连接器接触电阻[1]
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
接触压力接触电阻-概述说明以及解释1.引言1.1 概述概述:在电气领域中,接触压力和接触电阻是两个重要的概念。
接触压力指的是连接器或接插件中两个导体之间产生的力,它影响着导体之间的紧密度和电流的传输效率。
而接触电阻则是指两个导体之间接触面产生的电阻,它直接影响着电路的稳定性和性能。
本文将重点探讨接触压力和接触电阻的定义、影响因素以及测量方法,旨在帮助读者加深对这两个概念的理解,提高电路连接的稳定性和可靠性。
1.2 文章结构文章结构需要清晰明了,以便读者能够更好地理解接触压力和接触电阻的关系。
本文将首先介绍接触压力的定义和影响因素,然后探讨接触电阻的定义和测量方法。
最后,将总结接触压力和接触电阻在电子设备中的重要性和意义。
通过这样的结构,读者将能够全面了解接触压力和接触电阻在电子领域中的重要作用。
1.3 目的目的部分:本文旨在深入探讨接触压力和接触电阻这两个概念在实际工程中的重要性和应用。
通过分析接触压力的定义和影响因素,探讨其对设备性能和可靠性的影响;并介绍接触电阻的定义和测量方法,探讨其在电气系统中的重要意义。
通过本文的阐述,读者将能够更全面地了解这两个参数在工程实践中的作用,为工程设计和运行提供参考依据。
同时,也可以帮助读者更好地理解接触压力和接触电阻在电气设备中的重要性,以提高设备的效率和可靠性。
2.正文2.1 接触压力2.1.1 定义接触压力是指两个接触面之间所受的压力。
在电气连接中,接触压力是指连接器上连接的两个金属表面所施加的力量。
良好的接触压力可以确保电流传输的稳定性和可靠性。
2.1.2 影响因素接触压力的大小受到多种因素的影响,包括连接器的设计、材料的性质、连接表面的平整度等。
正常情况下,接触压力越大,接触面的接触面积就越大,从而减小接触电阻,提高电流传输的效率。
在一些特殊情况下,过大的接触压力也可能导致连接器的损坏或损坏,因此在设计和使用连接器时需要合理控制接触压力的大小,以确保良好的电气连接效果。
jst housing插拔标准JST housing,即JST连接器,是一种常用于电子设备之间的连接器。
JST housing的插拔标准对于确保连接器的可靠性和稳定性至关重要。
以下是对JST housing插拔标准的详细介绍。
一、插拔力标准1.插入力:在插入JST housing连接器时,应施加适当的插入力,以确保连接器正确、稳定地连接。
插入力的具体数值应根据连接器的型号、规格和用途来确定。
通常情况下,插入力应在100mN至500mN之间。
2.拔出力:拔出JST housing连接器时,应施加足够的拔出力,以确保连接器不会意外脱落或松动。
拔出力的具体数值同样应根据连接器的型号、规格和用途来确定。
通常情况下,拔出力应在200mN至1000mN之间。
二、插拔次数标准1.循环次数:JST housing连接器应能够承受一定的循环次数,以确保其在使用过程中保持良好状态。
循环次数指的是连接器插拔操作的次数。
通常情况下,循环次数应不少于500次。
2.耐久性测试:在插拔测试过程中,连接器应能保持良好的电气性能和机械性能,以确保其在使用过程中具有较长的使用寿命。
耐久性测试可以通过插拔实验来模拟实际使用情况,以评估连接器的可靠性和稳定性。
三、插拔过程标准1.平滑度:在插拔JST housing连接器时,应注意保持连接器的平滑度,避免出现卡滞或摩擦现象。
平滑度不良可能会导致连接器插入或拔出困难,影响其正常工作。
2.无损坏:在插拔过程中,应确保连接器和其接触面无损坏或磨损。
如发现损坏或磨损,应及时进行更换或维修,以避免造成电气性能下降或其他安全隐患。
四、电气性能标准1.接触电阻:JST housing连接器的接触电阻应符合相关标准要求。
接触电阻过高会导致信号传输不稳定或失真,影响电子设备的性能。
因此,在插拔过程中,应确保连接器的接触电阻符合标准要求。
2.绝缘电阻:JST housing连接器的绝缘电阻也应符合相关标准要求。
连接器接触电阻不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。
通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。
这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。
