2020-2021成都市实验外国语学校七年级数学上期末试卷(及答案)
- 格式:doc
- 大小:472.00 KB
- 文档页数:14
成都市外国语学校七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.4 =( ) A .1B .2C .3D .43.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+= D .6352x x --=6.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .1 7.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+68.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣110.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 11.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣112.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 13.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 14.3的倒数是( ) A .3B .3-C .13D .13-15.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5xD .5y 2-3y 2=2二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 18.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 19.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.20.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.21.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________22.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.23.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 24.分解因式: 22xyxy +=_ ___________25.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.26.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 27.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 28.用“>”或“<”填空:13_____35;223-_____﹣3.29.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.30.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.33.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.34.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.35.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数) (解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________ (3)用含n 的式子列式,并计算第n 个图的钢管总数.36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB=,BC=;(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.6.D解析:D 【解析】 【分析】根据题意列出算式,计算即可得到结果. 【详解】解:∵A ,B ﹣1,∴A ,B ﹣1)=1; 故选:D . 【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.7.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.8.D解析:D 【解析】 【分析】根据线段的和与差,可得MB 的长,根据线段中点的定义,即可得出答案. 【详解】当点C 在AB 的延长线上时,如图1,则MB=MC-BC , ∵M 是AC 的中点,N 是BC 的中点,AB=8cm ,∴MC=11()22AC AB BC =+,BN=12BC ,∴MN=MB+BN , =MC-BC+BN , =1()2AB BC +-BC+12BC ,=12AB , =4,同理,当点C 在线段AB 上时,如图2, 则MN=MC+NC=12AC+12BC=12AB=4, ,故选:D . 【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.9.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m,n的值是解题的关键.10.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.11.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.12.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
2020-2021学年七年级上册期末数学试卷及答案一、选择题(每小题3分,共30分) 1、下列说法中,正确的是( )A .0是最小的有理数B .任何一个有理数的绝对值都是正数C .-a 是负数D .0的相反数是它本身 2、下列各组代数式,是同类项的是( ) A .2bc 与2abc B .3a 2b与-3ab 2 C .a与1 D.x 2y 与-x 2y233、从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为( )A .4,3B .3,3C .3,4D .4,4 4、由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体的形状图是( )5、下列说法中,正确的有( )①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个 6、某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图(如图),其中“其他”部分对应的圆心角是36°,则“步行”部分所占百分比是( )A .10%B .35%C .36%D .40% 7、下面四个图形中,经过折叠能围成如图所示的几何图形的是( )8、若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19、已知a ,b 互为相反数,c ,d 互为倒数,m 是绝对值等于3的负数,则m 2+(cd +a +b)m +(cd)2021的值为( )A .-8B .0C .4D .710、按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个 二、填空题(每小题3分,共18分)11、如图,A ,B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A ,B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是______________.12、据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2 800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法可表示为_________人.13、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指塔每一层灯的数量都是其上一层的两倍).请你算出塔的顶层有_________盏灯. 14、某学校七年级有七个班共350名学生,为了了解学生英语口语测试成绩,随机从各班分别抽取10名学生的英语口语测试成绩加以分析.在这个问题中,样本是_________. 15、已知单项式3a m b 2与-a 4b n -1的和是单项式,那么2m -n =________.2316、如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第1个图形有1个十字星图案,第2个图形有2个十字星图案,第3个图形有5个十字星图案,第4个图形有10个十字星图案,…,则第101个图形有_________个十字星图案. …三、解答题(共72分)17、计算:(1)×(﹣8)﹣×[﹣﹣(﹣2)2];(2)(﹣1)×(﹣5)÷[(﹣3)2+2×(﹣5)];(3)(﹣4)2×(﹣)+30÷(﹣6);(4)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.18、解方程:(1)(x -3)+1=x -(x -2); 1213 (2)x +=6-. 2(x -3)3x -7619、化简:(1)(x 2-7x)-(3x 2-5-7x);(2)3(x -y)-2(x +y)-5(x -y)+4(x +y)+3(x -y).20、小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-[2(a -1)-]÷(a -b).1b(1)求(-2)※的值;12(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,可能出现什么情况?为什么?21、某学校准备开展“阳光体育活动”,决定开设以下活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题. (1)这次活动一共调查了_________名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在的扇形圆心角等于_________度.22、如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB ,CD 的中点E ,F 之间距1314离是10 cm ,求AB ,CD 的长度.23、张华在一次测验中计算一个多项式M 加上5xy -3yz +2xz 时,不小心看成减去5xy -3yz +2xz ,结果计算出错误答案为2xy +6yz -4xz. (1)求多项式M ;(2)试求出原题目的正确答案.24、已知点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC. (1)如图1.①若∠AOC =60°,则∠DOE 的度数为_________;②若∠AOC =α,则∠DOE 的度数为_________(用含α的式子表示);(2)将图1中的∠DOC 绕点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.25、某商店第一次购进相同铅笔1 000支,第二次又购进同种铅笔,购进数量是第一次的,12这次每支铅笔的进价比第一次进价高0.2元,第二次购进铅笔比第一次少花300元. (1)求第一次每支铅笔的进价是多少元?(2)第一次购进铅笔在第一次进价的基础上加价50%出售;第二次购进的铅笔以每支1.5元的价格出售,出售一部分后又在每支1.5元的基础上打八折出售;两次购进的铅笔全部销售完毕后总获利为560元,问第二次购进的铅笔出售多少支后打八折出售?参考答案一、选择题(每小题3分,共30分) 1、下列说法中,正确的是(D)A .0是最小的有理数B .任何一个有理数的绝对值都是正数C .-a 是负数D .0的相反数是它本身 2、下列各组代数式,是同类项的是(D)A .2bc 与2abcB .3a 2b 与-3ab 2C .a 与1 D.x 2y 与-x 2y233、从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为(C)A .4,3B .3,3C .3,4D .4,4 4、由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体的形状图是(A)5、下列说法中,正确的有(C)①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个 6、某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图(如图),其中“其他”部分对应的圆心角是36°,则“步行”部分所占百分比是(D)A .10%B .35%C .36%D .40% 7、下面四个图形中,经过折叠能围成如图所示的几何图形的是(B)8、若A=3x2-4y2,B=-y2-2x2+1,则A-B等于(C)A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+19、已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)m +(cd)2 021的值为(D)A.-8 B.0 C.4 D.710、按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有(C)A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共18分)11、如图,A,B是河l两侧的两个村庄.现要在河l上修建一个抽水站P,使它到两个村庄A,B的距离和最小,小丽认为在图中连接AB与l的交点就是抽水站P的位置,你认为这里用到的数学基本事实是两点之间,线段最短.12、据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2 800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法可表示为2.8×106人.13、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指塔每一层灯的数量都是其上一层的两倍).请你算出塔的顶层有3盏灯.14、某学校七年级有七个班共350名学生,为了了解学生英语口语测试成绩,随机从各班分别抽取10名学生的英语口语测试成绩加以分析.在这个问题中,样本是抽取的70名学生英语口语的测试成绩.15、已知单项式3a m b 2与-a 4b n -1的和是单项式,那么2m -n =5.2316、如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第1个图形有1个十字星图案,第2个图形有2个十字星图案,第3个图形有5个十字星图案,第4个图形有10个十字星图案,…,则第101个图形有10001个十字星图案. …三、解答题(共72分)17、计算:(1)×(﹣8)﹣×[﹣﹣(﹣2)2]; 解:原式=﹣12﹣×(﹣)=﹣12+=﹣.(2)(﹣1)×(﹣5)÷[(﹣3)2+2×(﹣5)]; 解:原式=5÷(9﹣10)=5÷(﹣1)=﹣5.(10分)(3)(﹣4)2×(﹣)+30÷(﹣6);解:原式=16×(﹣)﹣30÷6=﹣12﹣5=﹣17. (4)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|. 解:原式=﹣1﹣××6=﹣1﹣1=﹣2. 18、解方程:(1)(x -3)+1=x -(x -2); 1213解:去分母,得3(x -3)+6=6x -2(x -2). 去括号,得3x -9+6=6x -2x +4. 移项、合并同类项,得-x =7. 方程两边同除以-1,得x =-7.(2)x +=6-. 2(x -3)3x -76解:去分母,得6x +4(x -3)=36-(x -7). 去括号,得6x +4x -12=36-x +7. 移项、合并同类项,得11x =55. 方程两边同除以11,得x =5. 19、化简:(1)(x 2-7x)-(3x 2-5-7x); 解:原式=-2x 2+5.(2)3(x -y)-2(x +y)-5(x -y)+4(x +y)+3(x -y). 解:原式=(x -y)+2(x +y) =x -y +2x +2y =3x +y.20、小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-[2(a -1)-]÷(a -b).1b(1)求(-2)※的值;12(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,可能出现什么情况?为什么?解:(1)原式=. 1120(2)可能出现的情况是b =0或a =b ,因为b 及a -b 均是除数,除数为0时,无意义,就使该程序无法操作.21、某学校准备开展“阳光体育活动”,决定开设以下活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题.(1)这次活动一共调查了250名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在的扇形圆心角等于108度. 解:250-80-40-55=75(人),补图如图.22、如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB ,CD 的中点E ,F 之间距1314离是10 cm ,求AB ,CD 的长度.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =AB =1.5x cm ,CF =CD =2x cm.1212所以EF =AC -AE -CF =6x -1.5x -2x =2.5x cm. 因为EF =10 cm ,所以2.5x =10,解得x =4. 所以AB =12 cm ,CD =16 cm.23、张华在一次测验中计算一个多项式M 加上5xy -3yz +2xz 时,不小心看成减去5xy -3yz +2xz ,结果计算出错误答案为2xy +6yz -4xz. (1)求多项式M ;(2)试求出原题目的正确答案.解:(1)依题意,得M -(5xy -3yz +2xz)=2xy +6yz -4xz , 所以M =2xy +6yz -4xz +(5xy -3yz +2xz)=7xy +3yz -2xz , 即多项式M 为7xy +3yz -2xz.(2)M +(5xy -3yz +2xz)=(7xy +3yz -2xz)+(5xy -3yz +2xz)=12xy , 所以原题目的正确答案为12xy.24、已知点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC.(1)如图1.①若∠AOC =60°,则∠DOE 的度数为30°;②若∠AOC =α,则∠DOE 的度数为α(用含α的式子表示); 12(2)将图1中的∠DOC 绕点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.解:∠DOE =∠AOC.理由如下: 12因为∠BOC =180°-∠AOC ,OE 平分∠BOC ,所以∠COE =∠BOC 12=(180°-∠AOC) 12=90°-∠AOC. 12所以∠DOE =∠COD -∠COE=90°-(90°-∠AOC) 12=∠AOC. 1225、某商店第一次购进相同铅笔1 000支,第二次又购进同种铅笔,购进数量是第一次的,12这次每支铅笔的进价比第一次进价高0.2元,第二次购进铅笔比第一次少花300元.(1)求第一次每支铅笔的进价是多少元?(2)第一次购进铅笔在第一次进价的基础上加价50%出售;第二次购进的铅笔以每支1.5元的价格出售,出售一部分后又在每支1.5元的基础上打八折出售;两次购进的铅笔全部销售完毕后总获利为560元,问第二次购进的铅笔出售多少支后打八折出售?解:(1)设第一次每支铅笔的进价是x 元,根据题意,得1 000x =1 000×(x +0.2)+300. 12解得x =0.8.答:第一次每支铅笔的进价是0.8元.(2)设第二次购进的铅笔出售y 支后打八折出售.1 000××(0.8+0.2)=500(元). 12由题意,得1 000×0.8×50%+1.5y +×1.5(1 000×-y)-500=560. 81012解得y =200.答:第二次购进的铅笔出售200支后打八折出售.。
2020-2021成都市实验外国语学校(西区)小学数学小升初第一次模拟试题(附答案)一、选择题1.如图:r=3dm,这个扇形的面积是()dm2.A. 28.26B. 9.42C. 7.065D. 4.71 2.在下面边长是10cm的正方形纸中,剪去一个长6cm、宽4cm的长方形,下列四种方法中,剩下的部分()的周长最长.A. B. C.D.3.分别用5个大小相同的小正方体搭成下面的三个立体模型,从()看这三个立体模型的形状是完全一样的。
A. 前面B. 上面C. 左面4.甲、乙两数的比是3:4,那么甲比乙少().A. B. C. D.5.如图,阴影部分的面积相当于甲圆面积的,相当于乙圆面积的,那么甲、乙两个圆的面积是().A. 6: 1B. 5: 1C. 5: 6D. 6: 5 6.用6个同样大小的正方体拼成一个立体图形,从上面、正面和左面看到的形状完全一样,这个立体图形是()。
A. B. C.D.7.当a表示所有的自然数0,1,2,3,…时,2a表示()。
A. 奇数B. 偶数C. 质数D. 合数8.钟面上,时针经过1小时旋转了()度。
A. 30B. 60C. 180D. 3609.下列描述正确的是()A. 在图上可以找到-5、20、3.5三个数对应的点。
B. 上图中,直线上的数不是正数就是负数。
C. 在0和3之间的数只有1和2.10.把正方体的表面展开,可能得到的展开图是()。
A. B. C. D.11.一个零件长4毫米,画在图上长12厘米。
这幅图的比例尺是()。
A. 1:30B. 1:3C. 30:1D. 3:1 12.在一个圆中剪掉一个圆心角是90°的扇形,其余部分占整个圆面积的()A. B. C. D.二、填空题13.一个直角三角形两个锐角度数的比是1:4,则这两个锐角分别是________度和________度。
14.如图中∠1是________°,按边分是一个________三角形,它有________条对称轴.15.汽车与轿车的速度之比为5:7,两车同时从甲乙两地出发,相向而行,两车的相遇地点距离中点16km。
