有认知迁移到本课中来,从而画出简单立体图形的正投影.基于以上分析,本节课的教学难点是:正确画简单图形的正投影.四、教学过程设计(一)复习巩固【提问一】简述投影的概念?【提问二】投影是如何进行分类的?试举例说明?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习正投影打好基础.(二)探究新知【问题一】观察下图,并填空1)图(1)与图(2)(3)的投影线有什么区别?2)图(2)(3)的投影线与投影面的位置关系有什么区别?师生活动:学生认真观察图片中的影子,回答问题,最后由教师给出正投影的概念:如果投射线垂直于投影面,那么这种投影称为正投影.【设计意图】通过观察图片,结合上节课所学知识,引出正投影的概念,激发学习投影的欲望,培养学生观察能力和抽象能力.【问题二】由平行投影与正投影的概念,你发现了什么?师生活动:学生认真观察图片中的影子,回答问题,教师引导与补充,得出:1)正投影是特殊的平行投影.2)平行投影分为斜投影与正投影.【设计意图】让学生理解正投影是特殊的平行投影.【探究一】如图,把一根直的细铁丝(记为线段AB) 放在三个不同位置.1) 铁丝平行于投影面;2) 铁丝倾斜于投影面;3) 铁丝垂直于投影面(铁丝不一定要与投影面有交点). 三种情形下铁丝的正投影各是什么形状?它们的大小关系呢?师生活动:教师通过多媒体展示三种情形下铁丝的正投影,学生观察结果,探讨它们大小的关系.【设计意图】通过观察图片,让学生理解三种情形下线段正投影的形状.【探究二】如图,把一块正方形卡片P(记为正方形ABCD) 放在三个不同位置.1) 卡片平行于投影面;2) 卡片倾斜于投影面;3) 卡片垂直于投影面三种情形下卡片的正投影各是什么形状?它们的大小关系呢?师生活动:教师通过多媒体展示三种情形下卡片的正投影,学生观察结果,探讨它们大小的关系.【设计意图】通过观察图片,让学生理解三种情形下平面图形正投影的形状.【问题三】简述线段正投影的投影规律?师生活动:学生尝试回答问题.【问题四】简述平面图形正投影的投影规律?师生活动:学生尝试回答问题.【设计意图】通过归纳总结,让学生理解线段正投影、平面图形正投影的投影规律.【探究三】如图,把一个正方体纸盒P(记为正方体ABCDEFGH) 放在两个不同位置.1)纸盒的一个平面ABCD平行于投影面;2)纸盒一个面ABCD倾斜于投影面P,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面;观察两种情形下正方体纸盒的正投影,你发现了什么?【设计意图】通过观察图片,让学生理解两种情形下立体图形正投影的形状.【问题五】观察线段、平面图形、立体图形的正投影,由此你发现了什么?师生活动:先由学生回答问题,再由教师引导与归纳,最后得出:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同,并且物体正投影的形状、大小与它相对于投影面的位置有关.【设计意图】让学生理解立体图形正投影的形状、大小与它相对于投影面的位置有关.(三)典例分析与针对训练例1 下列说法正确的是()A.三角形的正投影一定是三角形B.长方体的正投影一定是长方形C.球的正投影一定是圆D.圆锥的正投影一定是三角形【针对训练】1. 直立在投影面上的圆锥的正投影是()A.圆B.三角形C.矩形D.正方形2. 木棒长为2.5m,则它的正投影的长一定()A.大于2.5m B.小于2.5mC.等于2.5m D.小于或等于2.5m3.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是_____(用“=、>或<”连起来)4.(2022下·广东河源·九年级校考期末)把下列物体与它们的投影连接起来.5.(2023·湖北恩施·校考模拟预测)物体正投影的形状、大小与它相对于投影面的位置有关.一个三角板的正投影不可能是()A.一条线段B.一个与原三角板全等的三角形C.一个等腰三角形D.一个小圆点6.(2022上·山西大同·九年级统考期末)如图,A1B1是线段AB在投影面P上的正投影,AB=10cm,∠A1AB=110°,则投影A1B1的长为()A.10sin70°cm B.10sin20°cmC.10tan70°cm D.10cos70°cm7. 如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4m,A′B′=2√3,则AB与A′B′的夹角为( )A.45°B.30°C.60°D.以上都不对8. 已知一纸板的形状为正方形ABCD如图所示.其边长为10厘米,AD、BC与投影面β平行,AB、CD与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面积.(四)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 简述正投影的概念?3. 简述物体正投影的形状、大小与什么有关?(五)布置作业P92:习题29.1 第3题、第4题、第5题五、教学反思。