但根据多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。
为此,针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。
另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。
这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。
2.1 作用原理在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。
会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。
实际接触面必然小于理论接触面。
根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。
实际接触面可分为两部分;一是真正金属与金属直接接触部分。
即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。
这部分约占实际接触面积的 5-10%。
二是通过接触界面污染薄膜后相互接触的部分。
因为任何金属都有返回原氧化物状态的倾向。
实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。
例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。
即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。
导体的接触面积和接触电阻作者:林勇发布日期:2009-4-17 10:06:41 (阅577次)关键词: 工业插头插座驳克码 MARECHAL(摘要:在电流的传输过程中两个表面宏观接触表面应该等于导线的截面面积,两个导体真正相接触的部分只是一定数量的点,由于材料表面的不平整性,真正的接触面积要比宏观上看到的接触表面要小。
关键词:接触电阻,驳克码)在我们给客户讲解产品的过程当中有一个经常被问到的问题,“你们这种触点连接的插头插座,导体截面积够吗?”,“触点连接比插针套筒连接的接触面积小,能保证连接可靠吗?”电气工程师都知道,电流越大,必须使用越粗大的电缆。
有些人自然认为接触的面积应该等于导线的截面面积,因而对电气连接器的可靠性提出怀疑。
实际上,两个表面宏观接触表面应该等于导线的截面面积,两个导体真正相接触的部分只是一定数量的点,由于材料表面的不平整性,真正的接触面积要比宏观上看到的接触表面要小。
(图2)优质的开关设备产品大都采用用银合金的接触点,通常触点是半球形的,而且把重点放在施加的力上而不是放在假定的接触面积上。
种概念在接触器或者断路器制造业中得到广泛采用。
从这个意义上讲,插头和插座是一个例外。
1.接触电阻的物理概念无论使用哪一种接触,导体接触的不连续性会产生一个附加的电阻——称为“接触电阻”)。
这个电阻比接触器自身的电阻(在没有接触面存在时)要大。
这个电阻值将决定连接的质量,因为:接触电阻阻值越高,则接触电阻上的压降越大,因而接触点释放的热量将越多。
如果温度上升到一定的极限,接触点就会损坏。
温度越高,损坏就越快,这种现象会迅速蔓延。
接触点接触电阻主要由以下两个参数决定:接触表面的状态λ所施加力的作用(图4)λ1.1 接触表面的状态三个主要参数决定了接触表面的状态:(图1)物理化学结构λ从微观角度来看,一个表面的物理化学结构是非常复杂的,周围环境中的外来元素与材料发生反应形成一个表面层,通常称为“侵蚀层”。
接触电阻电阻
接触电阻是指两个导体在接触处产生的电阻。
当两个导体接触时,由于导体表面的不平整和氧化层等因素,会在接触区域形成一个电阻。
接触电阻的大小取决于接触面的材料、表面状态、接触压力以及环境条件等因素。
较小的接触电阻可以提高电路的性能和可靠性,因为它可以减少能量损耗和信号衰减。
在电子学和电气工程中,降低接触电阻是一个重要的目标。
为了降低接触电阻,可以采取以下措施:
1. 清洁接触面:保持接触面清洁,去除污垢、氧化物和油脂等杂质。
2. 增加接触压力:通过适当的机械设计,增加接触面之间的压力,以改善接触质量。
3. 选择合适的材料:选择具有低电阻特性的导体材料,如金、银等。
4. 表面处理:对接触面进行适当的表面处理,如镀金、镀银等,以提高导电性。
5. 润滑剂:使用适当的润滑剂可以减少接触面之间的摩擦,从而降低接触电阻。
接触电阻是电路中常见的问题,降低接触电阻对于提高电路性能和可靠性至关重要。