2020-2021成都实验外国语学校数学七上册思维训练试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.地球的半径约为6370000,用科学记数法表示正确的是()A.B.C.D.2......7.....A.7B..7C.±7D.0.73. 下列说法中正确的是()、任何数的平方根有两个;、只有正数才有平方根;、一个正数的平方根的平方仍是这个数;、的平方根是;4...........A...........0.B...............C................D........15、有一个数符合下列条件:①是一个整数②在数轴上位于原点的左侧③绝对值小于4,这个数可以是()A、-5B、-2C、0D、36.在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是…………………………………………………………()A. 点A在⊙D外B. 点B在⊙D内C. 点C在⊙D 上D. 无法确定7.如图,在下列四个几何体中,它的三视图(主视图、左视图、俯视图)不完全相同的是 …………………………………………………………………………………( )A .①②B .②③C .①④D . ②④8......................“.”....………………. .A.. B.. C.. D..9................................ ..................10............ ................................ ............................ .................... . A... B... C... D...10...a.b.c......ab.0.bc.o..++...( )A.3 B.1 C .3..3 D.1..1第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 化简-9/3的结果是 .12.绝对值小于8.9的所有整数的积是_________.13.我们知道:式子||x -3的几何意义是数轴上表示数x 的点与表示数3的点之间的距离,则式子||x -2+||x +1的最小值为 .(第8祝你 考 试 顺 利 ①正方体②圆柱③圆锥④球14.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为.(结果保留π)15.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如“”可表示为.同学们,通过对以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为;(2)计算:= (填写最后的计算结果).三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.....++|....0.01.17.解方程(每小题4分,共8分)(1) 3(x-4)=12;(2) x-x-12=2-x+23.18.先化简,再求值5(3a 2b -ab 2)-4(-ab 2+3a 2b ),其中a =12、b =-13.19.“囧”(jiong )是网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y . (1)用含有x 、y 的代数式表示右图中“囧”的面积; (2)当时,求此时“囧”的面积.20.用长为10m 的铝合金做成如图的长方形窗框,设窗框横档的长为m ,中间一条直档与横档长度相等. (1)用含的代数式表示这个窗户的面积(中间的横档与直档所占的面积忽略不计);(2)当横档长取1.4m 时,求窗户的面积.(第21题图)21.(本题共10分)如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.-8 0 4(1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位;(2)经过__________秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.22......OM....A.B.C...OA=60cm.AB=60cm.BC=10cm........P..O ....OM...1cm/..........1...P...AB...........__________...2.......Q....C.....CO...O........3cm/.........P.Q....30cm.23.如图,正方形ABCD 和CEFG 的边长分别为m 、n ,且B 、C 、E 三点在一直线上试说明△AEG 的面积只与n 的大小有关.ABCD EFGmn。
2020-2021成都市七中育才学校七年级数学上期末第一次模拟试卷(及答案)一、选择题1.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<02.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A .B .C .D .3.已知长方形的周长是45cm ,一边长是acm ,则这个长方形的面积是( ) A .(45)2a a -cm 2B .a (452a -)cm 2 C .452a cm 2D .(452a -)cm 2 4.下面的说法正确的是( ) A .有理数的绝对值一定比0大 B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等5.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A .x+1=2(x ﹣2) B .x+3=2(x ﹣1) C .x+1=2(x ﹣3)D .1112x x +-=+ 6.下列运算结果正确的是( ) A .5x ﹣x=5B .2x 2+2x 3=4x 5C .﹣4b+b=﹣3bD .a 2b ﹣ab 2=07.下列去括号正确的是( ) A .()2525x x -+=-+B .()142222x x --=-+C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭8.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.019.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元 10.若a =2,|b |=5,则a +b =( ) A .-3 B .7 C .-7 D .-3或7 11.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或3 12.已知:式子x ﹣2的值为6,则式子3x ﹣6的值为( )A .9B .12C .18D .24二、填空题13.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.14.若13a+与273a -互为相反数,则a=________.15.如图,若输入的值为3-,则输出的结果为____________.16.若代数式213k--的值是1,则k= _________. 17.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).18.若2a +1与212a +互为相反数,则a =_____.19.若代数式45x -与36x -的值互为相反数,则x 的值为____________. 20.如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n ∠BOC ,∠BOD =1n∠AOB ,则∠DOE =_____°.(用含n 的代数式表示)三、解答题21.凤凰景区的团体门票的价格规定如下表 购票人数 1~55 56~110 111~165 165以上 价格(元/人)10987某校七年级(1)班和(2)班共112人去凤凰景区进行研学春游活动,当两班都以班为单位分别购票,则一共需付门票1060元.(1)你认为由更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班53人也一同前去春游时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需付门票多少元?22.如图,平面上有射线AP 和点B ,C ,请用尺规按下列要求作图:(1)连接AB ,并在射线AP 上截取AD =AB ;(2)连接BC 、BD ,并延长BC 到E ,使BE =BD .(3)在(2)的基础上,取BE 中点F ,若BD =6,BC =4,求CF 的值. 23.观察下列三行数:第一行:2,﹣4,8,﹣16,32,﹣64,…… 第二行:4,﹣2,10,﹣14,34,﹣62,…… 第三行:1,﹣2,4,﹣8,16,﹣32,……(1)第一行数的第8个数为 ,第二行数的第8个数为 ;(2)第一行是否存在连续的三个数使得三个数的和是384?若存在,求出这三个数,若不存在,请说明理由;(3)取每一行的第n 个数,这三个数的和能否为﹣2558?若能,求出这三个数,若不能,请说明理由.24.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?25.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先根据数轴确定a .b ,c 的取值范围,再逐一对各选项判定,即可解答. 【详解】由数轴可得:a<b<0<c , ∴a+b+c<0,故A 错误; |a+b|>c ,故B 错误; |a−c|=|a|+c ,故C 正确; ab >0 ,故D 错误; 故答案选:C. 【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.2.C解析:C 【解析】 【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【详解】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有:故选C.【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.3.B解析:B【解析】【分析】【详解】解:设长边形的另一边长度为x cm,根据周长是45cm,可得:2(a+x)=45,解得:x=452﹣a,所以长方形的面积为:ax=a(452a)cm2.故选B.考点:列代数式.4.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.5.C解析:C【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有13122x x +++=只, ∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=- 即x +1=2(x −3) 故选C.6.C解析:C 【解析】A.5x ﹣x =4x ,错误;B.2x 2与2x 3不是同类项,不能合并,错误;C.﹣4b +b =﹣3b ,正确;D.a 2b ﹣ab 2,不是同类项,不能合并,错误; 故选C .7.D解析:D 【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.8.B解析:B 【解析】 【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可. 【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03. ∵44.9不在该范围之内, ∴不合格的是B . 故选B .9.B解析:B 【解析】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B .点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.10.D解析:D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.11.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.12.C解析:C【解析】【分析】首先把3x ﹣6化成3(x ﹣2),然后把x ﹣2=6代入,求出算式的值是多少即可. 【详解】 ∵x ﹣2=6, ∴3x ﹣6 =3(x ﹣2) =3×6 =18 故选:C . 【点睛】本题考查了整体代换的思想,有理数的运算法则,掌握整体代换的思想是解题的关键.二、填空题13.【解析】【分析】根据条件求出前几个数的值再分n 是奇数时结果等于-n 是偶数时结果等于-然后把n=2019代入进行计算即可得解【详解】a1=0a2=-|a1+1|=-|0+1|=-1a3=-|a2+2| 解析:1009-【解析】 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12n -,n 是偶数时,结果等于-2n,然后把n=2019代入进行计算即可得解. 【详解】a 1=0,a 2=-|a 1+1|=-|0+1|=-1, a 3=-|a 2+2|=-|-1+2|=-1, a 4=-|a 3+3|=-|-1+3|=-2, a 5=-|a 4+4|=-|-2+4|=-2, …,所以,n 是奇数时,a n =-12n -,n 是偶数时,a n =-2n,a 2019=-201912-=-1009. 故答案为:-1009. 【点睛】本题是对数字变化规律的考查,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.14.【解析】根据题意列出方程+=0直接解出a 的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a ﹣7=0合并同类项得:3a ﹣4=0化系数为1得:a ﹣=0故答案为 解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0, 合并同类项得:3a ﹣4=0, 化系数为1得:a ﹣43=0, 故答案为43. 15.1【解析】【分析】把-3代入程序中计算判断结果比0小将结果代入程序中计算直到使其结果大于0再输出即可【详解】把-3代入程序中得:把-2代入程序中得:则最后输出结果为1故答案为:1【点睛】本题考查有理解析:1 【解析】 【分析】把-3代入程序中计算,判断结果比0小,将结果代入程序中计算,直到使其结果大于0,再输出即可. 【详解】把-3代入程序中,得:()-33+7-9+7-20⨯==<, 把-2代入程序中,得:()-23+7-6+710⨯==>, 则最后输出结果为1. 故答案为:1 【点睛】本题考查有理数的混合运算,熟练掌握各运算法则是解题的关键.16.-4【解析】【分析】【详解】由=1解得解析:-4 【解析】 【分析】 【详解】 由213k--=1,解得4k =-.17.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】 【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案. 【详解】图①白色正方形:2个; 图②白色正方形:5个; 图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个, 故答案为:(3n-1). 【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键.18.﹣1【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a =﹣1故答案为:﹣1【点睛】本题考查了解一元一次解析:﹣1 【解析】 【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值. 【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0, 移项合并得:3a =﹣3, 解得:a =﹣1, 故答案为:﹣1 【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.19.【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到x 的值【详解】解:根据题意得:移项合并得:解得故答案为:【点睛】此题考查了解一元一次方程和相反数的概念解题的关键在于根据相反数的概念列出方 解析:117【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:45+360--=x x ,移项合并得:711x = , 解得117x =, 故答案为:117. 【点睛】 此题考查了解一元一次方程和相反数的概念,解题的关键在于根据相反数的概念列出方程.20.【解析】【分析】根据各个角之间的关系设∠BOE=x°表示∠BOC∠AOB∠BOD 进而求出∠DOE 的大小即可【详解】解:设∠BOE=x°∵∠BOE=∠BOC∴∠BOC=nx∴∠AOB=∠AOC+∠BO 解析:60n. 【解析】【分析】 根据各个角之间的关系,设∠BOE =x °,表示∠BOC 、∠AOB 、∠BOD ,进而求出∠DOE 的大小即可.【详解】解:设∠BOE =x °,∵∠BOE =1n∠BOC , ∴∠BOC =nx ,∴∠AOB =∠AOC+∠BOC =60°+nx ,∵∠BOD =1n ∠AOB =1n (60°+nx )=60n︒+x , ∴∠DOE =∠BOD ﹣∠BOE =60n ︒+x ﹣x =60n︒, 故答案为:60n. 【点睛】考查角的有关计算,通过图形找出各个角之间的关系是解决问题的关键,用代数的方法解决几何图形问题也是常用的方法. 三、解答题21.(1)有更省钱的购票方式,能节省164元;(2)(2)班人数为52,(1)班人数为60;(3)共需1162元【解析】【分析】(1)最节约的办法就是团体购票,节省的钱=1060-团体票价;(2)由(1)班人数多于(2)班及两班共112人可知两班人数不相等,且(1)班人数多于55,(2)班人数小于等于55,设出未知数求解即可;(3)还是采用团体购票,总人数是165,可买166张票,票价可降低1元,总票价=总人数×单位票价.【详解】(1)当两班合在一起共同买票时,每张票价为8元,则总票价为:112×8=896元, 节省:1060-896=164元,答,有更省钱的购票方式,能节省164元;(2)设(2)班人数为x ,(1)班人数为112-x ,(1)班人数多于(2)班人数,故1≤x≤55,56≤112-x≤110,则(2)班每张票价为10元,(1)班人每张票价为9元,则有()1091121060x x +-=,解得:52x =,11260x -=,答:(2)班人数为52人,(1)班人数为60人;(3)三个班的人数加起来为165人,可买166张票每张票价可降低1元,每张票价为7元,则总票价为:166×7=1162元, 答:共需1162元.【点睛】本题考查一元一次方程的应用,主要是找准确等量关系,要注意考虑全面,购票最省钱的办法就是团体购票.22.(1)见解析;(2)见解析;(3)CF 的值为1【解析】【分析】(1)连接AB ,并在射线AP 上截取AD=ABJ 即可;(2)连接BC 、BD ,并延长BC 到E ,使BE=BD 即可;(3)在(2)的基础上,取BE 中点F ,根据BD=6,BC=4,即可求CF 的值.【详解】解:如图所示,(1)连接AB,并在射线AP上截取AD=AB;(2)连接BC、BD,并延长BC到E,使BE=BD.(3)在(2)的基础上,∵BE=BD=6,BC=4,∴CE=BE﹣BC=2∵F是BE的中点,∴BF=12BE=162=3∴CF=BC﹣BF=4﹣3=1.答:CF的值为1.【点睛】本题考查了作图-复杂作图,解决本题的关键是根据语句准确画图.23.(1) 256,﹣254;(2)存在,这三个数是128,﹣256,512;(3)存在,这三个数为:﹣1024,﹣1022,﹣512【解析】【分析】(1)由第一行,第二行数的规律得:第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,进而即可求解;(2)设第一行中连续的三个数为:x,﹣2x,4x,列出关于x的方程,即可求解;(3)由三行数列的规律,得第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,第三行的第n个数为:(﹣1)n+1•2n﹣1,进而列出关于n的方程,求解即可.【详解】(1)∵第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……∴第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,∴第一行的第8个数为:(﹣1)8+1•28=﹣1×256=﹣256,第二行的第8个数为:﹣256+2=﹣254,故答案为:﹣256,﹣254;(2)存在,理由如下:设第一行中连续的三个数为:x,﹣2x,4x,则x+(﹣2x)+4x=384,解得:x=128,∴这三个数是128,﹣256,512,即存在连续的三个数使得三个数的和是384;(3)存在,理由如下:∵第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……第三行:1,﹣2,4,﹣8,16,﹣32,……∴第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,第三行的第n 个数为:(﹣1)n+1•2n﹣1,令[(﹣1)n+1•2n]+[(﹣1)n+1•2n+2]+[(﹣1)n+1•2n﹣1]=﹣2558,n为偶数,解得:n=10,∴这三个数为:﹣1024,﹣1022,﹣512.【点睛】本题主要考查数列的排列规律,找到每行数列的第n个数的表达式,是解题的关键.24.【解析】【分析】由题意甲工程队单独做此工程需4个月完成,则知道甲每个月完成14,乙工程队单独做此工程需6个月完成16,当两队合作2个月时,共完成112()46,设乙工程队再单独做此工程需x个月能完成,则根据等量关系共同完成的+乙工程队完成的=整个工程,列出方程式即可.【详解】设乙工程队再单独做此工程需x个月能完成,∵甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,∴甲每个月完成14,乙工程队每个月完成16,现在甲、乙两队先合作2个月,则完成了112()46,由乙x个月可以完成16 x,根据等量关系甲完成的+乙完成的=整个工程,列出方程为:1112()1 466x解得x=1.【点睛】本题考查应用一元一次方程解决工程问题. 此类题目重要的一点是找到工作总量是什么:如果题目中有提到,则直接使用即可;如果题目中没有告诉工作总量,一般情况下用1表示工作总量.25.ab2−3a2b;-10【解析】【分析】根据整式乘法的运算法则,去括号后合并同类项,将原式化成最简,将2,1a b ==代入求值即可.【详解】原式222222324322ab a b ab a b ab a b +=--+-222222232432ab ab ab a b a b a b =-+-+-223ab a b =-将2,1a b ==得:2×1²-3×2²×1=-10【点睛】本题考查了整式乘法的化简求值,解决本题的关键是熟练掌握整式运算的顺序,找出同类项将整式化成最简.。