九年级数学·下新课标[人]第二十九章投影与视图1.以丰富的实例为背景,认识投影与视图的基本概念和基本性质.2.会在投影面上画出平行投影、中心投影及简单的平面图形的正投影.3.理解视图的概念,探索三视图中三个视图间的位置关系和大小关系.4.会画简单几何体及简单组合体的三视图.5.学会根据物体的三视图描述出几何体的基本形状或实物原型.6.通过制作立体模型的课题学习,进一步加强对投影与视图的认识.1.通过联系生活实际,初步感受平行投影、中心投影及正投影,体会数学与生活之间的密切联系,提高学生的数学应用意识.2.通过具体的活动,培养学生动手实践能力和数学思考能力,发展学生的空间观念.3.通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.4.通过观察、探究等活动使学生能根据物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系.5.通过学习和实践活动,激发学生对投影与视图学习的好奇心,加强动手动脑、理论结合实际的能力.1.使学生学会关注生活中有关投影与视图的数学问题,体会数学与生活实际密不可分,提高数学的应用意识,激发学生学习数学的兴趣.2.学生通过观察、思考、分析、探究得出结论,培养学生的观察能力、实践能力及归纳总结能力.3.通过自主学习与合作交流的学习方式,提高动手操作能力、分析问题及解决问题的能力,培养学生的合作精神.4.通过探究物体的三视图,学会多角度看问题,品尝成功的喜悦,激发学生学习数学的热情,增强学好数学的信心.5.在探究三视图向立体图形转化的过程中,使学生感受数学的和谐美,培养学生动手实践能力,发展空间想象能力.本章的主要内容有平行投影、中心投影和简单物体的三视图.投影是生活中常见的现象,而三视图又是特殊投影的产物,投影与三视图的知识在日常生活和生产中有广泛的应用,是培养学生空间观念的有效平台,空间观念的形成是一个长期的过程,而使学生具有良好的空间观念是义务教育阶段数学教育的一个重要目标.本章内容在数学学习中起着承上启下的作用,学生前边学习过“图形的初步知识”“图形和变换”等几何知识,在此基础上本章继续研究“投影与视图”,它是反映空间观念的重要内容,也为高中学习立体几何做了铺垫.教材以生活实例出发,引出投影的概念,观察分析不同的投影,得到平行投影和中心投影的区别与联系,然后以探究正方形的影子为例,得到平行投影中正投影的概念,而物体三个方向上的正投影就是该物体的三视图,教材最后探究“由物到图”和“由图到物”,两方面结合起来,就从不同角度反映了平面图形与立体图形是如何联系的.本章的知识内容不太多,编写本章最主要的目的不是介绍投影与视图的知识,而是通过学习本章切实发展学生的空间想象能力.【重点】1.通过实例了解平行投影和中心投影的含义及简单应用.2.会画基本几何体及简单组合体的三视图.3.能根据三视图描述基本几何体或实物的原型.【难点】了解基本几何体与其三视图、展开图之间的联系,通过典型实例知道这种关系在现实生活中的应用.教学中应重视借助直观模型或动画演示,帮助学生克服立体几何知识不足的困难,在本章的教学中,不可避免地要涉及立体几何中的一些基础知识,但是学生此前缺乏对这些知识的系统学习,只是有一些感性认识,解决这个问题比较好的做法是选择一些实例或通过课件展示,让学生通过观察、想象,由直观认识结合实例了解空间关系,降低学习本章内容的难度,提高学生空间想象能力.数学是以数量关系和空间形式为主要研究对象的学科,数量关系和空间形式是从现实世界中抽象出来的.很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际问题联系非常紧密.在本章之前,学生已经数次接触过和几何图形有关的平面图形知识及简单立体图形,对投影和视图的知识已有初步的、朦胧的了解,只是还没有明确接触过一些基本名词术语,对有关基本规律还缺乏归纳总结.所以在本章的学习中,以生活实例为载体,通过观察学生熟悉的生活实例,抽象出有关概念和性质.实际教学要比教科书有更大的灵活性,教学中要动态地展示模型,直接面对学生授业解惑,应充分发挥这些优势.因此,建议教学中在上述问题的处理上,能注意结合实物模型,充分利用直观演示,达到由感性认识到理性认识的提高.单元概括整合1课时第课时1.了解正投影的概念.2.能根据正投影的性质画出简单的平面图形的正投影.1.通过动手操作画图形的正投影,培养学生动手实践能力,发展空间想象能力.2.通过探究生活中有关正投影的数学问题,体会数学与实际生活的紧密联系,提高学生的数学应用意识.1.感受日常生活中的一些投影现象,体会数学与生活实际密不可分,激发学生学习数学的兴趣.2.通过观察、思考、分析、探究得出结论,培养学生的观察能力、实践能力及归纳总结能力.3.通过探究正投影的性质,培养学生动手操作能力、分析问题及解决问题的能力.4.通过实物演示和多媒体教学,把抽象问题直观化,激发学生的求知欲.【重点】1.正投影的含义.2.能根据正投影的性质画出简单的平面图形的正投影.【难点】归纳正投影的性质,正确画出简单平面图形的正投影.【教师准备】多媒体课件.【学生准备】预习教材P88~91.导入一:【复习提问】(1)什么叫投影、投影线、投影面、平行投影、中心投影?(2)平行投影与中心投影有什么区别和联系?(3)你能举出一些投影的生活实例吗?(4)阳光可能与物体垂直吗?如果阳光垂直照在线段上,会得到什么图形?【师生活动】学生思考后回答问题,第(4)问让学生小组内交流,回答,教师点评,导入新课.导入二:【课件展示】下图表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影?哪个是中心投影? 如图(2)(3)所示的投影线与投影面的位置关系有什么区别?【师生活动】学生思考后小组内交流,学生回答后教师点评,导出新课.解:图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影.