什么是连接器,连接器的基本性能内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.连接器,即CONNECTOR。
国内亦称作接插件、插头和插座。
一般是指电连接器。
即连接两个有源器件的器件,传输电流或信号。
连接器的基本性能连接器知识连接器的基本性能可分为三大类:即机械性能、电气性能和环境性能。
1.机械性能就连接功能而言,插拔力是重要地机械性能。
插拔力分为插入力和拔出力(拔出力亦称分离力),两者的要求是不同的。
在有关标准中有最大插入力和最小分离力规定,这表明,从使用角度来看,插入力要小(从而有低插入力LIF和无插入力ZIF的结构),而分离力若太小,则会影响接触的可靠性。
连接器的插拔力和机械寿命与接触件结构(正压力大小)接触部位镀层质量(滑动摩擦系数)以及接触件排列尺寸精度(对准度)有关。
2.电气性能连接器的主要电气性能包括接触电阻、绝缘电阻和抗电强度。
①接触电阻高质量的电连接器应当具有低而稳定的接触电阻。
连接器的接触电阻从几毫欧到数十毫欧不等。
②绝缘电阻衡量电连接器接触件之间和接触件与外壳之间绝缘性能的指标,其数量级为数百兆欧至数千兆欧不等。
③抗电强度或称耐电压、介质耐压,是表征连接器接触件之间或接触件与外壳之间耐受额定试验电压的能力。
④其它电气性能。
电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,一般在100MHz~10GHz频率范围内测试。
对射频同轴连接器而言,还有特性阻抗、插入损耗、反射系数、电压驻波比(VSWR)等电气指标。
由于数字技术的发展,为了连接和传输高速数字脉冲信号,出现了一类新型的连接器即高速信号连接器,相应地,在电气性能方面,除特性阻抗外,还出现了一些新的电气指标,如串扰(crosstalk),传输延迟(delay)、时滞(skew)等。
连接器接触电阻检验在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。
会看到插合的一对接触件的接触,并不整个接触面的接触,而是散布在接触面上一些点的接触。
实际接触面必然小于理论接触面。
根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。
实际接触面可分为两部分;一是真正金属与金属直接接触部分。
即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。
部分约占实际接触面积的5-10%。
二是通过接触界面污染薄膜后相互接触的部分。
因为任何金属都有返回原氧化物状态的倾向。
实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。
例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。
即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。
此外,大气中的尘埃等也会在接触件表面形成沉积膜。
因而,从微观分析任何接触面都是一个污染面。
综上所述,真正接触电阻应由以下几部分组成;1) 集中电阻电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。
将其称为集中电阻或收缩电阻。
2) 膜层电阻由于接触表面膜层及其他污染物所构成的膜层电阻。
从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。
故确切地说,也可把膜层电阻称为界面电阻。
3) 导体电阻实际测量电连接器接触件的接触电阻时,都是在接点引出端进行的,故实际测得的接触电阻还包含接触表面以外接触件和引出导线本身的导体电阻。
导体电阻主要取决于金属材料本身的导电性能,它与周围环境温度的关系可用温度系数来表征。
为便于区分,将集中电阻加上膜层电阻称为真实接触电阻。
而将实际测得包含有导体电阻的称为总接触电阻。
在实际测量接触电阻时,常使用按开尔文电桥四端子法原理设计的接触电阻测试仪(毫欧计),其专用夹具夹在被测接触件端接部位两端,故实际测量的总接触电阻R由以下三部分组成,可由下式表示:R= RC + Rf + Rp,式中:RC—集中电阻;Rf—膜层电阻;Rp—导体电阻。
主要受接触件材料、正压力、表面状态、使用电压和电流等因素影响。
1) 接触件材料电连接器技术条件对不同材质制作的同规格插配接触件,规定了不同的接触电阻考核指标。