2020-2021学年成都市锦江区嘉祥外国语学校初一数学第一学期期末试卷一、选择题(每题3分,共30分)1.(3分)﹣3的绝对值的相反数是()A.3 B.C.﹣3 D.2.(3分)2020年初新冠肺炎来袭的危急时刻,一个个白衣天使们逆行的最美身影感动了全中国,据统计,我国医师队伍总数达到386.7万人,用科学记数法表示386.7万人是()A.386.7×104人B.38.67×105人C.3.867×106人D.0.3867×107人3.(3分)下列各式中,是同类项的是()A.﹣3x2y与2y2x B.m2n2与﹣5tm2n2C.πx2与x2D.﹣6ab与6bc4.(3分)下列六个算式中,(1)a5n÷a3n=a2n,(2)m5•m2=m10,(3)a4+a3=a7,(4)(a4b3)2=a8b6,(5)(2x+1)(2x﹣1)=2x2﹣1,(6)(﹣xy2)2÷(﹣x2y)=﹣y2,正确的个数有()A.0个B.1个C.2个D.3个5.(3分)用一个平面去截三棱柱,截面形状不可能是()A.三角形B.四边形C.五边形D.六边形6.(3分)下列各式的值一定为正数的是()A.(x+3)2B.|x﹣1| C.x+10000 D.x2+17.(3分)下列叙述正确的是()A.角的两边越长,角度越大B.连结两点间的线段叫做这两点间的距离C.两点之间线段最短D.到线段两端点距离相等的点是线段的中点8.(3分)随着5G时代的到来,越来越多的人选择购买5G手机,成都电视台在高新区金融城对附近上班的300名企业员工进行了5G手机使用情况的随机问卷调查()A.该调查方式是普查B.该调查中的个体是每一位企业员工C.该调查中的样本容量是300位企业员工D.该调查中的样本是随机调查的300位企业员工的5G手机使用情况9.(3分)已知代数式3x2﹣6x+6的值为9,则代数式x2﹣2x+6的值为()A.18 B.12 C.9 D.710.(3分)本学期我们喜迎嘉祥20周年华诞,第二天又举办了教育研讨会,锦江校区开设了4间大教室和5间小教室同时进行专题研讨;2间大教室和1间小教室可同时容纳228人,设1间小教室可同时容纳x人()A.x+2(168﹣x)=228 B.x+2(168﹣2x)=228C.x+2(228﹣x)=168 D.x+(228﹣x)=168二、填空题(每题4分,共16分)11.(4分)单项式﹣的系数是,多项式x2y+2x+5y﹣25是次项式.12.(4分)若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=.13.(4分)如图,∠AOC=∠BOD=90°,且∠AOB=160°.14.(4分)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…(n是正整数)个图案中由个基础图形组成.三、解答题(共54分)15.(20分)计算:(1)(﹣1)2021+36×()﹣|﹣8|;(2)97×103﹣99×99;(3)(﹣3a)3+(﹣2a4)2÷(﹣a)5;(4)=1.16.(6分)先化简,再求值:(x﹣1)(x﹣2)﹣3x(x+3)17.(6分)如图①是一些小正方体所搭几何体的俯视图,方格中的数字表示该位置的小正方体的个数.请在图②的方格纸中分别画出这个几何体的主视图和左视图.(要求涂上阴影)18.(6分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?19.(6分)已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.(1)求N﹣(N﹣2M)的值;(2)若多项式2M﹣N的值与字母x取值无关,求a的值.20.(10分)如图,AC=m,BC=n,D为AC的中点,E为BC的中点(1)若|m﹣4|+(n﹣6)2=0,①求DE的长;②求CF的长;(2)若AB=12CF,求的值.一、填空题(每小题4分,共20分)21.(4分)若5x=2,5y=3,则5x+2y=.22.(4分)若方程(m2﹣1)x2﹣(m﹣1)x﹣8=0是关于x的一元一次方程,则m的值为.23.(4分)数a,b在数轴上对应点的位置如图所示,化简a﹣|b﹣a|=.24.(4分)如图,点B,C,D是线段AE上的三个点,BD=5cm,求图中以A、B、C、D cm.25.(4分)数学课上,老师让同学们观察一列数据:1,﹣,,﹣,,(),…同学们很快推出了答案“﹣,又写出三个等式:4=22﹣02,12=42﹣22,20=62﹣42.聪明的小慧马上说出“28=82﹣62…”,你知道其中的“奥妙”吗?请仿写:2020=.二、解答题:(共30分)26.(8分)如图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形,这九个数之和是否能等于2016?说明理由.(3)依据规律这九个数之和能否等于18171呢?若能,请写出这九个数中最大的一个;若不能27.(10分)在嘉祥的20周年校庆中,初中部社团的同学们准备文艺汇演.男女生表演人数共92人(其中女生人数多于男生人数,且女生人数不够90人)准备统一购买服装(一人买一套),下面是服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果男女生分别单独购买服装,一共应付5000元.(1)如果男女生联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)男女生各有多少学生准备参加演出?(3)如果女生有9人被抽调出来有其他任务不能参加演出,那么你有几种购买方案呢?怎样才能最省钱?28.(12分)定义:从一个角的顶点出发,在角的内部引两条射线,如果原角是这两条射线所成的角的n 倍,如图1,若∠AOB=2∠COD(1)如图1,已知∠AOB=70°,∠AOC=25°,则∠BOD=°;(2)如图2,已知∠AOB=75°,将∠AOB绕点O按顺时针方向旋转一个角度α(0<α<75°),当旋转的角度α为何值时,∠AOD是∠COB的三倍角.(3)如图4,已知∠AOB=30°,把一块含有30°角的三角板如图3叠放,问:在旋转一周的过程中,射线OA,OC,OD能否构成三倍角?若能;若不能,请说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.【解答】解:﹣3的绝对值的相反数是:﹣|﹣3|=﹣4.故选:C.2.【解答】解:386.7万=3867000=3.867×106.故选:C.3.【解答】解:A.﹣3x2y与7y2x,所含字母相同,故不是同类项;B.m2n2与﹣5tm2n2,所含字母不尽相同,故不是同类项;C.πx2与x6,含字母相同,相同字母的指数相同,选项符合题意;D.﹣6ab与6bc,故不是同类项;故选:C.4.【解答】解:(1)a5n÷a3n=a2n,符合题意;(2)m5•m2=m4,不符合题意;(3)a4+a3不能合并,不符合题意;(4)(a5b3)2=a5b6,符合题意;(5)(2x+3)(2x﹣1)=8x2﹣1,不符合题意;(6)原式=﹣x5y4÷(﹣x2y)=y3,不符合题意.故选:C.5.【解答】解:三棱柱的截面可能是三角形,四边形,不可能是六边形,故选:D.6.【解答】解:A.x=﹣3时2=5,0既不是正数也不是负数;B.x=1时,5既不是正数也不是负数;C.x<﹣100000时,是负数;D.∵x2≥0,∴x2+1>0,是正数.故选:D.7.【解答】解:A.角的大小与角的两边的长短无关,故A错误;B.连结两点间的线段的长度叫做这两点间的距离;C.两点之间,故C正确;D.到一条线段两端点距离相等的点在这条线段的垂直平分线上;故选:C.8.【解答】解:A.该调查方式是抽样调查,不符合题意;B.该调查中的个体是每一位企业员工5G手机的使用情况,不符合题意;C.该调查中的样本容量是300,不符合题意;D.该调查中的样本是被随机调查的300位企业员工的5G手机的使用情况,符合题意;故选:D.9.【解答】解:∵3x2﹣7x+6=9,∴7x2﹣6x=8,∴x2﹣2x=3,∴x2﹣2x+8=1+6=8.故选:D.10.【解答】解:设1间小教室可同时容纳x人,则1间大教室可同时容纳(168﹣5x)人,根据题意,得x+2(168﹣2x)=228.故选:B.二、填空题(每题4分,共16分)11.【解答】解:单项式﹣的系数是﹣2y+2x+5y﹣25是三次四项式.故答案为:﹣,三,四.12.【解答】解:∵单项式与的差仍是单项式,∴单项式与是同类项,m=8,n+1=4,n=2,m﹣2n=2﹣6×3=﹣4,故答案为:﹣4.13.【解答】解:∵∠AOC=∠BOD=90°,∠AOB=160°,∴∠BOC=∠AOB﹣∠AOC=160°﹣90°=70°,∴∠COD=∠BOD﹣∠BOC=90°﹣70°=20°,故答案为:20°.14.【解答】解:第一个图案基础图形的个数:3+1=2;第二个图案基础图形的个数:3×2+5=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+6).故答案为:(3n+1).三、解答题(共54分)15.【解答】解:(1)原式=﹣1+36×+36×﹣8 =﹣1+2+20﹣27﹣8=﹣13;(2)原式=(100﹣3)×(100+3)﹣(100﹣1)2=1005﹣9﹣1002+200﹣2=190;(3)原式=﹣27a3+4a8÷(﹣a5)=﹣27a3﹣7a3=﹣31a3;(4)去分母得3(x﹣2)﹣2(x﹣4)=6,去括号得3x﹣5﹣2x+2=5,移项得3x﹣2x=6+6﹣2,合并同类项得x=10.16.【解答】解:原式=x2﹣2x﹣x+5﹣3x2﹣2x =﹣2x2﹣12x+5,当x=1时,原式=﹣2×22﹣12×1+8=﹣2﹣12+2=﹣12.17.【解答】解:由分析作图如下:18.【解答】解:(1)∵10÷10%=100(户),∴样本容量是100;(2)用水15~20吨的户数:100﹣10﹣38﹣24﹣8=20(户),∴补充图如下:“15吨~20吨”部分的圆心角的度数=360°×=72°,答:扇形图中“15吨~20吨”部分的圆心角的度数为72°.(3)6×=3.08(万户),答:该地区6万用户中约有4.08万户的用水全部享受基本价格.19.【解答】解:(1)∵M=x2﹣ax﹣1,N=4x2﹣ax﹣2x﹣4,∴N﹣(N﹣2M)=N﹣N+2M=7M=2(x2﹣ax﹣3)=2x2﹣7ax﹣2;(2)M=x2﹣ax﹣8,N=2x2﹣ax﹣3x﹣1,∴2M﹣N=7(x2﹣ax﹣1)﹣(6x2﹣ax﹣2x﹣6)=2x2﹣8ax﹣2﹣2x5+ax+2x+1=(5﹣a)x﹣1,∵多项式2M﹣N的值与字母x取值无关,∴6﹣a=0,得a=2,即a的值是5.20.【解答】解:(1)由题意可得:m﹣4=0,n﹣4=0,∴m=4,n=6,∴AC=4,BC=6,①∵D为AC的中点,E为BC的中点,∴DC=AD=AC=2BC=3,∴DE=DC+CE=4,②∵F为DE的中点,∴DF=DE=3.5,∴CF=DF﹣DC=0.7;(2)分两种情况:当AC<BC时,如上图:设DC=AD=x,CE=BE=y,∴AB=AC+BC=2x+2y,DE=DC+CE=x+y,∴DF=DE=,∴CF=DF﹣CD=(x+y)﹣x=,∵AB=12CF,∴2x+4y=12•(y﹣x),∴2x=y,∴===,当AC>BC时,如图所示:设DC=AD=x,CE=BE=y,∴AB=AC+BC=2x+8y,DE=DC+CE=x+y,∴DF=DE=,∴CF=CD﹣CF=x﹣(x+y)=,∵AB=12CF,∴6x+2y=12•(x﹣y),∴2y=x,∴=,综上所述,的值为.一、填空题(每小题4分,共20分)21.【解答】解:5x+2y=2x•52y=2x•(5y)2=8×32=5×9=18.故答案为:18.22.【解答】解:∵(m2﹣1)x4﹣(m﹣1)x﹣8=6是关于x的一元一次方程,∴m2﹣1=6,且m﹣1≠0,解得:m=﹣7.故答案为:﹣1.23.【解答】解:由图可得,a>0,且|a|>|b|,则b﹣a<0,a﹣|b﹣a|=a+b﹣a=b.故本题的答案是b.24.【解答】解:以A为端点的线段有:AB,AC,AE,以B为端点的线段有:BC,BD,以C为端点的线段有:CD,CE,以D为端点的线段有:DE,∴AB+AC+AD+AE+BC+BD+BE+CD+CE+DE=(AB+BE)+(AC+CE)+(AD+DE)+(BC+CD)+BD+AE=4AE+2BD=58cm,故答案为:58cm.25.【解答】解:设2020=(a+2)2﹣a7,则2020=[(a+2)+a][(a+2)﹣a],化简,得2020=(8a+2)×2,解得,a=504,∴2020=(504+8)2﹣5042=5065﹣5042,故答案为:5062﹣5045.二、解答题:(共30分)26.【解答】解:(1)图中平行四边形框内的九个数的和为:23+25+27+39+41+43+55+57+59=369,369÷41=9,所以图中平行四边形框内的九个数之和是中间的数的9倍;(2)在数阵图中任意作一类似(1)中的平行四边形,这九个数之和还有这种规律设数阵图中中间的数为x,则其余的3个数为x﹣18,x﹣14,x+2,x+16,这九个数的和为:x﹣18+x﹣16+x﹣14+x﹣2+x+x+2+x+14+x+16+x+18=9x,根据题意,得9x=2016,解得x=224,∵数阵是由全体奇数排成,∴数阵图中中间的数为224不合题意;答:这九个数之和不能等于2016;(3)不能,理由如下:由(2)知,这九个数的和为:3x,根据题意,得9x=18171,解得x=2019,由于2019位于第二列,所以这九个数之和不能等于18171.27.【解答】解:(1)5000﹣40×92=1320(元).答:共可以节省1320元;(2)设女生有x人(46<x<90),则男生有(92﹣x)人,依题意,得:50x+60×(92﹣x)=5000,解得:x=52,∴92﹣x=40.答:女生有52人,男生有40人;(3)方案一:各自购买服装需(52﹣9)×60+40×60=4980(元);方案二:男女生联合购买服装需(92﹣9)×50=4150(元);方案三:男女生联合购买91套服装需91×40=3640(元).∵4980>4150>3640,∴有三种购买方案,男女生联合起来选择按40元/套购买91套服装最省钱.28.【解答】解:(1)如图1,∵∠AOB=70°,∴∠COD=∠AOB=35°,∵∠AOC=25°,∴∠BOD=∠AOB﹣∠AOC﹣∠COD=70°﹣25°﹣35°=10°;故答案为:10.(2)如图2,由旋转可知,∴∠BOC=75°﹣α,∠AOD=75°+α,∵∠AOD是∠COB的三倍角,∴∠AOD=3∠COB,即75+α=8(75﹣α),解得,α=37.5°;(3)能,理由如下,由旋转可知,∠AOC=∠BOD=2t°①当射线OC在∠AOB内,如图6,此时,∠BOC=30°﹣2t°,则∠AOD是∠COB的三倍角,∴∠AOD=3∠COB,即30°+7t°=3(30°﹣2t°),解得t=6.5(秒);②当射线OC在∠AOB外部,有以下两种情况,图6,如图6,此时,∠AOD=30°+2t°,则∠AOD是∠COB的三倍角,∴∠AOD=3∠COB,即30°+4t°=3(2t°﹣30°),解得t=30(秒);如图3,此时,∠AOD=360°﹣2t°﹣30°,则∠COB是∠AOD的三倍角,∴∠COB=3∠AOD,即360°﹣2t°+30°=3(360°﹣2t°﹣30°),解得t=150(秒);③当射线OD在∠AOB内,如图4,此时,∠BOC=360°﹣2t°+30°,则∠COB是∠AOD的三倍角,∴∠COB=3∠AOD,即360°﹣7t°+30°=3(2t°﹣330°),解得t=172.7(秒);综上,在旋转一周的过程中、OB、OD构成三倍角时t的值为6.5秒,30秒,150秒,172.5秒.。
2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。
2020-2021成都市实验外国语学校九年级数学上期末试卷(及答案)一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( ) A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠32.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1B .1<m ≤2C .2<m <4D .0<m <43.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5C .x <-1或x >5D .x <-1或x >44.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形5.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-6.关于下列二次函数图象之间的变换,叙述错误的是( ) A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象 B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象 C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象 7.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .459.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根10.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 211.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°B .54°C .72°D .108°12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2二、填空题13.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________. 15.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____. 16.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .17.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.18.如图,抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为__________.19.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.20.一元二次方程22x 20-=的解是______.三、解答题21.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(结果保留小数点后两位)0.680.740.680.690.680.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.22.如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt∆ABC和Rt∆BED的边长,已知2=AE c,这时我们把关于x的形如220++=ax cx b二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”220+=ax cx b,必有实数根;(3)若x=-1是“勾系一元二次方程” 220++=ax cx b的一个根,且四边形ACDE的周长是2,求∆ABC的面积.23.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?24.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.25.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为 .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3. 故答案为D. 【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.C解析:C 【解析】 【分析】根据二次函数图象上点的坐标特征即可求得. 【详解】解:当a >0时,抛物线开口向上,则点(0,1)的对称点为(x 0,1), ∴x 0>4,∴对称轴为x=m 中2<m <4, 故选C . 【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.3.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4.C解析:C【解析】因为正八边形的每个内角为135 ,不能整除360度,故选C.5.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π故选B .6.D解析:D 【解析】 【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解. 【详解】A 选项,将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象,故A 选项不符合题意;B 选项,将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x +2)2的图象,故B 选项不符合题意;C 选项,将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象,故C 选项不符合题意;D 选项,将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x +1)2+1的图象,故D 选项符合题意. 故选D . 【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.7.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1,即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.8.C解析:C 【解析】 【分析】 【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷= 故选C9.A解析:A 【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根. 