图(2)中,投影线斜着照射到投影面;图(3)中投影线垂直照射到投影面.[设计意图]通过复习投影的有关概念和学生的观察、分析、交流,使学生体会将实际问题抽象成几何图形的过程,有助于分析问题的本质,为引出正投影的概念做好铺垫.【课件展示】投影线垂直于投影面产生的投影叫做正投影.【思考】(1)平行投影一定是正投影吗?正投影一定是平行投影吗?(平行投影不一定是正投影,正投影一定是平行投影)(2)正投影与物体的放置有关吗?(正投影是光线与投影面之间的关系,与物体的放置无关)【师生活动】学生独立思考后,小组交流得出答案,教师对学生的答案进行点评.[设计意图]经过课前导入的观察、分析、比较的过程,抽象出正投影的概念,学生通过思考教师提出的问题,加深对正投影概念的理解.二、探究性质探究一:线段在平面上的正投影思路一【课件展示】如图所示,把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).【思考】三种情形下铁丝的正投影各是什么形状?大小有什么关系?【解析】通过观察,我们可以发现:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为ABA1B1;(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为ABA2B2;(3)当线段AB垂直于投影面P时,它的正投影是.【师生活动】教师课件展示问题,学生观察思考后,小组合作交流得出答案,小组代表展示成果,教师点评,共同归纳结论.【课件展示】线段平行于投影面时的正投影是线段,线段长等于正投影的长;线段倾斜于投影面时的正投影是线段,线段长大于正投影的长;线段垂直于投影面时的正投影是一个点.【观察思考】线段在平面上的正投影的形状是什么?与线段之间的大小关系如何?【师生活动】学生动手画图,教师提醒学生注意分类讨论,学生画完后小组合作交流答案,教师课件展示答案,学生根据所画图形小组讨论线段的正投影的形状及大小关系.【课件展示】线段平行于投影面时的正投影是线段,线段长等于正投影的长;线段倾斜于投影面时的正投影是线段,线段长大于正投影的长;线段垂直于投影面时的正投影是一个点.[设计意图]通过观察思考、小组合作交流(或通过动手操作、合作交流)探究线段在平面上的正投影的形状和大小,并归纳总结线段的正投影的规律.提高学生观察、思考能力,培养归纳总结能力.探究二:正方形纸板在平面上的正投影【课件展示】如图所示,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.【思考】三种情形下纸板的正投影各是什么形状?大小有什么关系?【解析】通过观察,我们可以发现:(1)当纸板P平行于投影面时,P的正投影与P的形状、大小;(2)当纸板P倾斜于投影面时,P的正投影与P的形状、大小;(3)当纸板P垂直于投影面时,P的正投影成为.【师生活动】教师课件展示问题,学生观察思考后,小组合作交流得出答案,对学生的答案,教师进行点评,师生共同归纳结论.【课件展示】(1)当纸板P平行于投影面Q时,P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面Q时,P的正投影与P的形状、大小不完全一样;(3)当纸板P垂直于投影面Q时,P的正投影成为一条线段.探究三:正投影的性质【思考】根据以上探究,当物体的某个面平行于投影面时,这个面的正投影与这个面有怎样的关系? 【师生活动】学生独立思考,大胆猜想,然后小组合作交流,共同归纳性质,教师对学生的回答进行点评,并课件展示结论.【课件展示】正投影的性质:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.[设计意图]学生通过观察、探究、体验和交流,归纳总结得出物体正投影的规律,进一步培养学生抽象概括能力,发展学生的空间观念.由线段到正方形的学习过程渗透了从简单到复杂、由特殊到一般的认知规律,发挥了学生的主体作用.三、例题讲解(教材例题)画出如图所示摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面(如图(1)所示);(2)正方体的一个面ABCD倾斜于投影面,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面(如图(2)所示).教师引导分析:(1)当正方体在如图(1)所示的位置时,正方体的一个面ABCD及其相对的另一面与投影面,这两个面的正投影是与正方体的一个面的形状、大小的正方形A'B'C'D'.正方形A'B'C'D'的四条边分别是正方体其余四个面(这些面垂直于投影面)的.因此,正方体的正投影是.(2)当正方体在如图(2)所示的位置时,它的面ABCD和面ABGF倾斜于投影面,它们的投影是;正方体其余两个侧面的投影也分别是;上、下底面的投影分别是和.因此,正方体的投影是.解:(1)如图(1)所示,正方体的正投影为正方形A'B'C'D',它与正方体的一个面是全等关系.(2)如图(2)所示,正方体的正投影为矩形F'G'C'D',这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A'B'是正方体的侧棱AB及它所对的另一条侧棱EH的投影.【归纳】物体正投影的形状、大小与它相对于投影面的位置有关.[设计意图]通过例题训练,达到巩固正投影相关知识的目的,提高学生观察、归纳和空间想象能力,提高学生的应用意识.