如小圆形快速分离耐环境电连接器总规范GJB101-86规定,直径为1mm的插配接触件接触电阻,铜合金≤5mΩ,铁合金≤15mΩ。
2) 正压力接触件的正压力是指彼此接触的表面产生并垂直于接触表面的力。
随正压力增加,接触微点数量及面积也逐渐增加,同时接触微点从弹性变形过渡到塑性变形。
由于集中电阻逐渐减小,而使接触电阻降低。
接触正压力主要取决于接触件的几何形状和材料性能。
3) 表面状态接触件表面一是由于尘埃、松香、油污等在接点表面机械附着沉积形成的较松散的表膜,这层表膜由于带有微粒物质极易嵌藏在接触表面的微观凹坑处,使接触面积缩小,接触电阻增大,且极不稳定。
二是由于物理吸附及化学吸附所形成的污染膜,对金属表面主要是化学吸附,它是在物理吸附后伴随电子迁移而产生的。
故对一些高可靠性要求的产品,如航天用电连接器必须要有洁净的装配生产环境条件,完善的清洗工艺及必要的结构密封措施,使用单位必须要有良好的贮存和使用操作环境条件。
4) 使用电压使用电压达到一定阈值,会使接触件膜层被击穿,而使接触电阻迅速下降。
但由于热效应加速了膜层附近区域的化学反应,对膜层有一定的修复作用。
于是阻值呈现非线性。
在阈值电压附近,电压降的微小波动会引起电流可能二十倍或几十倍范围内变化。
使接触电阻发生很大变化,不了解这种非线***,就会在测试和使用接触件时产生错误。
5) 电流当电流超过一定值时,接触件界面微小点处通电后产生的焦耳热,作用而使金属软化或熔化,会对集中电阻产生影响,随之降低接触电阻。
接触电阻增大的原因及对温升的影响当两个金属导体相接触时,在接触区域内存在着一个附加电阻,称为接触电阻。
接触电阻由收缩电阻和膜电阻组成。
即:Rj=Rs Rb(1)Rs:收缩电阻Rb:表面膜电阻导体总电阻R为:R=Rl Rj(2)Rl—导体固有电阻Rj—接触电阻(R1=ρ.1/s;ρ为电阻系数;1为导体长度;s为截面面积,(3)F—加于两导体的机械压力(N)HB—材料的布氏硬度—与材料变形情况有关的系数,一般情况为~1,当接触面较平,弹性变形是主要的,则取小值,接触点全部是塑性变形时,=1n—接触点数目表面膜电阻Rb则与表面覆盖层的性质有关。
连接器接触电阻标准连接器是电子设备中常见的元件,用于连接电路或设备之间的导线或电缆,起到传递电信号或电能的作用。
在连接器的使用过程中,接触电阻是一个重要的性能指标,它直接影响着连接器的传输性能和稳定性。
因此,连接器接触电阻标准成为了连接器行业中的重要标准之一。
连接器的接触电阻是指连接器接触副之间的电阻,它由接触副的接触材料、接触形状、接触压力等因素共同决定。
合格的连接器接触电阻应该尽可能小,以保证电信号或电能的传输效率,同时还要保证稳定可靠的连接。
因此,制定连接器接触电阻标准对于保证连接器质量和性能至关重要。
在连接器接触电阻标准中,一般会规定连接器在不同工作条件下的接触电阻值的上限和下限。
这些工作条件包括温度、湿度、振动等环境因素,以及连接器在不同频率、电流下的工作状态。
通过对这些工作条件的考虑,连接器接触电阻标准可以更加全面地反映连接器在实际工作中的性能表现。
另外,连接器接触电阻标准还会对连接器接触副的材料、表面处理、接触压力等方面进行规定。
比如,对于金属连接器,要求其接触副的表面要经过镀金、镀银等处理,以提高接触的导电性能;对于弹性连接器,则要求其弹性件的材料要具有良好的弹性和导电性能,以保证连接器在长期使用中不会出现接触不良的情况。
除了以上内容,连接器接触电阻标准还会对连接器的接插次数、插拔力、接触面积等方面进行规定,以保证连接器在长期使用中能够保持稳定的接触电阻。
同时,连接器接触电阻标准还会要求连接器在不同的工作环境下进行可靠性测试,以验证其在实际工作中的性能表现。
总的来说,连接器接触电阻标准是连接器行业中的重要标准之一,它直接关系到连接器的传输性能和稳定性。
通过严格制定和执行连接器接触电阻标准,可以保证连接器在不同工作条件下都能够保持稳定的接触电阻,从而保证连接器在实际应用中的可靠性和稳定性。
连接器制造商和用户应该共同遵守连接器接触电阻标准,以提高连接器的质量和可靠性,推动连接器行业的健康发展。
連接器接觸電阻1 引言不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。
通常在电连接器产品技术条件的质量一致性检验A、B 组常规交收检验项目中都列有明确的技术指标要求和试验方法。
这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。