【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程x 2+x ﹣3=0有两个不相等的实数根, 故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C11.C解析:C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C .12.D解析:D 【解析】 【分析】抛物线的形状只是与a 有关,a 相等,形状就相同. 【详解】y =2(x ﹣1)2+3中,a =2. 故选D . 【点睛】本题考查了抛物线的形状与a 的关系,比较简单.二、填空题13.12【解析】【分析】【详解】解:设平均一人传染了x 人x +1+(x +1)x =169x =12或x =-14(舍去)平均一人传染12人故答案为12解析:12 【解析】 【分析】 【详解】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=-14(舍去).平均一人传染12人.故答案为12.14.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 15.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 16.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O 为圆心、OA 为半径作圆,则⊙O 即为过A ,B ,C 三点的外接圆,由图可知,⊙O 还经过点D 、E 、F 、G 、H 这5个格点,故答案为5.考点:圆的有关性质.17.-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y >0时x 的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y >0时,x 的取值范围是﹣3<x <1.故答案为﹣3<x <1.考点:二次函数的图象.18.(0)【解析】∵抛物线的对称轴为点P 点Q 是抛物线与x 轴的两个交点∴点P 和点Q 关于直线对称又∵点P 的坐标为(40)∴点Q 的坐标为(-20)故答案为(-20)解析:(2-,0)【解析】∵抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点, ∴点P 和点Q 关于直线1x =对称,又∵点P 的坐标为(4,0),∴点Q 的坐标为(-2,0).故答案为(-2,0). 19.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这解析:-3或4【解析】【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=, 2(21)490m --=,(2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=. 故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法. 20.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.三、解答题21.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【解析】【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n )=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.【点睛】 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.22.(1)2340x ++=(答案不唯一)(2)见解析(3)1.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出a,b,c 的关系,再根据完全平方公式的变形进行求解.【详解】(1)当a=3,b=4,c=5时,勾系一元二次方程为2340x ++=;(2)依题意得△=)2-4ab=2c 2-4ab,∵a 2+b 2=c 2,∴2c 2-4ab=2(a 2+b 2)-4ab=2(a-b )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得c∵四边形 ACDE 的周长是,即,故得到c=2,∴a 2+b 2=4,∵(a+b)2= a 2+b 2+2ab∴ab=2,故∆ABC 的面积为12ab=1. 【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.23.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.24.(1)60,10;(2)96°;(3)1020;(4)23 【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒,故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.25.(1)13(2)13 【解析】【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A 、B 、C ,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)小智被分配到A“全程马拉松”项目组的概率为13, 故答案为:13. (2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3, 所以小智和小慧被分到同一个项目组进行志愿服务的概率为31=93.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.。
2020-2021学年华东师大新版七年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣3的相反数为()A.﹣3B.﹣C.D.32.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A.13.75×106B.13.75×105C.1.375×108D.1.375×109 3.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣4.某大楼地上共有12层,地下共有4层.某人乘电梯从地下2层升至地上9层,电梯一共升了()A.7层B.8层C.9层D.10层5.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥6.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a57.下列5个数中:2,1.0010001,,0,﹣π,有理数的个数是()A.2B.3C.4D.58.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°9.若x=3n+1,y=3×9n﹣2,则用x的代数式表示y是()A.y=3(x﹣1)2﹣2B.y=3x2﹣2C.y=x3﹣2D.y=(x﹣1)2﹣210.已知a+2b=5,则代数式3(2a﹣3b)﹣4(a﹣3b+1)+b的值为()A.14B.10C.6D.不能确定二.填空题(共5小题,满分15分,每小题3分)11.比较大小:﹣﹣(填“<”或“>”).12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.13.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有个.14.已知a表示一个一位数,b表示一个两位数,把a放到b的左边组成一个三位数,则这个三位数可以表示为.15.如图,用围棋子按某种规律摆成的一行“七”字,按照这种规律,第n个“七”字中的围棋子有个.三.解答题(共8小题,满分75分)16.计算题:(1)﹣23﹣[﹣0.2÷×(﹣2)2﹣|﹣5|];(2)(﹣+﹣)÷(﹣).17.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.18.阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?19.育杰中学七年级一班3名教师决定带领本班a名学生利用假期去某地旅游.甲旅行社的收费标准为:教师全价,学生半价;乙旅行社的收费标准为:不管老师还是学生一律八折优惠,这两家旅行社的全价都是每人500元.(1)请分别用含a的式子表示三名教师和a名学生选择这两家旅行社所需的费用;(2)当a=55时,选择哪一家旅行社更合算?20.如图,点C是AB上一点,点D是AC的中点,若AB=12,BD=7,求CB的长.21.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.22.如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM()∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF()由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.23.阅读并填空问题:在一条直线上有A,B,C,D四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A为端点的线段有AB,AC,AD3条,同样以B为端点,以C为端点,以D为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有条线段.那么,如果在一条直线上有5个点,则这条直线上共有条线段.如果在一条直线上有n 个点,那么这条直线上共有条线段.知识迁移:如果在一个锐角∠AOB内部画2条射线OC,OD,那么这个图形中总共有个角,若在∠AOB内画n条射线,则总共有个角.学以致用:一段铁路上共有5个火车端,若一列客车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备种不同的车票.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣3的相反数是3.故选:D.2.解:13.75亿这个数字用科学记数法表示为1.375×109.故选:D.3.解:单项式﹣的系数和次数是:﹣,5.故选:B.4.解:根据题意得:9﹣(﹣2)﹣1=10,则某人乘电梯从地下2层升至地上9层,电梯一共升了10层,故选:D.5.解:观察图形可知,这个几何体是三棱柱.故选:A.6.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.7.解:有理数有2,1.0010001,,0,共4个.故选:C.8.解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.9.解:∵x=3n+1,y=3×9n﹣2=3×32n﹣2,∴y=3(x﹣1)2﹣2.故选:A.10.解:∵a+2b=5,∴原式=6a﹣9b﹣4a+12b﹣4+b=2a+4b﹣4=2(a+2b)﹣4=10﹣4=6,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:|﹣|=,|﹣|=,﹣,故答案为:>.12.解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.13.解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1,左视图有两列,每列的方块数分别是:1,2,俯视图有三列,每列的方块数分别是:2,1,2,∴总个数为1+2+1+1+1=6个.故答案为6.14.解:这个三位数可以表示为100a+b.故答案是:100a+b.15.解:∵第1个图形有1+4×1+2=7个棋子,第2个图形有1+4×2+3=12个棋子,第3个图形有1+4×3+4=17个棋子,…∴第n个“七”字中的棋子个数是:1+4n+(n+1)=5n+2.故答案为:5n+2.三.解答题(共8小题,满分75分)16.解:(1)=﹣8﹣(﹣××4﹣5)=﹣8﹣(﹣1﹣5)=﹣8+6=﹣2;(2)===9﹣8+6=7.17.解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.18.解:(1)﹣3+6﹣2+1﹣5﹣2+9﹣6=﹣2km,答:将最后一位乘客送到目的地时,小李在迎泽公园门口西边2km处.(2)|﹣3|=3,|﹣3+6|=3,|﹣3+6﹣2|=1,|﹣3+6﹣2+1|=2,|﹣3+6﹣2+1﹣5|=3,|﹣3+6﹣2+1﹣5﹣2|=5,|﹣3+6﹣2+1﹣5﹣2+9|=4,|﹣3+6﹣2+1﹣5﹣2+9﹣6|=2.∵5>4>3=3=3>2=2>1,∴将第6位乘客送到目的地时,小李离迎泽公园门口最远.(3)(|﹣3|+|6|+|﹣2|+|1|+|﹣5|+|﹣2|+|9|+|﹣6|)×0.2=6.8m3答:这天上午小李接送乘客,出租车共消耗天然气6.8立方米.(4)[(6+5+9+6)﹣3×4]×1.2+8×5=56.8元,答:小李这天上午共得车费56.8元.19.解:(1)根据题意得:甲旅行社费用:(250a+1500)元;乙旅行社费用:(400a+1200)元;(2)当a=55时,250a+1500=15250,400a+1200=23200,∵15250<23200,∴选择甲旅行社更合算.20.解:∵AB=12,BD=7,∴AD=AB﹣BD=12﹣7=5.∵点D是AC的中点,∴AC=2AD=2×5=10.∴CB=AB﹣AC=12﹣10=2.21.解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.22.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,故答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.23.解:问题:如果在一条直线上有5个点,则这条直线上共有=10条线段.如果在一条直线上有n个点,那么这条直线上共有条线段.;知识迁移:在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角;学以致用:5个火车站共有线段条数×5×4=10,需要车票的种数:10×2=20(种).故答案为:10,,6,,20.。
2020-2021学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.a(a≠0)的相反数是()D. |a|A. aB. −aC. 1a2.若|a|=a,则表示a的点在数轴上的位置是()A. 原点的左边B. 原点或原点的左边C. 原点或原点右边D. 原点3.下列两个单项式中,是同类项的一组是()A. 4x2y与4y2xB. 2m与2nC. 3xy2与(3xy)2D. 3与−154.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A. 4.21×105B. 42.1×104C. 4.21×10−5D. 0.421×1065.如图,已知三点A,B,C画直线AB,画射线AC,连接BC,按照上述语句画图正确的是()A. B. C. D.6.若关于x的方程mx m−2−m+3=0是一元一次方程,则m的值为()A. m=1B. m=2C. m=3D. m=47.下列说法正确的是()A. 如果AC=CB,能说点C是线段AB的中点B. 将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C. 连接两点的直线的长度,叫做两点间的距离D. 平面内3条直线至少有一个交点8.如图,由4个相同的小正方体组成的几何体,则该几何体的俯视图是()A.B.C.D.9.如图,EF//MN,AC,BD交于点O,且分别平分∠FAB,∠ABN,图中与∠1互余的角有()A. 1个B. 2个C. 3个D. 4个10.某美术兴趣小组有x人,计划完成y个剪纸作品,若每人做5个,则可比计划多9个;若每人做4个,则将比计划少做15个,现有下列方程:①5x+9=4x−15;②y−95=y+154;③y+95=y−154;④5x−9=4x+15.其中正确的是()A. ①②B. ②④C. ②③D. ③④二、填空题(本大题共5小题,共15.0分)11.如图是一个数值转换机的示意图,若输入x的值为2,输入y的值为−2,则输出的结果为______ .12.单项式−3πxy22的系数是______ .13.由11x−9y−6=0,用x表示y,得y=______ ,y表示x,得x=______ .14.若关于x的方程是一元一次方程,则这个方程的解是____15.已知P,Q两点都在数轴上(点P在点Q的右侧),若点P所表示的数是3,并且PQ=6,则点Q所表示的数是______ .三、解答题(本大题共6小题,共55.0分)16.化简:3x2−3+x−2x2+5.17.解方程:(1)6x−2(2x−7)=−1(2)x=1+x+1.318.已知为的三边,且满足,试判断的形状。
师大一中2020秋学期初一期末考试模拟试卷A卷满分100分,B卷满分50分;考试时间120分钟。
A卷(满分100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆2.下列几何体中,是圆锥的为( )A B C D3.成贵高铁开通运营已经开通一年。
成贵高铁起于成都,终到贵阳,其全长648000米,其中648000用科学记数法可表示为()A.6.48×104B.64.8×104C.0.648×105D.6.48×1054.下列计算中,正确的是()A.2a﹣3a=a B.a3﹣a2=aC.3ab﹣4ab=﹣ab D.2a+4a=6a25.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式6.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.下列等式变形中,错误的是()A.由a=b,得a+5=b+5 B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得8.如果2x m y2与﹣7x2y n﹣1可合并,则m+n为()A.﹣5 B.5 C.﹣4 D.49.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()A.4cm B.5cm C.6cm D.7cm10.我国明代数学读本《算法统宗》一书中有这样一道题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托”,如果1托为5尺,那么索和竿子各为几尺?设竿子为x尺,可列方程为()A.x+5﹣x=5 B.x﹣(x+5)=1C.x﹣x+5=5 D.x﹣(x+5)=5二、填空题(每小题4分,共16分)11.﹣的相反数是,倒数是,绝对值是.12.已知232m x y 和6114nx y --是同类项,则m n -的值是 13.某校学生到校方式情况的扇形统计图如图所示,若该校步行到校的学生有200人,则乘公共汽车到校的学生有 人.14.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN =6,BC =2,则AD 的长为 .三、解答题(共54分) 15.(8分) (1)12(5)432⨯-+-÷ (2)4123(1)()(2)3035-+--+÷-16.(8分)解方程: (1)7﹣3(x ﹣1)=﹣x(2)17.(8分)一个几何体是由若干个棱长为1的小正方体堆积而成的,从不同方向看到的几何体的形状图如下.(1)在从上面看得到的形状图中标出相应位置小正方体的个数;(2)这个几何体的表面积是.18.(10分)18.为了了解市民私家车出行的情况,某市交通管理部门对拥有私家车的市民进行随机抽样调查、其中一个问题是“你平均每天开车出行的时间是多少”共有4个选项:A、1小时以上(不含1小时);B:0.5﹣1小时(不含0.5小时);C:0﹣0.5小时(不含0小时);D,不开车.图1、2是根据调査结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了名市民;(2)在图1中将选项B的部分补充完整,并求图2中,A类所对应扇形圆心角α的度数;(3)若该市共有200万私家车,你估计全市可能有多少私家车平均每天开车出行的时间在1小时以上?19. (10分)如图,已知线段AB(1)尺规作图:延长线段AB到C,使BC=AB.(保留痕迹,不写作法)(2)在上图中,若AB=4cm,D为直线AC上一点,且CD=3cm,求AD的长.20.(10分)在天府新区的建设中,现要把176吨物资从某地运往华阳的甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为12吨/辆和8吨/辆,运往甲、乙两地的运费如下表:运往地甲地(元/辆)乙地(元/辆)车型大货车640 680小货车500 560(1)求这两种货车各用多少辆?(2)如果安排10辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,运往甲、乙两地的总运费为w元,求出w与a的关系式;(3)在(2)的条件下,若运往甲地的物资为100吨,请求出安排前往甲地的大货车多少辆,并求出总运费.B卷(50分)一、填空题(每小题4分,共20分)21.已知2(x﹣1)2+3|y+3|=0,那么代数式x﹣y=.22.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.23.若规定()55f x x x-+-=,例如()151158f-+-==,则()()()()1232020f f f f+++⋯⋯+=_______.24.如图,已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3,OC与∠AOB的平分线所成的角的度数为.25.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…依此规律,第n个图案有2019个黑棋子,则n=.二、解答题(共30分)26.( 8分) 已知A=2x2+mx﹣m,B=x2+m.(1)求A﹣2B;(2)在(1)的条件下,若x=1是方程A﹣2B=x+5m的解,求m的值.27.(10分)27.点O为直线AB上一点,过点O作射线OC.将一直角三角板的直角顶点放在点O处.(1)如图1,若∠BOC=65°,将三角板MON的一边ON与射线OB重合时,则∠MOC=.(2)如图2,若∠BOC=65°,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,则∠BON=.(3)如图2,若∠BOC=α,仍然将三角板MON旋转到OC为∠MOB的角平分线的位置,求∠AOM.(写出过程)28.(12分)小明每天早上要到距家1000米的学校上学,一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘带了数学书,于是,爸爸立即以180米/分钟的速度去追赶小明.