[知识拓展](1)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(2)只有在平行投影中,才会出现正投影.正投影是光线与投影面的关系,与物体的放置无关.(3)人们在实际作图中,经常采用正投影,正投影有如下性质:①线段AB在平面上的正投影.线段AB平行于投影面P时的正投影是线段,线段长等于正投影的长;线段AB倾斜于投影面P时的正投影是线段,线段长大于正投影的长;线段AB垂直于投影面P时的正投影是一个点.②长方形硬纸板ABCD在平面上的正投影.长方形硬纸板ABCD平行于投影面时,ABCD的正投影与ABCD的形状和大小一样;长方形硬纸板ABCD倾斜于投影面时,ABCD的正投影与ABCD的形状和大小不完全一样;长方形硬纸板ABCD垂直于投影面时,ABCD的正投影成为一条线段.1.正投影:投影线垂直于投影面产生的投影叫做正投影.2.正投影的性质:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.1.如图所示,一个斜插吸管的盒装饮料的正投影是图中的()解析:观察图形,由正投影的定义可得长方体的正投影是与前面相同的长方形,结合吸管方向可知只有A 是符合题意的.故选A.2.如图所示的圆台的上、下底面与投影线平行,圆台的正投影是()A.矩形B.两条线段C.梯形D.圆环解析:根据题意,圆台的上、下底面与投影线平行,则圆台的正投影是该圆台的轴截面.故选C.3.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是下图中的()解析:依题意,光线是垂直照下的,故只有D符合.故选D.4.如图所示的三幅投影中,属于正投影的是图.解析:正投影的光线与投影面垂直.故填(3).5.画出如图所示的立体图形在投影线从上方射向下方时的正投影.解析:第一个图形中投影线从上方射向下方的正投影是长方形;第二个图形中投影线从上方射向下方的正投影是长方形,第三个图形中投影线从上方射向下方的正投影是带圆心的圆.解:如下图所示.第2课时1.认识概念正投影2.探究性质探究一:线段在平面上的正投影探究二:正方形纸板在平面上的正投影探究三:正投影的性质3.例题讲解例题一、教材作业【必做题】教材第92页习题29.1第3题.【选做题】教材第93页习题29.1第5题.二、课后作业【基础巩固】1.线段的正投影是()A.直线B.线段C.射线D.线段或点2.下列叙述正确的是()A.圆锥的正投影是等腰三角形B.圆柱的正投影是矩形C.球的正投影是圆D.正方体的正投影是正方形3.把一个正五棱柱按如图所示的方式摆放,当投影线由正前方射到后方时,它的正投影是如图所示的()4.若木棒长1.2米,则它的正投影的长一定()A.大于1.2米B.小于1.2米C.等于1.2米D.小于或等于1.2米5.平行于投影面的平行四边形的面积与它的正投影的面积的大小关系是.6.三角形的正投影可能是.7.一位画家把边长为1米的7个相同正方体摆成如图所示的形状,然后把表面涂上颜色,那么涂色面积为.8.如图所示,已知线段AB=2,投影面为P,太阳光线与投影面垂直.(1)当AB垂直于投影面P时(如图(1)所示),请画出线段AB的投影;(2)当AB平行于投影面P时(如图(2)所示),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图(3)中画出线段AB的正投影,并求出其正投影的长.9.如图所示,投影线的方向如箭头所示,画出立体图形的正投影.【能力提升】10.一个水平放在桌面上的圆柱,从前向后形成的正投影是一个边长为20 cm的正方形,则此圆柱的表面积为.11.一个圆锥的轴截面平行于投影面,圆锥的正投影是腰长为5,底边长为6的等腰三角形,则圆锥的体积是(结果保留π).12.如图所示的为一个机器零件的立体图,箭头所指为其正面,试画出这个零件的正面的正投影.【拓展探究】13.先观察下面的立体图形,再分别画出它的正面、左面、上面三个方向的正投影.【答案与解析】1.D(解析:线段AB平行于投影面P时的正投影是线段,线段长等于正投影的长;线段AB倾斜于投影面P 时的正投影是线段,线段长大于正投影的长;线段AB垂直于投影面P时的正投影是一个点.故选D.)2.C(解析:圆锥的正投影可能是带圆心的圆,故A不正确;圆柱的正投影可能是圆,故B不正确;球的正投影是圆,故C正确;正方体的正投影还有可能是长方形,故D不正确.故选C.)3.B(解析:该物体为五棱柱,根据投影的性质可知它的正投影应为矩形,且比前面矩形的宽大.故选B.)4.D(解析:木棒在投影面上的正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2米.故选D.)5.相等(解析:根据题意得平行四边形与投影面平行,即与光线垂直,故它的投影与其形状、大小完全相同,故面积相等.)6.三角形或线段(解析:当三角形和平面垂直的时候,其投影为一条线段,当三角形与平面的夹角不为90°时,其投影为三角形.故填三角形或线段.)7.28平方米(解析:根据分析,涂色面积=5×2+4×2+5×2=28.故填28平方米.)8.解:(1)如图(1)所示,线段AB垂直于投影面P时,它的正投影是一个点. (2)如图(2)所示,线段AB平行于投影面P时,它的正投影是线段CD,与线段AB的长相等,即CD=AB=2. (3)如图(3)所示,线段AB倾斜于投影面P时,它的正投影是线段C1D1,长度小于线段AB的长,C1D1=-=-=.9.