但根据作者多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。
为此,作者认为:针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。
另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。
这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。
2.1 作用原理在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。
会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。
实际接触面必然小于理论接触面。
根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。
实际接触面可分为两部分;一是真正金属与金属直接接触部分。
即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。
这部分约占实际接触面积的5-10%。
二是通过接触界面污染薄膜后相互接触的部分。
因为任何金属都有返回原氧化物状态的倾向。
实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。
例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。
即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。
此外,大气中的尘埃等也会在接触件表面形成沉积膜。
因而,从微观分析任何接触面都是一个污染面。
综上所述,真正接触电阻应由以下几部分组成;1) 集中电阻电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。
将其称为集中电阻或收缩电阻。
2) 膜层电阻由于接触表面膜层及其他污染物所构成的膜层电阻。
从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。
故确切地说,也可把膜层电阻称为界面电阻。
3) 导体电阻实际测量电连接器接触件的接触电阻时,都是在接点引出端进行的,故实际测得的接触电阻还包含接触表面以外接触件和引出导线本身的导体电阻。
导体电阻主要取决于金属材料本身的导电性能,它与周围环境温度的关系可用温度系数来表征。
为便于区分,将集中电阻加上膜层电阻称为真实接触电阻。
而将实际测得包含有导体电阻的称为总接触电阻。
在实际测量接触电阻时,常使用按开尔文电桥四端子法原理设计的接触电阻测试仪(毫欧计),其专用夹具夹在被测接触件端接部位两端,故实际测量的总接触电阻R由以下三部分组成,可由下式表示:R= RC + Rf + Rp,式中:RC—集中电阻;Rf—膜层电阻;Rp—导体电阻。
接触电阻检验目的是确定电流流经接触件的接触表面的电触点时产生的电阻。
如果有大电流通过高阻触点时,就可能产生过分的能量消耗,并使触点产生危险的过热现象。
在很多应用中要求接触电阻低且稳定,以使触点上的电压降不致影响电路状况的精度。
测量接触电阻除用毫欧计外,也可用伏-安计法,安培-电位计法。
在连接微弱信号电路中,设定的测试参数条件对接触电阻检测结果有一定影响。
因为接触表面会附有氧化层,油污或其他污染物,两接触件表面会产生膜层电阻。
由于膜层为不良导体,随膜层厚度增加,接触电阻会迅速增大。
膜层在高的接触压力下会机械击穿,或在高电压、大电流下会发生电击穿。
但对某些小型连接器设计的接触压力很小,工作电流电压仅为mA和mV级,膜层电阻不易被击穿,接触电阻增大可能影响电信号的传输。
在GB5095“电子设备用机电元件基本试验规程及测量方法” 中的接触电阻测试方法之一,“接触电阻-毫伏法” 规定,为防止接触件上膜层被击穿,测试回路交流或直流的开路峰值电压应不大于20mV,交流或直流的测试中电流应不大于100mA。
在GJB1217“电连接器试验方法” 中规定有“低电平接触电阻” 和“接触电阻” 两种试验方法。
其中低电平接触电阻试验方法基本内容与上述GB5095中的接触电阻-毫伏法相同。
目的是评定接触件在加上不改变物理的接触表面或不改变可能存在的不导电氧化薄膜的电压和电流条件下的接触电阻特性。
所加开路试验电压不超过20mV,试验电流应限制在100mA。