(1)若爸爸在途中追上了小明,请问爸爸追上小明用了多长时间?(2)若爸爸出发2分钟后,小明也发现自己忘带数学书,于是他以100米/分钟往回走,与爸爸在途中相遇了,请问这种情况下爸爸出发多久追上小明?(3)小明家养了一条聪明伶俐的小狗,小狗跟着爸爸冲出了门,以240米/分钟的速度去追小明,小明看到小狗的一刹那醒悟到自己忘了带数学书,立即以120米/分钟的速度往回返,小狗仍以原速度往爸爸这边跑,跑到爸爸身边又折回往小明身边跑,直到爸爸和小明相遇方停下,随后又跟着爸爸回到家,请问小狗从出门到回家共跑了多少米?参考答案1-10 BCDCD CDBAD 11. ,﹣, 12. 5 13. 400 14. 10 15.解:(1)原式=−10+4−6=−12(2)原式=1+130−(13−310)=1+130−130=1;16. 解:(1)去括号,可得:7﹣3x+3=﹣x,移项,合并同类项,可得:﹣2x=﹣10,系数化为1,可得:x=5.(2)去分母,可得:3(3x﹣1)=6﹣2(4x﹣1),去括号,可得:9x﹣3=6﹣8x+2,移项,合并同类项,可得:17x=11,系数化为1,可得:x=.17. 解:(1)如图所示:(2)这个几何体的表面积为2×(6+4+5)=30,故答案为:3018. 解:(1)200;(2)∵B选项对应的百分比为1﹣(30%+5%+15%)=50%,∴B选项的人数为200×50%=100(人),补全图形如下:A类所对应扇形圆心角α的度数为360°×30%=108°;(3)估计全市平均每天开车出行的时间在1小时以上私家车数量约为200×30%=60(万).19. 解:如图所示:(1)延长线段AB到C,使BC=AB.(2)在上图中,AB=4cm,D为直线AC上一点,且CD=3cm∴BC=AB=4,∴AC=8,∴AD=AC﹣CD=5,答:AD的长为5cm.20. 解:(1)设大货车x辆,则小货车(18﹣x)辆,由题意可得:12x+8(18﹣x)=176解得:x=8,则18﹣x=10∴大货车8辆,小货车10辆.(2)设前往甲地的大货车为a辆,可得:w=640a+680(8﹣a)+500(10﹣a)+560a 化简得:w=20a+10440(3)12a+8(10﹣a)=100解得:a=5则w=20×5+10440=10540答:安排前往甲地的大货车5辆,总费用为10540元.21.4 22. ﹣1 23. 20 24. 4°或100°.25. 40426. 解:(1)∵A=2x2+mx﹣m,B=x2+m,∴A﹣2B=(2x2+mx﹣m)﹣2(x2+m)=2x2+mx﹣m﹣2x2﹣2m=mx﹣3m;(2)∵x=1是方程A﹣2B=x+5m的解,∴A﹣2B=1+5m,∵A﹣2B=mx﹣3m,∴m﹣3m=1+5m,解得:m=﹣.27. 解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°;故答案为:25°;(2)∵OC是∠MOB的角平分线,∴∠BOM=2∠BOC=2×65°=130°,∵∠MON=90°,∴∠BON=∠BOM﹣∠MON=40°;故答案为:40°;(3)∵OC是∠MOB的角平分线,∴∠BOM=2∠BOC=2α,∴∠AOM=180°﹣∠BOM=180°﹣2α.28. 解:(1)设小明爸爸追上小明用了x分钟,依题意得:80×5+80x=180x,解得x=4.答:爸爸追上小明用了4分钟;(2)设爸爸出发y分钟追上小明,依题意得:180y+100(y﹣2)=80×7,解得y=.答:爸爸出发分钟追上小明;(3)80×5÷(240﹣80)=2.5(分),[80×(5+2.5)﹣180×2.5]÷(120+180)=0.5(分),240×(2.5+0.5)+180×(2.5+0.5)=1260(米).答:小狗从出门到回家共跑了1260米.。
2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)期末检测卷03一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·义马市教学研究室七年级期中)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg【答案】B2.(2020·鹿邑县基础教育研究室七年级期末)下列调查中,适合采用全面调查的是( )A .对中学生目前睡眠质量的调查B .开学初,对进入我校人员体温的测量C .对我市中学生每天阅读时间的调查D .对我市中学生在家学习网课情况的调查【答案】B3.(2020·深圳市福田区石厦学校七年级期中)下列计算中,正确的是( ).A .6410a b ab +=B .2242734x y x y x y -=C .22770a b ba -= D .2248816x x x +=【答案】C 4.(2020·西安市·陕西师大附中七年级期中)病毒无情人有情,2020年初很多最美逆行者不顾自己安危奔赴疫情前线,我们内心因他们而充满希望.小茜同学在一个正方体每个面上分别写一个汉字,组成“全力抗击疫情”.如图是该正方体的一种展开图,那么在原正方体上,与汉字“击”相对的面上所写汉字为( )A .共B .同C .疫D .情5.(2020·兴化市板桥初级中学七年级月考)如图,∠AOB =180°,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,则下列各角中与∠COD 互补的是( )A .∠COEB .∠AOC C .∠AOD D .∠BOD【答案】C6.(2020·兴化市安丰初级中学七年级月考)已知a ,b ,c ,d 为有理数,现规定一种新的运算a b ad bc c d =-,那么当()241815x x=-时,则x 的值是( ) A .1x = B .711x = C .117x = D .1x =-【答案】C二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·山西运城市·七年级期中)计算:()()37---=______【答案】48.(2020·山东省青岛第五十九中学七年级期中)截止到2020年10月25,全球新冠已经突破4400万人,用科学记数法表示为__________人.【答案】74.410⨯9.(2020·重庆潼南区·七年级月考)若单项式3m a b +与522n a b +-的和仍是单项式,则m n =______.10.(2020·天津市滨海新区大港第二中学七年级期中)已知C 是线段AB 的中点,AB =10,若E 是直线AB 上的一点,且BE =3,则CE =_____【答案】2或811.(2020·杭州市保俶塔实验学校七年级月考)方程()4310x -+=的解与关于x 的方程3222x k k x +--=的解相同,则k =__________. 【答案】-112.(2020·深圳市福田区石厦学校七年级期中)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为______.【答案】364三、(本题共计5小题,每小题6分,共计30分)13.(2020·重庆潼南区·七年级月考)计算(1)342.4( 3.1)55⎛⎫--+-+ ⎪⎝⎭(2)2020211(10.5)(4)2⎛⎫-+-⨯-÷- ⎪⎝⎭ 【答案】解:(1)原式=342.4 3.10.7 1.40.755+-+=-+=;(2)原式=()2111(4)214212124⎛⎫-+⨯-⨯-=-+⨯⨯=-+= ⎪⎝⎭. 【点睛】 本题考查了有理数的混合运算,属于基础题目,熟练掌握混合运算的法则是解题的关键.14.(2020·重庆潼南区·七年级月考)解方程(1)23(1)1x x --= (2)11125x x +--= 【答案】解:(1)去括号,得2331x x -+=,移项,得2313x x -=-,合并同类项,得2x -=-,系数化为1,得2x =;(2)去分母,得()()512110x x +--=,去括号,得552210x x +-+=,移项,得521052x x -=--,合并同类项,得33x =,系数化为1,得1x =.【点睛】本题考查了一元一次方程的解法,属于基础题目,熟练掌握解一元一次方程的方法和步骤是解题的关键.15.(2020·施秉县第三中学七年级月考)先化简,再求值:()22221623212ab a ab b a ab b ⎡⎤⎛⎫-+---+- ⎪⎢⎥⎝⎭⎣⎦,其中1a =-,12b =.【答案】解:原式()22226223631ab a ab b a ab b =-+--+--()226841ab a ab b =--+--226841ab a ab b =+-++22241a ab b =-++, 把1a =-,12b =,代入原式()()2211121*********⎛⎫=--⨯-⨯+⨯+=+++= ⎪⎝⎭. 【点睛】 本题考查整式的化简求值,解题的关键是掌握整式的加减运算法则.16.(2020·邢台市开元中学七年级月考)出租车司机李师傅某天下午从停车场出发一直沿东西方向的大街进行营运,规定向东为正,向西为负,他行驶里程(单位:km )记录如下:11+,5-,3+,10+,11-,5+,15-,8-. (1)当把最后一名乘客送达目的地时,李师傅在停车场的什么位置?(2)若每千米为盈利1.5元,则这天下午他盈利多少元?【答案】(1)()()()()()()()()531111518051+++++-++-+++-+-,115310115158=-++-+--,10=-(千米), 答:李师傅最后在停车场的西边10千米处;(2)115311515810++-++++-+++-+-+,115310115158=+++++++,68=(千米),⨯=(元),则68 1.5102答:这天下午他盈利102元.【点睛】本题考查了正负数在实际生活中的应用、绝对值的应用、有理数乘法与加减法的应用,依据题意,正确列出各运算式子是解题关键.17.(2020·福建三明市·七年级期中)用棋子按规律摆出下列一组图形:(1)填写下表:(2)照这样的方式摆下去,则第n个图形中棋子的枚数是______;(3)照这样的方式摆下去,则第100个图形中棋子的枚数是______.【答案】解:(1)第1个图形棋子数:5=3⨯1+2;第2图形棋子数:8=3⨯2+2;第3图形棋子数:11=3⨯3+2;第4图形棋子数:14=3⨯4+2;第5图形棋子数:17=3⨯5+2;∴表如下:(2)由(1)知,第n 个图形中棋子的枚数是32n +.(3)当100n =时,3231002302n +=⨯+=,∴第100个图形中棋子的枚数是302.【点睛】本题考查了图形的变化规律,关键是找到规律,列出式子.四、(本题共计3小题,每小题8分,共计24分)18.(2020·靖江市靖城中学七年级月考)有理数a ,b ,c 在数轴上的位置如图所示,(1)c 0; a +c 0;b ﹣a 0 (用<、>、=填空)(2)试化简:|b ﹣a |﹣|a +c |+|c |.【答案】(1)由题意,得c <a <0<b ,则c <0; a +c <0;b −a >0;故答案为<;<;>;(2)原式=(b -a )-(-a -c )+(-c )=b −a +a +c −c =b .【点睛】本题考查了绝对值:若a >0,则|a |=a ;若a =0,则|a |=0;若a <0,则|a |=−a .也考查了数轴与整式的加减. 19.(2020·成都市武侯区领川外国语学校七年级期中)若代数式22261x ax bx x ++-+-的值与字母x 的取值无关,又2222A a ab b =-+-,2233B a ab b =-+.(1)求,a b 的值;(2)求:()()32A B A B +-+的值;(3),,A B C 三点在同一直线上,M 是线段AC 的中点,N 是线段BC 的中点,若AC a b cm =-,BC a b cm =+,求MN 的长.【答案】(1)原式()()2215b x a x =-+++,∵该代数式的值与字母x 的取值无关,∵20,10b a -=+=,解得2,1b a ==-;(2)()()32322A B A B A B A B B A +-+=+--=-,∵原式B A =-,∵222222,33A a ab b B a ab b =-+-=-+,∵原式()()22223322a ab b a ab b =-+--+-22223322a ab b a ab b =-++-+22525a ab b =-+将1,2a b =-=代入得:原式()()225121252=⨯--⨯-⨯+⨯,5420=++29=(3)将1,2a b =-=代入得:123,121AC cm BC cm =--==-+=,如图1所示:∵M 是线段AC 的中点, ∵1133222MC AC cm ==⨯=,∵N 是线段BC 的中点, ∵1111222CN CB cm ==⨯=,∵MN MC CN =+, ∵31222MN cm =+=,如图2所示:∵M 是线段AC 的中点, ∵1133222MC AC cm ==⨯=,∵N 是线段BC 的中点,∵1111222CN CB cm ==⨯=,∵MN MC CN=-,∵31122MN cm=-=,综上,MN的值为2cm或1cm.【点睛】本题考查了整式的加减-化简求值、绝对值、线段之间的数量关系、有理数的混合运算,熟练掌握运算法则和运算顺序,灵活运用数形结合和分类讨论的思想方法是解答的关键.20.(2020·长沙市长郡外国语实验中学八年级月考)“中秋”是我国的传统佳节,历来有吃“月饼”的习俗.我市网红“巢娘驰”食品厂为了解长沙市民对销量较好的莲蓉馅、豆沙馅、五仁馅、蛋黄馅(以下分别用A、B、C、D表示)这四种不同口味月饼的喜爱情况,在节前对我市某小区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图(不完整).请根据以上信息回答:(1)将两幅不完整的图补充完整;(2)本次参加抽样调查的居民有多少人?(3)若居民区有20000人,请估计爱吃蛋黄馅月饼的人数.【答案】解:(1)本次参加抽样调查的居民人数是:60÷10%=600(人);A组所对应的百分比是(180÷600)×100%=30%,C组的人数是600﹣180﹣60﹣240=120(人),C组所占的百分比是(120÷600)×100%=20%,补全统计图如下:(2)本次参加抽样调查的居民有60÷10%=600(人),故答案为:600人;(3)根据题意得:爱吃蛋黄馅月饼的人数占总人数的40%,即:20000×40%=8000(人),答:爱吃蛋黄馅月饼的人数有8000人.【点睛】本题考查了条形统计图和扇形统计图等相关知识点,两个图结合一起看,扇形统计图中各部分表示占总体的百分比,本题考查了数形结合的思想.五、(本题共计2小题,每小题9分,共计18分)21.(2020·道真自治县隆兴中学七年级月考)某城市为增强人们节约用水的意识,规定每吨生活用水的基本价格为2元,每月每户限定用水6吨,超出部分在基本价格的基础上增加80%,已知某户居民这月用水量为a吨(该户居民用水量已超过规定).(1)这户居民该月应缴水费多少元(用含有a的代数式表示)?a 时,计算(1)的结论中代数式的值.(2)当8(3)若这户居民该月缴水费26.4元,则这户居民这月用水多少吨?【答案】解:(1)该户居民次月应交的水费为:()()()()26180%2612 3.66 3.69.6a a a ⨯++⨯⨯-=+-=-元.所以该户居民该月应交水费为()3.69.6a -元.(2)当8a =时,3.69.6 3.689.628.89.619.2a -=⨯-=-=元.(3)设这户居民次月用水x 吨,根据题意得:()()26180%2626.4x ⨯++⨯⨯-=整理得:3.69.626.4x -=解得10x =所以这户居民这月用水10吨.【点睛】本题考察一元一次方程的实际应用,正确判断属于哪种情况是解题的关键.22.(2020·宜兴外国语学校七年级月考)如图,数轴上有A 、B 、C 、D 、O 五个点,点O 为原点,点C 在数轴上表示的数是5,线段CD 的长度为6个单位,线段AB 的长度为2个单位,且B 、C 两点之间的距离为13个单位,请解答下列问题:(1)点D 在数轴上表示的数是___,点A 在数轴上表示的数是___;(2)若点B 以每秒2个单位的速度向右匀速运动t 秒运动到线段CD 上,且BC 的长度是3个单位,根据题意列出的方程是______________,解得t =___;(3)若线段AB 、CD 同时从原来的位置出发,线段AB 以每秒2个单位的速度向右匀速运动,线段CD 以每秒3个单位的速度向左匀速运动,把线段CD的中点记作P,求出点P与线段AB的一个端点的距离为2个单位时运动的时间.【答案】(1)∵点C在数轴上表示的数是5,CD=6,AB=2,BC=13,∴点D在数轴上表示的数是11,点B在数轴上表示的数是﹣8,点A在数轴上表示的数是﹣10;(2)B运动到CD上时,走过的路程为2t,减去BC的距离即为此时BC的长度,故:2t-13=3,解得:t=8;(3)由题意得,线段CD的中点P的位置为8,分三种情况讨论:①当点P在点B右侧2个单位时,16﹣2t﹣3t=2,解得:t=2.8;②当点P在点B左侧2个单位时,2t+3t﹣16=2,解得:t=3.6,此时P与A重合;③当点P在点A左侧2个单位时,2t+3t﹣18=2,解得:t=4;综上,当t=2.8或3.6或4时,点P与线段AB的一个端点的距离为2个单位.【点睛】本题考查了一元一次方程的应用和数轴.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.六、(本题共计1小题,每小题12分,共计12分)23.(2020·江苏南通市·南通田家炳中学七年级月考)(阅读理解)射线OC是∠AOB内部的一条射线,若∠COA=12∠BOC,则我们称射线OC是射线OA的伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=12∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD=12∠AOD,称射线OD是射线OB的伴随线.(知识运用)(1)如图2,∠AOB =120°,射线OM 是射线OA 的伴随线,则∠AOM = °,若∠AOB 的度数是α,射线ON 是射线OB 的伴随线,射线OC 是∠AOB 的平分线,则∠NOC 的度数是 .(用含α的代数式表示)(2)如图3,如∠AOB =180°,射线OC 与射线OA 重合,并绕点O 以每秒3°的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5°的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止.①是否存在某个时刻t (秒),使得∠COD 的度数是20°,若存在,求出t 的值,若不存在,请说明理由.②当t 为多少秒时,射线OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【答案】解:(1)如图, 射线是OA 的伴随射线,12AOC BOC ∴∠=∠, 111204033AOC AOB ∴∠=∠=⨯︒=︒ ,同理,若∠AOB 的度数是α,射线ON 是射线OB 的伴随线,1133BON AOB α∴∠=∠= , 射线OC 是∠AOB 的平分线,1122BOC AOB α∴∠=∠= , 1123NOC BOC BON αα∴∠=∠-∠=- =16α,故答案为:40,6α︒(2)射线OD 与OA 重合时,t =1805=36(秒) ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则180﹣5t ﹣3t =20,∴t =20;若在相遇之后,则5t +3t ﹣180=20,∴t =25;所以,综上所述,当t =20秒或25秒时,∠COD 的度数是20°.②相遇之前:(i )如图1,OC是OA的伴随线时,则∠AOC=12∠COD即3t=12(180﹣5t﹣3t)∴t=90 7(ii)如图2,OC是OD的伴随线时,则∠COD=12∠AOC即180﹣5t﹣3t=123t∴t=360 19相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD=12∠AOD即5t+3t﹣180=12(180﹣5t)∴t=180 7(iv)如图4,OD是OA的伴随线时,则∠AOD=12∠COD即180﹣5t=12(3t+5t﹣180)∴t=30所以,综上所述,当t=90360180,,7197,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.【点评】本题考查了角的计算,解决本题的关键是利用分类讨论思想.。
2020-2021初一数学上期末试卷(带答案) 2020-2021初一数学上期末试卷(带答案)一、选择题1.若x是-3的相反数,y=5,则x+y的值为()A。
-8 B。
2 C。
8或-2 D。
-8或22.下列四个角中,最有可能与70°角互补的角是()A。
20° B。
30° C。
110° D。
120°3.实数a、b、c在数轴上的位置如图所示,且a与c互为相反数,则下列式子中一定成立的是()A。
a+b+c>0 B。
|a+b|<c C。
|a-c|=|a|+c D。
ab<04.已知长方形的周长是45cm,一边长是a cm,则这个长方形的面积是()A。
a(45-a)cm^2 B。
a(45-2a)cm^2 C。
(45-a)^2/2cm^2 D。
(45-2a)^2/2cm^25.如果水库的水位高于正常水位5m时,记作+5m,那么低于正常水位3m时,应记作()A。
+3m B。
-3m C。
+1/3m D。
-5m6.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x元,则根据题意列出方程正确的是()A。
0.8×(1+40%)x=15 B。
0.8×(1-40%)x=15 C。
0.8×40%x=15 D。
0.8×(-40%)x=157.下列方程变形中,正确的是()A。
3x=-4,系数化为1得x=-4/3B。
5=2-x,移项得x=3C。
4/(x-1)-3/(2x+3)=1,去分母得4(x-1)-3(2x+3)=1D。
3x-(2-4x)=5,去括号得7x=78.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x天完成这项工程,则可列的方程是()A。
4/40+x/40+x/50=1 B。
4/40+x/50=1 C。