解:如图所示.10.600π cm2(解析:由题意得该圆柱的高为20 cm,底面直径为20 cm,则S=2××π+20π×20=600π(cm2),∴此圆柱的表面积为600π cm2.)11.12π(解析:由圆锥的正投影是腰长为5,底边长为6的等腰三角形,得圆锥的母线长为5,底面半径为3,根据勾股定理得高为4,再根据圆锥的体积公式V=Sh,得V=×π×32×4=12π.故填12π.)12.解:如图所示.13.解:它的正面、左面、上面三个方向的正投影依次如下图所示.本节课以教材中的思考为背景导入新课,学生通过观察、分析、相互交流,初步感知正投影的概念,既复习了上节课的知识,又为本节课的学习打下了基础,导入流畅自然,学生易于接受,然后通过独立观察探究、小组合作交流、共同归纳总结等数学活动,在教师提出的问题的引导下,分别探究线段、正方形的正投影,得出正投影的一般性质,进一步培养学生抽象概括能力,发展学生的空间想象能力,由线段到正方形的探究过程,渗透了由特殊到一般的数学思想方法,提高了数学思维能力,最后的例题进一步巩固和提高学生对正投影的理解和掌握,整节课的教学设计思路清晰,目标明确,充分体现了学生在课堂上的主体性.本节课的重点是通过观察、思考及动手操作,抽象出正投影的概念和性质,培养学生空间想象能力和归纳总结能力,教学设计时,本以为影子是学生熟悉的生活情景,学生应该易于理解和掌握,所以在探究正投影的性质时,速度稍快些,结果有些学生缺乏空间想象能力,造成抽象概括其性质有困难,在以后的教学中,应注重培养学生空间想象及抽象概括能力,多给学生相互交流的时间和空间.本节课主要通过学生的观察思考、合作交流、归纳总结等活动,抽象概括正投影的概念和性质,在教学设计中,注重引导学生分析问题的设计,学生在教师提出的问题的引导下,经过观察思考、相互交流,更易于归纳得出结论,在这些探究活动中,学生思维活跃,经历知识的形成过程,培养学生分析问题和解决问题的能力,发展学生空间想象能力,让学生获得成功的喜悦.最后例题的设计也要注重教师的引导,降低学生学习难度,更大程度地提高学生的空间立体感.练习(教材第92页)解:(1)如图(1)所示. (2)如图(2)所示.习题29.1(教材第92页)1.解:第3幅照片是小华在下午拍摄的.2.解:如图所示.3.解:正五棱柱的五个侧面的正投影是线段,两个底面的正投影是全等的正五边形.4.解:由题意可知圆锥的底面半径为,圆锥的高为,∴圆锥的体积V=π××=π,圆锥的表面积S=π××3+π×=π.5.解:(1)投影线由物体前方照射到后方的正投影如图(1)所示. (2)投影线由物体左方照射到右方的正投影如图(2)所示. (3)投影线由物体上方照射到下方的正投影如图(3)所示.(1)在学习本节课以前,学生已经具有一定的平面图形与立体图形的知识,本节课通过实际情景引出正投影的概念后,以铁丝和正方形纸板的影子为例,讨论直线和平面多边形与投影面三种不同位置关系时的正投影,归纳出其蕴含的正投影的一般规律,最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影,在由简单平面图形到立体图形的正投影的探究活动中,逐步提高学生对图形的认识,增强平面图形与立体图形之间的联系,初步培养学生的空间想象能力,为后边学习立体图形的三视图打下基础.(2)本节课探究正投影的概念及规律,重点是由物体得到其投影,由物体产生投影是将立体图形转化为平面图形的过程,认识平面图形与立体图形之间的联系,对培养学生空间观念非常重要.在教学设计中,学生虽然在前边接触过立体图形,但空间想象能力还比较差,所以在课堂上要多给学生思考和交流的时间和空间,让学生相互交流,共同得出结论,通过展示自己体验成功的快乐,让学生真正成为课堂的主体,人人学有价值的数学,从而发展能力,提高数学思维和应用意识.小明从正面观察下图中的两个物体,得到的正投影是()〔解析〕圆柱的正投影是矩形,正方体的正投影是正方形.故选C.。
29.1 投影(第 2 课时)一、内容和内容分析1.内容人教版教科书九年级《数学》下册90 页例题,三维图形在投影面上的正投影。
2.内容分析投影是生活中常有的现象,而三视图是从不一样的三个方向获得的投影。
所以,本节内容对培育学生空间观点,起着承前启后的作用。
因为空间图形是三维的,地点确实定一定从三个方素来描绘。
所以,学好本节内容是成立学平生面图形与立体图形互相转变的要点,也使学生对投影的认识从感性上涨为理性,更是为学生学习三视图做铺垫。
鉴于以上剖析,本课的教课要点是:画出简单几何体的正投影。
二、目标和目标分析1.目标能画出简单几何体的正投影。
2.目标分析达到目标的标记:依据性质正确画出简单立体图形的正投影。
经过学生猜想、察看、亲身着手实践,感觉投影现象在生活中无处不在,体验数学与生活的密切联系,激发学生主动学习数学的兴趣,增强对数学价值的认识。
三、教课识题诊疗剖析本节教课是在上节课研究线、面的正投影的相关知识基础上,持续研究立体图形的相关正投影问题。
而学生对这个知识无从下手,从研究平面图形到研究立体图形,本节内容对学生来说有必定难度,要增强与实质的联系,所以运用多媒体,制作演示动画课件等,经过学生察看,着手实践,联合已有的生活经验,将原有认知迁徙到本课中来,进而画出简单立体图形的正投影。
本节课的教课难点是:剖析并能画出立体图形每个面的正投影。
四、教课条件支持剖析本节教课要借助多媒体,利用幻灯片及学新手中的正方形、魔方,演示一维、二维、三维图形的正投影,帮助学生稳固旧知并理解新知,增强学生的空间想象能力,提升学生学习兴趣,使学生更好地认识几何体,培育学生几何直观能力,促使对知识的理解。