在这一电平下的性能足以表现在低电平电激励下的接触界面的性能。
而接触电阻试验方法目的是测量通过规定电流的一对插合接触件两端或接触件与测量规之间的电阻。
通常采用这一试验方法施加的规定电流要比前一种试验方法大得多。
如国军标GJB101“小圆形快速分离耐环境电连接器总规范”中规定;测量时电流为1A,接触对串联后,测量每对接触对的电压降,取其平均值换算成接触电阻值。
2.2 影响因素主要受接触件材料、正压力、表面状态、使用电压和电流等因素影响。
1) 接触件材料电连接器技术条件对不同材质制作的同规格插配接触件,规定了不同的接触电阻考核指标。
如小圆形快速分离耐环境电连接器总规范GJB101-86规定,直径为1mm的插配接触件接触电阻,铜合金≤5mΩ,铁合金≤15mΩ。
2) 正压力接触件的正压力是指彼此接触的表面产生并垂直于接触表面的力。
随正压力增加,接触微点数量及面积也逐渐增加,同时接触微点从弹性变形过渡到塑性变形。
由于集中电阻逐渐减小,而使接触电阻降低。
接触正压力主要取决于接触件的几何形状和材料性能。
3) 表面状态接触件表面一是由于尘埃、松香、油污等在接点表面机械附着沉积形成的较松散的表膜,这层表膜由于带有微粒物质极易嵌藏在接触表面的微观凹坑处,使接触面积缩小,接触电阻增大,且极不稳定。
二是由于物理吸附及化学吸附所形成的污染膜,对金属表面主要是化学吸附,它是在物理吸附后伴随电子迁移而产生的。
故对一些高可靠性要求的产品,如航天用电连接器必须要有洁净的装配生产环境条件,完善的清洗工艺及必要的结构密封措施,使用单位必须要有良好的贮存和使用操作环境条件。
4) 使用电压使用电压达到一定阈值,会使接触件膜层被击穿,而使接触电阻迅速下降。
但由于热效应加速了膜层附近区域的化学反应,对膜层有一定的修复作用。
于是阻值呈现非线性。
在阈值电压附近,电压降的微小波动会引起电流可能二十倍或几十倍范围内变化。
使接触电阻发生很大变化,不了解这种非线***,就会在测试和使用接触件时产生错误。
5) 电流当电流超过一定值时,接触件界面微小点处通电后产生的焦耳热()作用而使金属软化或熔化,会对集中电阻产生影响,随之降低接触电阻。
2.3 问题研讨1) 低电平接触电阻检验考虑到接触件膜层在高接触压力下会发生机械击穿或在高电压、大电流下会发生电击穿。
对某些小体积的连接器设计的接触压力相当小,使用场合仅为mV或mA级,膜层电阻不易被击穿,可能影响电信号的传输。
故国军标GJB1217-91电连接器试验方法中规定了两种试验方法。
即低电平接触电阻试验方法和接触电阻试验方法。
其中低电平接触电阻试验目的是评定接触件在加上不能改变物理的接触表面或不改变可能存在的不导电氧化簿膜的电压和电流条件下的接触电阻特性。
所加开路试验电压不超过20mV,而试验电流应限制在100mA,在这一电平下的性能足以满足以表现在低电平电激励下的接触界面的性能。
而接触电阻试验目的是测量通过规定电流的一对插合接触件两端或接触件与测量规之间的电阻,而此规定电流要比前者大得多,通常规定为1A。
2) 单孔分离力检验为确保接触件插合接触可靠,保持稳定的正压力是关键。
正压力是接触压力的一种直接指标,明显影响接触电阻。
但鉴于接触件插合状态的正压力很难测量,故一般用测量插合状态的接触件由静止变为运动的单孔分离力来表征插针与插孔正在接触。
通常电连接器技术条件规定的分离力要求是用实验方法确定的,其理论值可用下式表达。
F=FN•μ式中FN为正压力,μ为摩擦系数。
由于分离力受正压力和摩擦系数两者制约。
故决不能认为分离力大,就正压力大接触可靠。
现在随着接触件制作精度和表面镀层质量的提高,将分离力控制在一个恰当的水平上即可保证接触可靠。
作者在实践中发现,单孔分离力过小,在受振动冲击载荷时有可能造成信号瞬断。
用测单孔分离力评定接触可靠性比测接触电阻有效。
因为在实际检验中接触电阻件很少出现不合格,单孔分离力偏低超差的插孔,测量接触电阻往往仍合格。
3) 接触电阻检验合格不等于接触可靠。
在许多实际使用场合,汽车、摩托车、火车、动力机械、自动化仪器以及航空、航天、船舶等军用连接器,往往都是在动态振动环境下使用。
实验证明仅用检验静态接触电阻是否合格,并不能保证动态环境下使用接触可靠。
往往接触电阻合格的连接器在进行振动、冲击、离心等模拟环境试验时仍出现瞬间断电现象。
故对一些高可靠性要求的连接器,许多设计人员都提出最好能100%对其进行动态振动试验来考核接触可靠性。
最近,日本耐可公司推出了一种与导通仪配套使用的小型台式电动振动台,已成功地应用于许多民用线束的接触可靠性检验。