绝密★启用前2020-2021学年度初中数学期中考试卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB =7.8 cm,那么线段MN的长等于( )A.5.4 cm B.5.6 cm C.5.8 cm D.6 cm2.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A 出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点A B.点B C.点C D.点D3.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在( )A.边BC B.边CD C.边DE D.边EF4.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第50个三角形数与第48个三角形数的差为( )A .50B .49C .99D .1005.如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是( )A .8B .12C .16D .176.式子a b c a b c++的值等于( ) A .3± B .±1 C .3±或±1 D .3或17.如图,数轴上每相邻两点相距一个单位长度,点A 、B 、C 、D 对应的位置如图所示,它们对应的数分别是a 、b 、c 、d ,且d ﹣b+c=10,那么点A 对应的数是( )A .﹣6B .﹣3C .0D .正数8.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定9.若|3m-5|+(n+3)2=0,则6m-(n+2)=( )A .6B .9C .0D .1110.如果两个数的和是正数,商是负数,那么这两个数的积是( )A .正数B .负数C .零D .以上三种结论都有可能第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.设一列数1232018,,,...,a a a a 中任意三个相邻的数之和都是22,已知32a x =,1913a =,666a x =-,那么2018a =________.12.在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”,中国古代称为“河图”、“洛书”,又叫“纵横图”.3阶幻方也称九宫格,即把1,2,3,4,5,6,7,8,9九个数填入3×3方格中,使每一行,每一列以及两条对角线上的数字之和都相等.请你将1,2,3,4,5,6,7,8,9填入下表的9个空格中,完成三阶幻方.13.若|x ﹣2+3﹣2x|=|x ﹣2|+|3﹣2x|成立,则x 的范围是__.14.观察下列各式数:0,3,8,15,24,…,试按此规律写出第2020个数是_____. 15.已知a 是质数,b 是奇数,且a 2+b=2009,则a+b=____________。
2020-2021学年四川省成都外国语学校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)2020的相反数是()A.2020B.C.﹣2020D.﹣2.(3分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×106 3.(3分)下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的()A.B.C.D.4.(3分)下列各式中,不相等的是()A.(﹣2)2和22B.|﹣2|3和|﹣23|C.(﹣2)2和﹣22D.(﹣2)3和﹣23 5.(3分)下列代数式中,不是整式的是()A.B.3C.D.a+b6.(3分)已知2x n+1y3与x4y3是同类项,则n的值是()A.2B.3C.4D.57.(3分)下列计算正确的是()A.a+a=a2B.6x3﹣5x2=xC.3x2+2x3=5x5D.3a2b﹣4ba2=﹣a2b8.(3分)某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是()元.A.2a+10B.10﹣2a C.2a D.2a﹣109.(3分)下列说法正确的有()A.所有的有理数都能用数轴上的点表示B.任何数都有倒数C.有理数分为正数和负数D.两数相减,差一定小于被减数10.(3分)墨尔本与北京的时差是+3小时(即同一时刻墨尔本时间比北京时间早3小时),班机从墨尔本飞到北京需用12小时,若乘坐从墨尔本8:00(当地时间)起飞的航班,到达北京机场时,当地时间是()A.15:00B.17:00C.20:00D.23:00二、填空题(其余每题3分,其12分)11.(3分)(1)下列各图中,可以是一个正方体的平面展开图的是.(2)下列数字:﹣1,3,﹣2,1.75,|﹣|,0,﹣75%,其中整数:,是负分数.12.(3分)(1)比较:﹣7﹣9;(2)单项式的系数是,多项式2ab﹣a2b﹣2是次三项式.13.(3分)人在运动时的心跳速率通常和人的年龄有关.用a表示人的年龄,用b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是.14.(3分)小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.三、解答题(共58分)15.(16分)计算(1)2+(﹣8);(2)(﹣32)﹣(﹣27);(3)8×(﹣)×;(4)16÷(﹣2)3﹣×(﹣4).16.(8分)合并同类项:(1)7a+3a2+2a﹣a2.(2)3x2﹣(2x2+5x﹣1).17.(12分)化简求值.(1)有理数a,b,c在数轴上的位置如图所示,化简:|b+a|﹣|b﹣c|.(2)求代数式﹣3x2y+5x﹣x2y﹣2的值,x=,y=7.(3)已知|m+n﹣2|+|mn+3|=0,求3[2(m+n)﹣mn]﹣2mn的值.18.(6分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.19.(6分)如图,一个窗户的上部是由4个扇形组成的半圆形,下部是由边长都为a的4个小正方形组成的正方形.(1)用a表示这个窗户的面积;(2)用a表示窗户外框的总长.20.(10分)唐代文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无”,当代印度诗人泰戈尔也写道:“世界上最遥远的距离,不是瞬间便无处寻觅;而是尚未相遇,便注定无法相聚”.距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点P,Q在数轴上分别表示有理数p,q,P,Q两点之间的距离表示为PQ=|p﹣q|.阅读以上材料,回答以下问题:(1)若数轴上表示x和﹣3的两点之间的距离是4,则x=;(2)当x的取值范围是多少时,代数式|x+2|+|x﹣3|有最小值,最小值是多少?(3)若未知数x,y满足(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6.求代数式2x+y的最大值,最小值分别是多少?四.填空题(每小题4分,共20分)21.(4分)已知|a|=3,|b|=5,且a<b,则a﹣b的值为.22.(4分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.则(﹣2)*(6*3)=.23.(4分)若a2+a﹣1=0,则a3+2a2+2016=.24.(4分)小博表演扑克牌游戏,她将两幅牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:a.在桌上摆3堆牌,每堆牌的张数要相等,且每堆都多于10张,但是不要告诉我;b.从第2堆拿出4张牌放到第1堆里;c.从第3堆牌中拿出8张牌放在第1堆里;d.数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e.从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A说5张,观众B说8张,小博猜两人最初每一堆里放的牌数分别为.25.(4分)下面是一种利用图形计算正整数乘法的方法,请根据图1~图4四个算图所示的规律,可知图5所表示的算式为.五.解答题(本大题共3题,共30分)26.(8分)已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5.求:(1)B+C;(2)当x=﹣1时,求B+C的值?27.(10分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师若一次性购物400元,他实际付款元.若一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示两次购物王老师实际付款多少元?28.(12分)点A,B在数轴上表示的数分别为a和b,且a,b使多项式﹣ax2+2bxy+3x2﹣x ﹣12xy+y不含二次项.(1)a=,b=;(2)若有3只电子蚂蚁M、N、P分别在A、B、O处,同时开始运动,M以1个单位每秒的速度向右运动,N以2个单位每秒的速度向左运动,P以3个单位每秒的速度向左运动,运动时间为t秒.请问:MP﹣4NP是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出其值.(3)若在问题(2)中,当电子蚂蚁M、N相遇后,点M保持原速继续向右运动,点N 在相遇点停留3秒后按原速向右运动.求:从电子蚂蚁出发开始,在整个运动过程中,当M、N两只电子蚂蚁距离为1时,t的值.。
2020-2021学年成都七中育才学校七年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.﹣的相反数是()A.2020 B.﹣2020 C.D.﹣2.下面图形中是正方体的表面展开图的是()A.B.C.D.3.嫦娥五号(Chang'e 5)是中国探月工程三期发射的月球探测器,为中国首个实施无人月面取样返回的探测器,由中国空间技术研究院研制,于2020年11月24日成功发射,嫦娥五号质量8200千克,将8200千克用科学记数法表示为()克.A.0.82×107B.82×105C.8.2×106D.8.2×1034.有下列结论:其中正确结论的个数是()①单项式﹣的系数是﹣;②用一个平面去截长方体,截面可能是六边形;③七棱柱有9个面,9个顶点,21条棱;④各边相等的多边形是正多边形.A.1个B.2个C.3个D.4个5.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线6.有下列调查:其中不适合普查而适合抽样调查的是()①调查元旦期间进入我市三环内的车流量;②了解一批导弹的杀伤范围;③调查奥运会100米决赛参赛运动员兴奋剂的使用情况;④了解成都市中学生睡眠情况.A.①②③B.①②④C.①③④D.②③④7.钟面上3点20分时,时针与分针的夹角度数是()A.30°B.25°C.15°D.20°8.下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(4a3)2=8a6D.a3•b3=ab39.杨老师到几何王国去散步,刚走到“角”的家门,就听到∠A、∠B、∠C在吵架,∠A说:“我是48°15′,我应该最大!”∠B说:“我是48.3°,我应该最大!”.∠C也不甘示弱:“我是48.15°,我应该和∠A一样大!”听到这里,杨老师对它们说:“别吵了,你们谁大谁小,由我来作评判!”,杨老师评判的结果是()A.∠A最大B.∠B最大C.∠C最大D.∠A=∠C10.已知a,b,c三个有理数在数轴上对应的位置如图所示,化简:|a+c|﹣|b﹣c|+|b|的值为()A.﹣2b﹣a B.﹣2b+a C.2c+a D.﹣2c﹣a二、填空题(每小题4分,共16分)11.﹣的倒数是,绝对值是.12.用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为cm2.13.已知一件标价为480元的上衣按八折销售,仍可获利50元.设这件上衣成本价为x元,根据题意,那么所列方程为.14.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD 的长为cm.三、解答题(共54分)15.(12分)(1)计算:8+(﹣2)×22﹣(﹣3);(2)计算:(﹣3x3)2﹣(x2)3﹣2x2•x4;(3)解方程:4x﹣3(2﹣4x)=24;(4)解方程:x﹣=﹣1.16.(6分)先化简,再求值:3(﹣2xy+x2)﹣[3x2﹣2(5xy﹣2x2)],其中x=﹣2,y=3.17.(8分)某工厂工人急需在计划时间内加工一批零件用于机械制造,如果每天加工500个,就比规定任务少80个;如果每天加工550个,则超额20个.求规定加工的零件数和计划加工的天数分别是多少?18.(8分)七中育才集团为了了解初三年级1200名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重低于53kg的学生大约有多少名?19.(8分)如图,已知∠AOB内部有三条射线,若OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=100°,求∠EOC的度数;(2)若∠AOB=70°,如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB且∠DOE:∠DOC =3:2,求∠EOC的度数.20.(12分)如图,数轴上原点为O,A,B是数轴上的两点,点A对应的数是a,点B对应的数是b,且a,b满足(a﹣2)2+|b+4|=0,动点M,N同时从A,B出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x秒(x>0).(1)A、B两点间的距离是;动点M对应的数是(用含x的代数式表示);动点N对应的数是;(用含x的代数式表示)(2)几秒后,线段OM与线段ON恰好满足3OM=2ON?(3)若M,N开始运动的同时,R从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R与M不重合时,求的值.B卷(50分)一、填空题(每小题4分,共20分)21.已知2a﹣3b+1=0,则代数式6a﹣9b+1=.22.已知关于x的方程x﹣5=﹣mx有整数解,则正整数m的值为.23.已知点D为线段AB的中点,且在直线AB上有一点C,AB=4BC,若CD=6cm,则AB的长为cm.24.如图,将长方形纸片的一角折叠,使顶点A落在F处,折痕为BC.作∠FBD的平分线BE,则∠CBE的度数为;现将∠FBD沿BF折叠使BE、BD落在∠FBC的内部,且折叠后的BE交CF于点M,BD交CF 于点N,若BN平分∠CBM,则∠ABC的度数为.25.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=3a+1.例如:f(20)=10,f(5)=16.设a1=2,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4,…,a n(n为正整数),则a4=;5a1﹣a2+a3﹣a4+a5﹣a6+…+a2019﹣a2020+a2021=.二、解答题(共30分)26.(10分)已知关于x的方程(m+3)x|m|﹣2+6n=0为一元一次方程,且该方程的解与关于x的方程﹣1=的解相同.(1)求m,n的值;(2)在(1)的条件下,若关于y的方程|a|y+a=m+1﹣2ny无解,求a的值.27.(10分)2020年旅游业收入将迎小高峰,某景区对门票采用灵活的售票方法吸引游客.100元/人的门票,非节假日打a折售票,节假日按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票;超过10个人的团队,其中10个人仍按原价售票,超过10人的游客打b折售票.部分购票信息如下表:(1)分别求出a,b的值;(2)设节假日期间某旅游团人数为x(x>10)人,请用含x的代数式表示购票款;(3)导游小李于10月1日(节假日)带A团,10月20日(非节假日)带B团都到该景区旅游,共付门票款3600元,A,B两个团队合计50人,求A,B两个团队各有多少人?非节假日节假日团队人数(人)10 16购买门票款600 1420(元)28.(10分)平面内一定点A在直线CD的上方,点O为直线CD上一动点,作射线OA,OE,OA′,当点O 在直线CD上运动时,始终保持∠COE=90°,∠AOE=∠A′OE,将射线OA绕点O顺时针旋转75°得到射线OB.(1)如图1,当点O运动到使点A在射线OE的左侧时,若OB平分∠A′OE,求∠AOE的度数;(2)当点O运动到使点A在射线OE的左侧时,且∠AOC=4∠A′OB时,求∠AOE的度数;(3)当点O运动到某一时刻时,满足∠A′OB=120°,求出此时∠BOE的度数.1.C.2.D.3.C.4.A.5.C.6.B.7.D.8.B.9.B.10.D.11.;.12.22.13.480×5.8﹣x=50.14.11.15.(1)3;(2)2x6;(3)x=;(4)x=﹣.16.﹣40.17.解:设计划加工的天数为x天,由题意得:500x+80=550x﹣20,解得:x=2,所以规定加工的零件数为500x+80=500×2+80=1080(个),答:规定加工零件数为1080个,计划加工天数为3天.18.解:(1)50;(2)6.32、72;(3)估计该校初三年级体重低于53kg的学生大约有1200×=384(名).19.解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD∠DOB,∴∠EOC=(∠AOD+∠DOB)=;(2)∵∠DOE:∠DOC=2:2,∴设∠DOE=3x,∠DOC=5x,∵∠EOA=∠AOD,∴∠AOD=2x,∵∠DOC=∠DOB,∴∠DOB=5x,∵∠AOB=100°,∴3x+4x=70°,∴x=10°,∴∠EOC=∠EOD+∠DOC=4x=50°.20.解:(1)∵a,b满足(a﹣2)2+|b+7|=0,∴a﹣2=6,b+4=0,∴a=3,b=﹣4,∵点A对应的数是a,点B对应的数是b,AB=2﹣(﹣5)=6.当运动时间为x秒时,动点M对应的数是x+2.故答案为:7;x+2.(2)由(1)中M,N所对的数得OM=x+2,∵4OM=2ON,∴3(8+x)=2|3x﹣4|,①3(2+x)=5(3x﹣4),解得x=;②3(2+x)=﹣5(3x﹣4),解得x=;综上,或秒后;(3)由题意得动点R所对的数为﹣1+6x,RM=|(﹣1+2x)﹣(5+x)|=|3﹣x|,NB=(﹣4+6x)﹣(﹣4)=3x,∴MB﹣NB=2+x﹣3x=6﹣4x,∵2+x=﹣4+8x,解得x=3,∴M与N相遇时时间为3s,N与M相遇前,x<4s时,=,N与M相遇后,x>3s时,==,综上所述的值为2或﹣3,21.﹣2.22.4.23.8或24.24.90°,67.5°.25.2,12.26.解:(1)∵关于x的方程(m+3)x|m|﹣2+2n=0是一元一次方程,∴|m|﹣2=8,m+3≠0,解得:m=2,当m=3时,方程为:6x+7n=0,解得:x=﹣n,﹣1=,2(2x+3)﹣10=5(x+n),4x+7﹣10=5x+5n,5x﹣5x=5n+3,﹣x=5n+8,解得:x=﹣5n﹣8,∴﹣5n﹣4=﹣n,∴n=﹣2;(2)把m=3,n=﹣3代入|a|y+a=m+1﹣2ny,∴y=,∵y的方程|a|y+a=4+2y无解,∴,∴a=﹣4.27.解:(1)非节假日每张门票的价格为:600÷10=60(元),60÷100=0.6,所以非节假日打3折售票,所以a=6,节假日超过10人部分的每张门票价格为(1420﹣10×100)÷(16﹣10)=70(元),70÷100=0.2,所以超过10人部分的游客打7折售票,所以b=7;(2)当节假日期间某旅游团人数为x(x>10)人时,购票款为10×100+(x﹣10)×70=(70x+300)(元);(3)设A团有n人,则B团有(50﹣n)人,当7≤n≤10时,100n+60(50﹣n)=3600,解得,n=15;当n>10时,70n+300+60(50﹣n)=3600,n=30.答:A团有30人,B团有20人.28.解:(1)设∠AOE的度数为x,由题意知∠A′OE=x,∠EOB=75°﹣x,∵OB平分∠A′OE,∴2∠EOB=∠A′OE,∴2(75°﹣x)=x,解得x=50,答:∠AOE的度数为50;(2)①如图4,当射线OB在∠A′OE内部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠A′OB+∠EOB=∠A′OE,∴(90°﹣y)+75°﹣y=y,解得y=;②如图3,当射线OB在∠A′OE外部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠AOE+∠A′OE+∠A′OB=75°,∴y+y+(90°﹣y)=75°,解得y=30,答:∠AOE的度数为或30;(3)如图4,当∠A′OB=120°时,由图可得:∠A′OA=∠A′OB﹣∠AOB=120°﹣75°=45°,又∵∠AOE=∠A′OE,∴∠AOE=22.6°,∴∠BOE=75°+22.5°=97.5°;如图5,当∠A′OB=120°,由图可得∠A′OA=360°﹣120°﹣75°=165°,又∵∠A′OE=∠AOE,∴∠AOE=82.5°,∴∠BOE=75°+82.5°=157.4°;当射线OE在CD下面时,如图6、7,∠BOE=22.7°或82.5°,综上,∠BOE的度数为157.5°或97.5°或22.5°或82.5°。