本课还要准备正方体模型协助教课,让学生多察看,进而正确地画出简单几何体的正投影。
五、教课过程设计1.察看图片,复习投影及相关观点问题1你能指出下边哪幅图表示的是平行投影,那幅图表示的是中心投影吗?为什么?师生活动:教师出示幻灯片,展现平行投影及中心投影的图片。
29.1 投影第1课时平行投影与中心投影1.理解平行投影和中心投影的特征;(重点)2.在投影面上画出平面图形的平行投影或中心投影.(难点)一、情境导入北京故宫中的日晷闻名世界,是我国光辉灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.本节课学习有关投影的知识.二、合作探究探究点一:平行投影【类型一】判断影子的形状下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()解析:选项A.影子平行,且较高的树的影子长度大于较低的树的影子,正确;选项B.影子的方向不相同,错误;选项C.影子的方向不相同,错误;选项D.不同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.方法总结:平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】平行投影作图在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.解析:过物体顶点作光线的平行线得到物体的平行投影,再根据平行投影中物体与投影面平行时的投影是全等的可找到XY的位置.解:连接AC,过点M作MP∥AC交NC于点P,则NP为MN的影子.过点B作BX∥AC,且BX=MP,过X作XY⊥NC交NC于点Y,则XY即为所求.方法总结:先根据物体投影确定光线,然后利用两个物体的顶端和各自影子的对应点的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定影子.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】平行投影的相关计算李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF 是1.6m,请你帮李航求出楼高AB.解析:过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.解:过点D 作DN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDME 、ACDN 是矩形,∴AN =ME =CD =1.2m ,DN =AC =30m ,DM =CE =0.6m ,∴MF =EF -ME =1.6-1.2=0.4m.∵EF ∥AB ,∴△DFM ∽△DBN ,DM DN =MF BN ,即0.630=0.4BN ,∴BN =20m ,∴AB =BN +AN=20+1.2=21.2m.答:楼高为21.2m.方法总结:在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 探究点二:中心投影【类型一】 判断是否是中心投影下面属于中心投影的是( )A .太阳光下的树影B .皮影戏C .月光下房屋的影子D .海上日出解析:中心投影的光源为灯光,平行投影的光源为阳光与月光.在各选项中只有B 选项得到的投影为中心投影.故选B.方法总结:判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】判断影长的情况晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长解析:晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.方法总结:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】中心投影作图如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,粗线分别表示三人的影子.请根据要求,进行作图(不写画法,但要保留作图痕迹).(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解析:(1)利用中心投影的图形的性质连接对应点得出灯泡位置即可;(2)根据灯泡位置即可得出小明的身高.解:(1)如图所示:O即为灯泡的位置;(2)如图所示:EF即为小明的身高.方法总结:连接物体和它影子的顶端所形成的直线必定经过点光源.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】中心投影的相关计算如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1m ,继续往前走3米到达E 处时,测得影子EF 的长为2m ,已知王华的身高是1.5m ,求路灯A 的高度AB .解析:根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.解:当王华在CG 处时,Rt △DCG ∽Rt △DBA ,即CD BD =CGAB ;当王华在EH 处时,Rt △FEH ∽Rt △FBA ,即EF BF =EH AB =CG AB ,∴CD BD =EFBF .