2020-2021学年成都市温江区东辰外国语学校七年级上学期第一次质检数学试卷一、选择题(本大题共10小题,共30.0分) 1.有下列说法:①−6是相反数;②6是相反数;③−6是6的相反数;④−6和6互为相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个2.9.下列各式计算或说法正确的是A. |−6|=−6B. |−0.1|›|−0.01|C. −4<−9D. +4是相反数3.太阳的半径约为696 000千米,这个数保留2个有效数字得到的数是( )A. 70B. 700000C. 7×105D. 7.0×1054.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )A. a + b >0B. a − b >0C. ab >0D.5.下列各数中,大于13且小于12的数是( )A. 512B. 612C. 712D. 812.6.若215=1a +1b ,其中a ,b 为正整数,且a <b ,那么满足条件的a ,b 一共有( )A. 2组B. 3组C. 4组D. 5组7.数轴上点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离可以表示为( )A. a −bB. b −aC. |a −b|D. a +b8.若代数式2x 2−3x +1的值是3,则代数式−4x 2+6x +7的值是( )A. 2B. 3C. 5D. 79.按如图所示的运算程序,能输出的结果为20的是( )A. x =2,y =2B. x =−3,y =2C. x =−3,y =−2D. x =3,y =−210. 下列说法中:①−a 一定是一个负数;②经过两点有一条直线,并且只有一条直线;③一个锐角的补角一定大于它的余角;④绝对值最小的有理数是1;⑤倒数等于它本身的数只有1,正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11. 已知:2+23=22×23,3+38=32×38,4+415=42×415…,若14+ab =142×ab (a 、b 均为正整数),则a +b = ______ .12. 已知,|a|=13,|b|=12,ab <0.则a −b =______.13. 有理数−32,|−7|,(−2)3,213,−43,0,−0.01,−10.1%中,属于非负整数的有______ ;属于分数的有______ .14. 若|x −2|+|3−y|=0,则xy =______.15. 定义新运算“−”,规定a −b =2a −4b ,则12−(−1)=________.16. 定义一种新运算:a ∗b =a 2−b 2,如(1∗2)=12−22=−3,则4∗(−3)= ______ . 17. 已知规定一种新运算:x※y =xy +1;x ※y =x +y −1,例如:2※3=2×3+1=7;2※3=2+3−1=4.若a※(4※5)的值为17,且a※x =a ※6,则x 的值为______.18. 有四张正面分别标有数字−2,−1,1,2的不透明卡片,它们除数字不同外其余相同.现将它们背面朝上,洗匀后小李从中任取两张,将该卡片上的数字之和记为x ,则小李得到的x 值使分式x 2−9x−3的值为0的概率是 .19. 观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…你能从中发现底数是3的幂的个位数字有什么规律吗?根据你发现的规律回答:32018的个位数字是______ . 20. 仔细观察寻找规律填空:32,−83,154,−245,…,第10个是______ ,第n 个是______ . 三、计算题(本大题共1小题,共6.0分)21.小明在学习有理数运算时发现以下三个等式:(a⋅b)2=a2⋅b2,(a⋅b)3=a3⋅b3,(a⋅b)4=a4⋅b4.(1)他把a=−2,b=3代入到第一个等式的左右两边验证:因为,左=(−2×3)2=36,右=(−2)2×32=36,左=右,所以成立.请你帮他把a=−2,b=3代入到后两个等式的左右两边验证是否成立;(2)通过上述验证,请你猜想直接写出结果:(a⋅b)365=______,归纳得出:(a⋅b)n=______(n为正整数);(3)请应用(2)中归出的结论计算:(−111)2017×112018四、解答题(本大题共11小题,共87.0分)22.阅读下列材料,完成相应的任务:神奇的等式第一个等式12+13+12×3=1;第二个等式14+15+14×5=12;第三个等式16+17+16×7=13;第四个等式18+19+18×9=14;…第100个等式1200+1201+1200×201=1100.任务:(1)第6个等式为______ ;(2)猜想第n个等式______ (用含n的代数式表示),并证明.23.已知M=(a−10)x3+6x2−3x+1是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)有一动点P从点A出发,以每秒3个单位的速度向左运动,多少秒后,P到A、B、C的距离和为15个单位?(2)在(1)的条件下,当点P移动到点B时立即掉头,速度不变,同时点M和点N分别从点A和点C出发,向右运动,点M的速度1个单位/秒,点N的速度5个单位/秒.时,求|x P−x M|+设点P、M、N所对应的数分别是x P、x M、x N,点M出发的时间为t,当2<t<92 |x M−x N|−|x N−x P|的值.24.学校组织学生到距离学校7千米的光明科技馆去参观,学生李明因迟到没能乘上学校的包车,于是准备在校门口乘出租车去光明科技馆,出租车收费标准如下:(1)出租车行驶的里程为x千米(x>3),请用x的代数式表示车费y(元);(2)李明身上仅有18.6元钱,够不够支付乘出租车到科技馆的车费?请通过计算说明理由.25. 如图,点A表示的数是−4.(1)在数轴上表示出原点O;(2)指出点B所表示的数;(3)在数轴上找一点C,它与点B的距离为2个单位长度,那么点C表示什么数?26. 已知,在数轴上有一线段AB=8,点A在点B的左边,C是线段AB上一点,AC=3,M是AB的中点,N是AC的中点.假设点M是数轴的原点,画出数轴(三要素齐全)并在数轴上标出点A、B、C、N的位置,并求出线段MN的长度?27. 哈尔滨市某区总代理张老板用360000元购进3000双李宁新款运动鞋,计划每天销售200双,实际销售时超过计划数的部分用正数表示,不足计划数的部分用负数表示,这批运动鞋前7天的销售情况记录如表:销售天数第一天第二天第三天第四天第五天第六天第七天每天的销售量(单位:双)+12−8+25+26−22+3−15(1)这七天平均每天销售运动鞋多少双?(2)计划这批运动鞋全部售完后共获利25%,则每双鞋的定价应为多少元?(3)若前七天销售的运动鞋均以(2)中的定价售出.张老板按此定价继续销售,以第三天的销售量又销售两天后,没有售出的运动鞋按定价的八折销售很快售完,求这批运动鞋全部销售后张老板共盈利多少元?(其他费用忽略不计)28. 计算−52×|1−1615|−|−13|+34×[(−1)3−7]29. 一根铁丝长acm,第一次用去它的一半少3cm.第二次用去剩下的23还多2cm.(1)用代数式表示这根铁丝还剩多少厘米?(2)当a=600时,这根铁丝还剩多少厘米?30. 如图,数轴上有三个点A、B、C,表示的数分别是−4、−2、3,请回答:(1)若C、B两点的距离与A、B两点距离相等,则需将点C向左移动______ 个单位;(2)若移动A、B、C三点中的两点,使三个点表示的数相同,移动方法有______ 种,其中移动所走的距离之和最小的是______ 个单位;(3)若在B处有一小青蛙,一步跳一个单位长,小青蛙第一次先向左跳一步,第2次向右跳2步,第3次向再向左跳3步,第4次再向右跳4步…,按此规律继续下去,那么跳第100次时落脚点表示的数是______ ;(4)若有两只小青蛙M、N,它们在数轴上的点表示的数分别为整数x、y,且|x−2|+|y+3|=2,那么两只青蛙M、N之间的距离为______ .。
2020-2021学年四川省成都市金牛区七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列各数中:﹣1,0,12,0.5,最小的数是()A.0.5B.0C.12D.﹣12.(3分)用一个平面去截一个几何体,截面不可能是圆的几何体的是()A.B.C.D.3.(3分)2020年10月29日,中国共产党第十九届中央委员会第五次全体会议审议通过了《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》,其中提到“脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫”.请用科学记数法表示5575万为()A.5.575×109B.5.575×108C.5.575×107D.0.5575×109 4.(3分)下列运算正确的是()A.﹣3mn+3mn=0B.3a﹣2a=1C.x2y﹣2xy2=﹣x2y D.2a2+3a3=5a55.(3分)下列调查中,宜采用抽样调查的是()A.疫情期间,了解全体师生入校时的体温情况B.某企业招聘,对应聘人员进行面试C.对运载火箭的零部件进行检查D.检测某城市的空气质量6.(3分)已知等式3a=2b﹣4,则下列等式中不成立的是()A.3a﹣2b=﹣4B.3a﹣1=2b﹣5C.3ac=2bc﹣4D.3a(c+1)=(2b﹣4)(c+1)7.(3分)根据如图所示的流程图中的程序,当输入数据x=﹣2,y=1时,m值为()A.5B.3C.﹣2D.48.(3分)下列语句中:正确的个数有()①画直线AB=3cm;②射线AB与射线BA是同一条射线;③用一个平面去截一个正方体,其截面最多为六边形.A.0B.1C.2D.39.(3分)如图,已知∠AOB=∠COD=90°,∠BOD=130°,则∠BOC的度数为()A.130°B.140°C.135°D.120°10.(3分)甲乙两地相距400千米,A车从甲地开出前往乙地,速度为60km/h,B车从乙地开出前往甲地,速度为90km/h.设两车相遇的地点离甲地x千米,则可列方程为()A.B.60x+90x=400C.D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)单项式﹣的系数是,次数是.12.(4分)已知x=3是方程ax﹣4=5的一个解,则a=.13.(4分)如图,已知点M是线段AB的中点,点P是线段AM的中点,若AB=10cm,则PM=cm.14.(4分)如图,在A处观测到C处的方位角是北偏东.三、解答题(本大题共6个小题,共54分)15.(8分)计算(1);(2).16.(12分)解方程:(1)8x﹣4=6(x+2);(2).17.(7分)y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=﹣1,y=2.18.(8分)列方程解决问题:“双11”,某商家销售甲、乙两种商品,计划共卖出1500件,实际甲种商品卖出的数量比甲计划卖出的数量增加6%,乙种商品卖出的数量比乙计划卖出的数量减少2%,而两种商品的总销量增加了50件.则商家原计划销售甲、乙两种商品各多少件?19.(9分)疫情期间,某学校根据同学学习情况,计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并通过计算补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生4800人,请你估计该校对在线阅读最感兴趣的学生人数.20.(10分)已知,线段AB上有三个点C、D、E,AB=18,AC=2BC,D、E为动点(点D在点E的左侧),并且始终保持DE=8.(1)如图1,当E为BC中点时,求AD的长;(2)如图2,点F为线段BC的中点,AF=3AD,求AE的长;(3)若点D从A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位,当运动时间t为多少秒时,使AD、BE两条线段中,一条的长度恰好是另一条的两倍.四、填空题(每小题4分,共20分)21.(4分)若4x+3y+5=0,则8x+6y﹣5的值等于.22.(4分)如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.23.(4分)探索规律:图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点得到图③.则图③中有个三角形;按照这种方法继续下去,第n个图形中有个三角形.24.(4分)已知有理数a,b满足ab≠0,且|a﹣b|=4a﹣3b,则的值为.25.(4分)如图,在长方形ABCD的边上有P、Q两个动点速度分别为2cm/s,1cm/s,两个点同时出发,运动过程中,一个点停止运动时另一个点继续向终点运动,运动时间为t 秒.动点P从A点出发,沿折线A﹣D﹣C向终点C运动,动点Q从C点出发,沿折线C﹣D﹣A向终点A运动.若AB=8cm,AD=6cm,当△APC和△AQC的面积之和为8平方厘米时,t的值为.五、解答题(本大题共3个小题,共30分)26.(8分)已知关于x的整式A、B,其中A=3x2+(m﹣1)x+1,B=nx2+3x+2m.(1)若当A+2B中不含x的二次项和一次项时,求m+n的值;(2)当n=3时,A=B﹣2m+7,求此时使x为正整数时,正整数m的值.27.(10分)为鼓励市民节约用电,某市居民生活用电采取阶梯电价进行收费,收费标准如表所示:(例如:月用电量为350度时,收费为0.52×200+0.57×(300﹣200)+0.82×(350﹣300)=202元)月用电量(单位:度)单价(元/度)不超过200度的部分0.52超过200度不超过300度的部分0.57超过300度的部分0.82(1)当月用电量为180度时,应收费多少?(2)若小明家某月用电量为x(x≤300),请用含x的代数式表示小明家该月的电费.(3)若小明家12月份的电费为138.2元,请求出小明家12月份的用电量.28.(12分)已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.(1)如图1,当∠AOD=∠AOB时,求∠DOE;(2)如图2,若OD在∠AOB内部运动,且OF是∠AOD的角平分线时,求∠AOE﹣∠DOF的值;(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒10°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒6°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<23.5)后得到∠COP=∠AOQ,求t的值.2020-2021学年四川省成都市金牛区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列各数中:﹣1,0,12,0.5,最小的数是()A.0.5B.0C.12D.﹣1【解答】解:∵﹣1<0<0.5<12,∴所给的各数中:﹣1,0,12,0.5,最小的数是﹣1.故选:D.2.(3分)用一个平面去截一个几何体,截面不可能是圆的几何体的是()A.B.C.D.【解答】解:用一个平面去截圆锥或圆柱,截面可能是圆,用一个平面去截球,截面是圆,但用一个平面去截棱柱,截面不可能是圆.故选:C.3.(3分)2020年10月29日,中国共产党第十九届中央委员会第五次全体会议审议通过了《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》,其中提到“脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫”.请用科学记数法表示5575万为()A.5.575×109B.5.575×108C.5.575×107D.0.5575×109【解答】解:5575万=55750000=5.575×107.故选:C.4.(3分)下列运算正确的是()A.﹣3mn+3mn=0B.3a﹣2a=1C.x2y﹣2xy2=﹣x2y D.2a2+3a3=5a5【解答】解:A、原式=0,运算正确,符合题意.B、原式=a,运算不正确,不符合题意.C、x2y与2xy2不是同类项,不能合并,运算不正确,不符合题意.D、2a2与3a3不是同类项,不能合并,运算不正确,不符合题意.故选:A.5.(3分)下列调查中,宜采用抽样调查的是()A.疫情期间,了解全体师生入校时的体温情况B.某企业招聘,对应聘人员进行面试C.对运载火箭的零部件进行检查D.检测某城市的空气质量【解答】解:A、疫情期间,了解全体师生入校时的体温情况,适合全面调查,故该选项不合题意;B、企业招聘,对应聘人员进行面试,适宜采用全面调查方式,故该选项不合题意;C、对运载火箭的零部件进行检查,适宜采用全面调查方式,故该选项不合题意;D、检测某城市的空气质量,宜采用抽样调查,故该选项符合题意;故选:D.6.(3分)已知等式3a=2b﹣4,则下列等式中不成立的是()A.3a﹣2b=﹣4B.3a﹣1=2b﹣5C.3ac=2bc﹣4D.3a(c+1)=(2b﹣4)(c+1)【解答】解:A、由3a=2b﹣4的两边同时减去2b得到:3a﹣2b=﹣4,原变形正确,故本选项不符合题意;B、由3a=2b﹣4的两边同时减去1得到:3a﹣1=2b﹣5,原变形正确,故本选项不符合题意;C、由3a=2b﹣4的两边同时乘以c得到:3ac=2bc﹣4c,原变形错误,故本选项符合题意;D、由3a=2b﹣4的两边同时乘以(c+1)得到:3a(c+1)=(2b﹣4)(c+1),原变形正确,故本选项不符合题意;故选:C.7.(3分)根据如图所示的流程图中的程序,当输入数据x=﹣2,y=1时,m值为()A.5B.3C.﹣2D.4【解答】解:∵当x=﹣2,y=1时,xy=﹣2×1=﹣2<0,∴m=x2﹣y2=(﹣2)2﹣12=3,故选:B.8.(3分)下列语句中:正确的个数有()①画直线AB=3cm;②射线AB与射线BA是同一条射线;③用一个平面去截一个正方体,其截面最多为六边形.A.0B.1C.2D.3【解答】解:①画直线AB=3cm,说法错误,直线没有长度,故原说法错误;②射线AB与射线BA不是同一条射线,故原说法错误;③正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,故原说法正确.所以正确的个数有1个,故选:B.9.(3分)如图,已知∠AOB=∠COD=90°,∠BOD=130°,则∠BOC的度数为()A.130°B.140°C.135°D.120°【解答】解:∵∠BOD=130°,∠COD=90°,∴∠BOC=360°﹣∠BOD﹣∠COD=360°﹣130°﹣90°=140°,故选:B.10.(3分)甲乙两地相距400千米,A车从甲地开出前往乙地,速度为60km/h,B车从乙地开出前往甲地,速度为90km/h.设两车相遇的地点离甲地x千米,则可列方程为()A.B.60x+90x=400C.D.【解答】解:由题意可得,,故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)单项式﹣的系数是﹣,次数是3.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣,3.12.(4分)已知x=3是方程ax﹣4=5的一个解,则a=3.【解答】解:∵x=3是方程ax﹣4=5的一个解,∴3a﹣4=5,解得:a=3.故答案为:3.13.(4分)如图,已知点M是线段AB的中点,点P是线段AM的中点,若AB=10cm,则PM= 2.5cm.【解答】解:∵M是线段AB的中点,AB=10cm,∴AM=AB=5cm,又∵P是线段AM的中点,∴PM=AM=2.5cm.14.(4分)如图,在A处观测到C处的方位角是北偏东60°.【解答】解:如图所示,∠CAD=30°,∠BAD=90°,∴∠BAC=60°,∴在A处观测到C处的方位角是北偏东60°,故答案为:60°.三、解答题(本大题共6个小题,共54分)15.(8分)计算(1);(2).【解答】解:(1)原式=﹣9﹣4×2=﹣9﹣8=﹣17;(2)原式=﹣1﹣8×﹣5=﹣1﹣4﹣5=﹣10.16.(12分)解方程:(1)8x﹣4=6(x+2);(2).【解答】解:(1)去括号得:8x﹣4=6x+12,移项得:8x﹣6x=12+4,合并得:2x=16,解得:x=8;(2)去分母得:5(x﹣3)﹣10=2(4x+1),去括号得:5x﹣15﹣10=8x+2,移项得:5x﹣8x=2+15+10,合并得:﹣3x=27,解得:x=﹣9.17.(7分)y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=﹣1,y=2.【解答】解:原式=y2+5xy﹣8x2﹣4xy+8x2=y2+xy,当x=﹣1,y=2时,原式=22+(﹣1)×2=2.18.(8分)列方程解决问题:“双11”,某商家销售甲、乙两种商品,计划共卖出1500件,实际甲种商品卖出的数量比甲计划卖出的数量增加6%,乙种商品卖出的数量比乙计划卖出的数量减少2%,而两种商品的总销量增加了50件.则商家原计划销售甲、乙两种商品各多少件?【解答】解:设商家原计划销售甲种商品x件,则原计划销售乙种商品(1500﹣x)件,依题意得:(1+6%)x+(1﹣2%)(1500﹣x)﹣1500=50,解得:x=1000,∴1500﹣x=500.答:商家原计划销售甲种商品1000件,乙种商品500件.19.(9分)疫情期间,某学校根据同学学习情况,计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并通过计算补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生4800人,请你估计该校对在线阅读最感兴趣的学生人数.【解答】解:(1)18÷20%=90(人),故答案为:90;(2)90﹣18﹣12﹣24=36(人),补全条形统计图如图所示:(3)4800×=1280(人),答:该校4800名学生中对在线阅读最感兴趣的学生人数大约有1280人.20.(10分)已知,线段AB上有三个点C、D、E,AB=18,AC=2BC,D、E为动点(点D在点E的左侧),并且始终保持DE=8.(1)如图1,当E为BC中点时,求AD的长;(2)如图2,点F为线段BC的中点,AF=3AD,求AE的长;(3)若点D从A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位,当运动时间t为多少秒时,使AD、BE两条线段中,一条的长度恰好是另一条的两倍.【解答】解:(1)∵AB=18,AC=2BC,∴AC=18×=12,BC=18×=6,∵E为BC中点,∴BE=BC=3,∵DE=8,∴AD=AB﹣BE﹣DE=18﹣3﹣8=7;(2)∵F为BC中点,∴BF=BC=3,∴AF=AB﹣BF=18﹣3=15,∵AF=3AD,∴AD=5,∵DE=8,∴AE=AD+DE=5+8=13;(3)当BE=2AD时,依题意有18﹣(2t+8)=2×2t,解得t=;当AD=2BE时,依题意有2t=2×[18﹣(2t+8)],解得t=.故当运动时间t为或秒时,使AD、BE两条线段中,一条的长度恰好是另一条的两倍.四、填空题(每小题4分,共20分)21.(4分)若4x+3y+5=0,则8x+6y﹣5的值等于﹣15.【解答】解:∵4x+3y+5=0,∴4x+3y=﹣5,则原式=2(4x+3y)﹣5=2×(﹣5)﹣5=﹣10﹣5=﹣15.故答案为:﹣15.22.(4分)如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是﹣1.【解答】解:由一元一次方程的特点得,解得m=﹣1.故填:﹣1.23.(4分)探索规律:图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点得到图③.则图③中有9个三角形;按照这种方法继续下去,第n个图形中有4n﹣3个三角形.【解答】解:图①中有1个三角形,图②中有5个三角形,图③中有9个三角形;…发现每个图形都比起前一个图形依次多4个三角形,∴第n个图形中有1+4(n﹣1)=4n﹣3个三角形.故答案为:9,4n﹣3.24.(4分)已知有理数a,b满足ab≠0,且|a﹣b|=4a﹣3b,则的值为或.【解答】解:①当a>b时,a﹣b>0,∴|a﹣b|=a﹣b,又∵|a﹣b|=4a﹣3b,∴a﹣b=4a﹣3b,∴3a=2b,∴的值为;②当a<b时,a﹣b<0,∴|a﹣b|=﹣a+b,又∵|a﹣b|=4a﹣3b,∴﹣a+b=4a﹣3b,∴5a=4b,∴的值为;综上所述,的值为或,故答案为:或.25.(4分)如图,在长方形ABCD的边上有P、Q两个动点速度分别为2cm/s,1cm/s,两个点同时出发,运动过程中,一个点停止运动时另一个点继续向终点运动,运动时间为t 秒.动点P从A点出发,沿折线A﹣D﹣C向终点C运动,动点Q从C点出发,沿折线C﹣D﹣A向终点A运动.若AB=8cm,AD=6cm,当△APC和△AQC的面积之和为8平方厘米时,t的值为或12.【解答】解:∵四边形ABCD是矩形,∴CD=AB=8,BC=AD=6,当t≤3时,P在AD上,Q在CD上,AP=2t,CQ=t,则S△APC=AP×CD=×2t×8=8t,S△AQC=CQ×AD=×t×6=3t,∴S△APC+S△AQC=8t+3t=11t,若11t=8,则t=<3,满足条件成立;当3<t≤7时,P、Q都在CD上,P运动的总路程为2t,∴DP=2t﹣AD=2t﹣6,则CP=CD﹣DP=8﹣(2t﹣6)=14﹣2t,∴S△APC=CP×AD=(14﹣2t)×6=42﹣6t,S△AQC不变为3t,则S△APC+S△AQC=42﹣6t+3t=42﹣3t,若42﹣3t=8,则t=>7,不满足条件舍去;当7<t≤8时,P到达C点,S△APC=0,S△AQC=3t=8,则t=<7,不成立;当8<t≤14时,Q在AD上,DQ=t﹣8,则AP=AD﹣DQ=14﹣t,∴S△AQC=×(14﹣t)×8=56﹣4t=8,解得:t=12,成立;综上所述,当△APC和△AQC的面积之和为8平方厘米时,t的值为或12.五、解答题(本大题共3个小题,共30分)26.(8分)已知关于x的整式A、B,其中A=3x2+(m﹣1)x+1,B=nx2+3x+2m.(1)若当A+2B中不含x的二次项和一次项时,求m+n的值;(2)当n=3时,A=B﹣2m+7,求此时使x为正整数时,正整数m的值.【解答】解:(1)∵A=3x2+(m﹣1)x+1,B=nx2+3x+2m,∴A+2B=3x2+(m﹣1)x+1+2(nx2+3x+2m)=3x2+(m﹣1)x+1+2nx2+6x+4m=(3+2n)x2+(m+5)x+4m+1,∵A+2B中不含x的二次项和一次项,∴3+2n=0,m+5=0,∴n=﹣,m=﹣5,∴m+n=﹣5﹣=﹣6.5;(2)∵A=B﹣2m+7,且n=3,∴3x2+(m﹣1)x+1=3x2+3x+2m﹣2m+7,(m﹣1)x+1=3x+7,解得:x=,∵m和x都为正整数,∴m﹣4是6的约数,∴m﹣4=1,2,3,6,∴m=5,6,7,10.27.(10分)为鼓励市民节约用电,某市居民生活用电采取阶梯电价进行收费,收费标准如表所示:(例如:月用电量为350度时,收费为0.52×200+0.57×(300﹣200)+0.82×(350﹣300)=202元)月用电量(单位:度)单价(元/度)不超过200度的部分0.52超过200度不超过300度的部分0.57超过300度的部分0.82(1)当月用电量为180度时,应收费多少?(2)若小明家某月用电量为x(x≤300),请用含x的代数式表示小明家该月的电费.(3)若小明家12月份的电费为138.2元,请求出小明家12月份的用电量.【解答】解:(1)0.52×180=93.6(元).故应收费93.6元;(2)小明家该月的电费为0.52x元(0<x≤200),0.52×200+0.57(x﹣200)=(0.57x﹣10)元(200<x≤300);(3)设小明家12月份的用电量为x度,∵0.52×200=104(元),0.57×300﹣10=161(元),∴200<x<300,依题意有0.57x﹣10=138.2,解得x=260.故小明家12月份的用电量为260度.28.(12分)已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.(1)如图1,当∠AOD=∠AOB时,求∠DOE;(2)如图2,若OD在∠AOB内部运动,且OF是∠AOD的角平分线时,求∠AOE﹣∠DOF的值;(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒10°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒6°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<23.5)后得到∠COP=∠AOQ,求t的值.【解答】解:(1)∵∠AOB=90°,∴∠AOD=∠AOB=30°,∵∠COD=80°,∴∠AOC=∠AOD+∠COD=30°+80°=110°,∵OE平分∠AOC,∴∠AOE=∠COE=∠AOC=55°,∴∠DOE=∠AOE﹣∠AOD=55°﹣30°=25°;(2)∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD,∵OE平分∠AOC,∴∠AOE=∠AOC,∴∠AOE﹣∠AOF=∠AOC﹣∠AOD=(∠AOC﹣∠AOD)=∠COD,又∵∠COD=80°,∴∠AOE﹣∠DOF=×80°=40°;(3)分三种情况:①当射线OP、OQ在∠AOC内部时,即0≤t≤5.5时,由题意得:∠POE=(10t)°,∠DOQ=(6t)°,∴∠COP=∠COE﹣∠POE=(55﹣10t)°,∠AOQ=∠AOD﹣∠DOQ=(30﹣6t)°,∵∠COP=∠AOQ,∴55﹣10t=(10﹣6t),解得:t=(舍去);②当射线OP在∠AOC外部时,射线OQ在∠AOC外部时,即5<t<5.5时,则∠COP=∠COE﹣∠POE=(55﹣10t)°,∠AOQ=∠DOQ﹣∠AOD=(6t﹣30)°,∴55﹣10t=(6t﹣30),解得:t=;③当射线OP在∠AOC外部时,即5.5<t<23.5时,则∠COP=∠POE﹣∠COE=(10t﹣55)°,∠AOQ=∠DOQ﹣∠AOD=(6t﹣30)°,∴10t﹣55=(6t﹣30),解得:t=;综上所述,t的值为秒或秒.。
2020-2021成都市实验外国语学校七年级数学上期末试卷(及答案)一、选择题1.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .2.下列关于多项式5ab 2-2a 2bc-1的说法中,正确的是( ) A .它是三次三项式 B .它是四次两项式 C .它的最高次项是22a bc - D .它的常数项是13.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( ) A .不赚不亏B .赚8元C .亏8元D .赚15元4.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .5.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中:①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( ) A .1个B .2个C .3个D .4个6.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米7.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( )A .2B .3C .4D .58.运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a +2=b +3 B .如果a =b ,那么a -2=b -3 C .如果,那么a =bD .如果a 2=3a ,那么a =39.4h =2小时24分.答:停电的时间为2小时24分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.10.已知x =y ,则下面变形错误的是( ) A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 11.若a =2,|b |=5,则a +b =( ) A .-3 B .7 C .-7 D .-3或712.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4ACB .CE =12AB C .AE =34AB D .AD =12CB 二、填空题13.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.14.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.15.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元. 16.如图所示是一组有规律的图案,第l 个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为_______ (用含n 的式子表示).17.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.18.用科学记数法表示24万____________. 19.已知2x+4与3x ﹣2互为相反数,则x=_____.20.点A 、B 、C 在同一条数轴上,且点A 表示的数为﹣18,点B 表示的数为﹣2.若BC =14AB ,则点C 表示的数为_____. 三、解答题21.解方程:(1)()()235312--=+-x x x (2)216323+-=+x x 22.如图,数轴上A B 、两点对应的数分别为30-、16,点P 为数轴上一动点,点P 对应的数为x .(1)填空:若34x =-时,点P 到点A 、点B 的距离之和为_____________. (2)填空:若点P 到点A 、点B 的距离相等,则x =_______. (3)填空:若10BP =,则AP =_______.(4)若动点P 以每秒2个单位长度的速度从点A 向点B 运动,动点Q 以每秒3个单位长度的速度从点B 向点A 运动两动点同时运动且一动点到达终点时另一动点也停止运动,经过t 秒14PQ =,求t 的值.23.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.24.已知点O 为直线AB 上的一点,∠BOC =∠DOE =90°(1)如图1,当射线OC 、射线OD 在直线AB 的两侧时,请回答结论并说明理由; ①∠COD 和∠BOE 相等吗? ②∠BOD 和∠COE 有什么关系?(2)如图2,当射线OC 、射线OD 在直线AB 的同侧时,请直接回答; ①∠COD 和∠BOE 相等吗?②第(1)题中的∠BOD 和∠COE 的关系还成立吗?25.如图所示,已知线段m ,n ,求作线段AB ,使它等于m +2n .(用尺规作图,不写做法,保留作图痕迹.)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可. 【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角; ∵答案A 、B 、C 都是锐角,答案D 是钝角; ∴答案D 正确. 故选D .2.C解析:C 【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc ,常数项为-1. 故选C.3.C解析:C 【解析】试题分析:设盈利的进价是x 元,则 x+25%x=60,x=48.设亏损的进价是y元,则y-25%y=60,y=80.60+60-48-80=-8,∴亏了8元.故选C.考点:一元一次方程的应用.4.D解析:D【解析】【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1.【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++ =1.故答案选:D.【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.5.B解析:B【解析】【分析】根据图示,可得c<a<0,b>0,|a|+|b|=|c|,据此逐项判定即可.【详解】∵c<a<0,b>0,∴abc>0,∴选项①不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)>0,∴选项②符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴-a+b=-c,∴a-c=b,∴选项③符合题意.∵a cba b c++=-1+1-1=-1,∴选项④不符合题意,∴正确的个数有2个:②、③.故选B.【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.6.B解析:B【解析】【分析】设小长方形的宽为a厘米,则其长为(m-2a)厘米,根据长方形的周长公式列式计算即可.【详解】设小长方形的宽为a厘米,则其长为(m-2a)厘米,所以图2中两块阴影部分周长和为:2222224m a n a n m a a n (厘米)故选:B【点睛】本题考查的是列代数式及整式的化简,能根据图形列出代数式是关键.7.C解析:C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.8.C解析:C【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】解:A、等式的左边加2,右边加3,故A错误;B、等式的左边减2,右边减3,故B错误;C、等式的两边都乘c,故C正确;D、当a=0时,a≠3,故D错误;故选C.【点睛】本题主要考查了等式的基本性质,等式性质:9.无10.D解析:D【解析】解:A.B、C的变形均符合等式的基本性质,D项a不能为0,不一定成立.故选D.11.D解析:D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.12.D解析:D【解析】【分析】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14AB,即可知A、B、C均正确,则可求解【详解】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14 AB,选项A ,AC =14AB ⇒AB =4AC ,选项正确 选项B ,CE =2CD ⇒CE =12AB ,选项正确 选项C ,AE =3AC ⇒AE =34AB ,选项正确 选项D ,因为AD =2AC ,CB =3AC ,所以2AD CB 3=,选项错误 故选D . 【点睛】此题考查的是线段的等分,能理解题中:C ,D ,E 是线段AB 的四等分点即为AC =CD =DE =EB =14AB ,是解此题的关键 二、填空题13.0【解析】根据题意得:a<0<b<c∴a<0c −b>0a+b −c<0∴|a|+|c −b|−|a+b −c|=−a+(c −b)+(a+b −c)=−a+c −b+a+b −c=0故答案为0点睛:本题考查了整式解析:0 【解析】根据题意得:a<0<b<c , ∴a<0,c −b>0,a+b −c<0,∴|a|+|c −b|−|a+b −c|=−a+(c −b)+(a+b −c)=−a+c −b+a+b −c=0. 故答案为0.点睛:本题考查了整式的加减,数轴,绝对值的知识,根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.14.【解析】【分析】按照定义式发现规律首尾两两组合相加剩下中间的最后再求和即可【详解】====故答案为:【点睛】本题考查了定义新运算在有理数的混合运算中的应用读懂定义发现规律是解题的关键解析:120182【解析】 【分析】 按照定义式()1f x x x=+,发现规律,首尾两两组合相加,剩下中间的12,最后再求和即可. 【详解】11111(1)(2)(2019)20192018201732f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋯⋯+++++⋯⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=11111122017201820192020201920184323201820192020+++⋯+++++⋯+++ =1201912018120171312120202020201920192018201844332⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++⋯+++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =120182+ =120182故答案为:120182【点睛】本题考查了定义新运算在有理数的混合运算中的应用,读懂定义,发现规律,是解题的关键.15.100【解析】【分析】设这件童装的进价为x 元根据利润=售价﹣进价即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设这件童装的进价为x 元依题意得:120﹣x =20x 解得:x =100故答案为:1解析:100 【解析】 【分析】设这件童装的进价为x 元,根据利润=售价﹣进价,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设这件童装的进价为x 元, 依题意,得:120﹣x =20%x , 解得:x =100. 故答案为:100. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形第一个图案有4个基本图形则第n 个图案的基础图形有4+3(n-1)=3n+1个考点:规律型解析:3n+1 【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n-1)=3n+1个考点:规律型17.②③④【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的①的位置出现重叠的面所以不能围成正方体将图1的正方形放在图2中的②③④的位置均能围成正方体故答案解析:②、③、④ 【解析】 【分析】由平面图形的折叠及正方体的表面展开图的特点解题. 【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体, 将图1的正方形放在图2中的②③④的位置均能围成正方体, 故答案为②③④. 【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.18.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数 解析:52.410⨯【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】24万5240000 2.410==⨯ 故答案为:52.410⨯ 【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.19.【解析】试题解析:∵2x+4与3x-2互为相反数∴2x+4=-(3x-2)解得x=-故答案为-解析:25-【解析】试题解析:∵2x+4与3x-2互为相反数,∴2x+4=-(3x-2),解得x=-25. 故答案为-25. 20.﹣6或2【解析】【分析】先利用AB 点表示的数得到AB =16则BC =4然后把B 点向左或向右平移4个单位即可得到点C 表示的数【详解】解:∵点A 表示的数为﹣18点B 表示的数为﹣2∴AB =﹣2﹣(﹣18)=解析:﹣6或2.【解析】【分析】先利用A 、B 点表示的数得到AB =16,则BC =4,然后把B 点向左或向右平移4个单位即可得到点C 表示的数.【详解】解:∵点A 表示的数为﹣18,点B 表示的数为﹣2.∴AB =﹣2﹣(﹣18)=16,∵BC =14AB , ∴BC =4, 当C 点在B 点右侧时,C 点表示的数为﹣2+4=2;当C 点在B 点左侧时,C 点表示的数为﹣2﹣4=﹣6,综上所述,点C 表示的数为﹣6或2.故答案为﹣6或2.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题21.(1)1x =-;(2)34x =【解析】【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,去括号,然后移项合并,系数化为1,即可得到答案;【详解】解:(1)()()235312--=+-x x x∴235312x x x -+=+-,∴1x =-;(2)216323+-=+x x ∴()()3211826x x +=+-,∴6318212x x +=+-,∴43x =, ∴34x =. 【点睛】 本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤和方法.22.(1)54;(2)7-;(3)56或36;(4)t 的值为325或12 【解析】【分析】(1)根据数轴上两点的距离公式即可求解;(2)根据数轴上两点的中点公式即可求解;(3)根据10BP =求出P 点表示的数,故可得到AP 的长;(4)根据P,Q 的运动速度及14PQ =分P ,Q 相遇前和相遇后分别列方程求解.【详解】(1) 34x =-时,点P 到点A 、点B 的距离之和为16(34)30(34)--+---=54 故答案为:54;(2)若点P 到点A 、点B 的距离相等,则x=16(30)2+-=-7 故答案为:7-;(3)∵10BP =∴P 点表示的数为:6或26则AP =6-(-30)=36或26-(-30)=56即AP=36或56故答案为:56或36;(4)解:∵16(30)46AB =-=当P ,Q 相遇前,得234614t t +=- 解得325t = 当P ,Q 相遇后,得234614t t +=+时解得12t =t ∴的值为325或12.【点睛】此题主要考查数轴与一元一次方程的应用,解题的关键是根据题意找到等量关系列式求解.23.12a b =⎧⎨=-⎩. 【解析】试题分析:将x +y =5与2x -y =1组成方程组,解之可得到x 、y 的值,然后把x 、y 的值代入另外两个方程,解答即可得到结论.试题解析:解:由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得:23x y =⎧⎨=⎩. 把23x y =⎧⎨=⎩代入4ax +5by =-22,得:8a +15b =-22.① 把23x y =⎧⎨=⎩代入ax -by -8=0,得:2a -3b -8=0.② ①与②组成方程组,得:815222380a b a b +=-⎧⎨--=⎩,解得:12a b =⎧⎨=-⎩. 24.(1)①∠COD =∠BOE ,理由见解析;②∠BOD +∠COE =180°,理由见解析;(2)①∠COD =∠BOE ,②成立【解析】【分析】(1)①根据等式的性质,在直角的基础上都加∠BOD ,因此相等,②将∠BOD +∠COE 转化为两个直角的和,进而得出结论;(2)①根据同角的余角相等,可得结论,②仍然可以将∠BOD +∠COE 转化为两个直角的和,得出结论.【详解】解:(1)①∠COD =∠BOE ,理由如下:∵∠BOC =∠DOE =90°,∴∠BOC +∠BOD =∠DOE +∠BOD ,即∠COD =∠BOE ,②∠BOD +∠COE =180°,理由如下:∵∠DOE =90°,∠AOE +∠DOE +∠BOD =∠AOB =180°,∴∠BOD +∠AOE =180°﹣90°=90°,∴∠BOD +∠COE =∠BOD +∠AOE +∠AOC =90°+90°=180°,(2)①∠COD =∠BOE ,∵∠COD +∠BOD =∠BOC =90°=∠DOE =∠BOD +∠BOE ,∴∠COD =∠BOE ,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.【点睛】本题考查角度的和差计算,找出图中角度之间的关系,熟练掌握同角的余角相等是解题的关键.25.见解析【解析】【分析】首先画射线,然后在射线上依次截取AC=CD=n,DB=m可得答案.【详解】解:如图所示:,线段AB=m+2n.【点睛】本题考查了尺规作图——作一条线段等于已知线段,熟记圆规的用法是解决此题的关键.。