∵CG =EH =1.5m ,CD =1m ,CE =3m ,EF=2m ,设AB =x ,BC =y ,∴1y +1=2y +5,解得y =3,经检验y =3是原方程的根.∵CDBD =CG AB ,即1.5x =14,解得x =6m.即路灯A 的高度AB =6m. 方法总结:解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.平行投影的定义及应用;2.中心投影的定义及应用.本节以自主探索、合作交流为设计主线,从皮影戏、手影、日晷等学生熟悉的生活实际出发,引入物体投影的相关概念,通过观察图片等活动,使学生认识中心投影和平行投影的区别与联系,加强主动学习数学的兴趣,体现数学的应用价值.29.1 投影第2课时正投影1.理解正投影的概念;(重点)2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点)一、情境导入观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?二、合作探究探究点:正投影【类型一】确定正投影的形状如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()解析:依题意,光线是垂直照下的,故只有D符合.故选D.方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】物体与其正投影的关系木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m.故选D.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型三】画投影面上的正投影画出下列立体图形投影线从上方射向下方的正投影.解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.解:如图所示:方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:正投影的综合应用【类型一】正投影与勾股定理的综合一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.(1)求影子A1B1的长度(如图①);(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).解析:根据平行投影和正投影的定义解答即可.解:如图①,A1B1=AB=8cm;如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,AE==4cm,∴A2B2=4cm.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】正投影与相似三角形的综合在长、宽都为4m,高为3m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)解析:根据题意画出图形,则AN=0.08m,AM=2m,由房间的地面为边长为4m的正方形可计算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=4m.∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴BC≈0.23(m).答:灯罩的直径BC约为0.23m.方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.正投影的概念及性质;2.正投影的综合应用.本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.。
师:观察下列图片中的影子你发现了什么共同点?生:物体在日光或灯光的照射下,会在地面、墙壁等处形成影子。
师:影子的形成与什么有关?生:影子与物体形状和光线照射方式有关。
师:本节课我们学习平行投影、中心投影和正投影的相关知识。
师:一般地,用光线照射物体,在某个平面 (地面、墙壁等) 上得到的影子叫做物体的投影。
照射光线叫做投影线,投影所在的平面叫做投影面。
师:指出右侧图形的投影、投影线、投影面?生:积极回答问题。
师:由平行光线形成的投影叫做平行投影。
【师生互动】教师由多媒体展示平行投影,加深理解与记忆。
师:指出上述图形的投影、投影线、投影面?生:积极回答问题。
师:由同一点 (点光源) 发出的光线形成的投影叫做中心投影。
【师生互动】教师由多媒体展示中心投影,加深理解与记忆。
师:指出上述图形的投影、投影线、投影面?生:积极回答问题。
师:我们尝试总结平行投影与中心投影的特征。
[多媒体展示]师:尝试利用平行投影与中心投影求解例题[多媒体展示]典例1 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长 B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长 D.两人的影子长度不确定变式1-1 给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个变式1-2 如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.1)在图中画出此时DE在太阳光下的影子EF;2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.变式1-3 如图,BE,DF,MN是三根直立于地面的木杆在同一灯光下的影子,请画出第三根木杆,(画出示意图,不用写画法)下图是三角形纸板在光线照射下形成投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系又有什么区别?C.球的正投影一定是圆 D.圆锥的正投影一定是三角形变式2-1 直立在投影面上的圆锥的正投影是 ()A.圆 B.三角形 C.矩形 D.正方形变式2-2 木棒长为1.5m,则它的正投影的长一定()A.大于1.5m B.小于1.5mC.等于1.5m D.小于或等于1.5m变式2-3 当棱长为20的正方体的某个面平行于投影面时,这个面的正投影的面积为()A.20 B.300 C.400 D.600变式2-4 如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4m,A′B′=2√3,则AB与A′B′的夹角为( )A.45° B.30° C.60° D.以上都不对变式2-5 已知一纸板的形状为正方形ABCD如图所示.其边长为10厘米,AD、BC与投影面β平行,AB、CD与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面积.。
南川区第三中学校课时教案
①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?
南川区第三中学校课时教案
在侧面内得
由主视
三视图中的各
南川区第三中学校课时教案
描述物体的形状.
南川区第三中学校课时教案
分析:由俯视图确定该建筑物在平面上的形状,由主视图、左视图确定空间的形状如图所示.
解:该建筑物的形状如图所示:
2、如图,是由一些大小相同的小正方体组成的简单的几何体的主视图
南川区第三中学校课时教案
二、学生练习:
1、如右上图,小王、小李及一根电
线杆在灯光下的影子。
(1)确定光源的位置;
(2)在图中画出表示电线杆高度的
线段。
分析:由条件易知,本题属于中心投
影问题,根据中心投影的特点,物体
电线杆
小李
小
王
视图与投影单元测试卷
(全卷共三个大题,满分100分,考试时间90分钟)
一、 选择题:(本大题共10小题,每小题5,共50分,每小题只有一个选项是正确的,
请把正确选项代号填在题后的括号中)
1.圆形的物体在太阳光的投影下是 ( ) (A)圆形. (B)椭圆形. (C)线段. (D)以上都不可能. 2.如图所示的圆台的上下底面与投影线平行,圆台的正投影是 ( ) (A)矩形. (B)两条线段. (C)等腰梯形. (D)圆环.
3.如图摆放的几何体的左视图是 ( )
4.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) (A)小明的影子比小强的影子长. (B)小明的影子比小强的影子短. (C)小明的影子和小强的影子一样长. (D)无法判断谁的影子长.
5.“圆柱与球的组合体”如图所示,则它的三视图是 ( )
6.下列左边的主视图和俯视图对应右边的哪个物体 ( )
7.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影 子 ( ) (A)相交. (B)平行. (C)垂直. (D)无法确定.
8.在一个晴朗的好天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是 ( )
(A)上午. (B)中午. (C)下午. (D)无法确定.
9.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是 ( )
(A)①②③④. (B)④①③②. (C)④②③①. (D)④③②①.
10.如图是“马头牌”冰激凌模型图,它的三视图是( )
二、填空题(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填在题后
的横线上.
11.右图是基本几何体的三视图,该基本几何体为.
12.皮影戏中的皮影是由投影得到的.
13.为测量旗杆的高度我们取一米杆直立在阳光下,其长为1.5米,在
同一时刻测得旗杆的影长为10.5米.旗杆的高度是.
14.如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径.在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10米(如示意图,AB=10米);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是米.15.圆锥底面展开后是 ,侧面展开后是 .
16、一张桌子摆放若干碟子,从三个方向上看,三种视
图如右图所示,则这张桌子上共有________个碟子。
三、解答题(本大题3个小题,17题6分、18、19
题㝴均10分共26分)
17.画出实物图(如图,上部分是长方体,下部是空心圆柱)的三视图.
18.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树。
晚上,幕墙反射路灯灯光形成了那盆花的影子(如图所示),树影是路灯灯光形成的。
请你确定此时路灯光源的位置.
19.要制作一个如图所示(图中阴影部分为底与盖,且S
Ⅰ=S
Ⅱ
)的钢盒子,在钢片的四个角上分
别截去两个相同的正方形与两个相同的小长方形,然后折合起来既可,求有盖盒子的高x.。