最新高考物理曲线运动模拟试题
- 格式:doc
- 大小:674.50 KB
- 文档页数:13
高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m mA v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
高考物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.45m的圆环剪去左上角127°的圆弧,MN为其竖直直径,P点到桌面的竖直距离为R,P 点到桌面右侧边缘的水平距离为1.5R.若用质量m1=0.4kg的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=4t﹣2t2,物块从D点飞离桌面后恰好由P点沿切线落入圆轨道.g=10m/s2,求:(1)质量为m2的物块在D点的速度;(2)判断质量为m2=0.2kg的物块能否沿圆轨道到达M点:(3)质量为m2=0.2kg的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s(2)不能沿圆轨道到达M点(3)2.7J【解析】【详解】(1)设物块由D点以初速度v D做平抛运动,落到P点时其竖直方向分速度为:v y22100.45gR=⨯⨯m/s=3m/syDvv=tan53°43=所以:v D=2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m2vR,解得:v322gR==m/s物块到达P的速度:22223 2.25P D yv v v=+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
最新高考物理曲线运动题20套(带答案)一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m mA v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
最新精选高考物理复习题库曲线运动专题(100题)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如下图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上.若不计空气阻力,则A、B两个小球的运动时间之比为()A.1:1 B.4:3C.16:9 D.9:162.河水的流速与船离河岸的距离的变化关系如图乙所示,船在静水中的速度与时间的关系如图甲所示,则下列说法正确的是()A.船渡河的最短时间为60 sB.要使船以最短时间渡河,船在行驶过程中,船头必须始终与河岸垂直C.船在河水中航行的轨迹是一条直线D.船在河水中的最大速度是5 m/s3.下列关于运动和力的叙述中,正确的是()A.做曲线运动的物体,其加速度方向一定是变化的B.物体做圆周运动,所受的合力一定指向圆心C.物体所受合力方向与运动方向相反,该物体一定做直线运动D.物体运动的速率在增加,所受合力方向一定与运动方向相同4.在光滑的水平桌面上,有两个小球固定在一根长为L的杆的两端,绕杆上的O点做圆周运动,如下图所示.当小球1的速度为v1时,小球2的速度为v2,则转轴O到小球2的距离是()A.L v1/(v1+v2)B.L v2/(v1+v2)C.L(v1+v2)/v1D.L(v1+v2)/v25.如下图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力6.题目文件丢失!7.如下图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是()。
高考物理曲线运动题20 套( 带答案 )一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。
【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。
【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v A=6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,炸药的质量忽视不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上( 2)E P0.22 J(3) 0. 675m< L<1. 35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,圆弧轨道AB 是在竖直平面内的1圆周,B点离地面的高度h=0.8m,该处切4线是水平的,一质量为m=200g 的小球(可视为质点)自 A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从 B 点水平飞出,最后落到水平川面上的D 点.已知小物块落地址 D 到 C点的距离为x=4m,重力加快度为g=10m/ s2.求:(1)圆弧轨道的半径(2)小球滑到 B 点时对轨道的压力.【答案】(1)圆弧轨道的半径是 5m.(2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下.【分析】(1)小球由 B 到 D 做平抛运动,有: h= 1gt22Bx=v t解得:v B xg104210m / s 2h0.8A 到B 过程,由动能定理得:1mgR= mv B2-02解得轨道半径R=5m2(2)在 B 点,由向心力公式得:N mg mv BR 解得: N=6N依据牛顿第三定律,小球对轨道的压力N =N=6N ,方向竖直向下点睛:解决本题的重点要剖析小球的运动过程,掌握每个过程和状态的物理规律,掌握圆周运动靠径向的协力供给向心力,运用运动的分解法进行研究平抛运动.4. 如下图,一半径r = 0.2 m 的 1/4 圆滑圆弧形槽底端 B 与水平传递带相接,传递带的运行速度为 v 0= 4 m/s ,长为 L =1.25 m ,滑块与传递带间的动摩擦因数μ= 0.2, DEF 为固定于竖直平面内的一段内壁圆滑的中空方形细管, EF 段被弯成以 O 为圆心、半径 R = 0.25 m的一小段圆弧,管的D 端弯成与水平传带 C 端光滑相接, O 点位于地面, OF 连线竖直.一质量为 M = 0.2 kg 的物块 a 从圆弧顶端 A 点无初速滑下,滑到传递带上后做匀加快运动,事后滑块被传递带送入管 DEF ,已知 a 物块可视为质点, a 横截面略小于管中空部分的横截面,重力加快度 g 取 10 m/s 2.求:(1)滑块 a 抵达底端 B 时的速度大小 v ;B(2)滑块 a 刚抵达管顶 F 点时对管壁的压力. 【答案】( 1) v B 2m / s (2) F N 1.2N【分析】试题剖析:( 1)设滑块抵达B 点的速度为 v B ,由机械能守恒定律,有 M gr1Mv B 22解得: v B =2m/s(2)滑块在传递带上做匀加快运动,遇到传递带对它的滑动摩擦力,由牛顿第二定律 μMg =Ma滑块对地位移为 L ,末速度为 v C ,设滑块在传递带上向来加快由速度位移关系式 2 22Al=v C -v B得 v C =3m/s<4m/s ,可知滑块与传递带未达共速,滑块从 C 至 F ,由机械能守恒定律,有1Mv C2MgR1Mv F 222得 v F =2m/s在 F 处由牛顿第二定律 M g F Nv F 2MR得 FN =1. 2N 由牛顿第三定律得管上壁受压力为 1. 2N, 压力方向竖直向上考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑机遇械能守恒,物块在传递带上运动时,受摩擦力作用,依据运动学公式剖析滑块经过传递带时的速度,注意物块在传递带上的速度剖析.5.如下图,ABCD是一个地面和轨道均圆滑的过山车轨道模型,现对静止在 A 处的滑块施加一个水平向右的推力F,使它从 A 点开始做匀加快直线运动,当它水光滑行 2.5 m 时抵达 B 点,此时撤去推力F、滑块滑入半径为0.5 m 且内壁圆滑的竖直固定圆轨道,并恰好经过最高点C,当滑块滑过水平BD 部分后,又滑上静止在 D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平川面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s 2,求:(1)水平推力 F 的大小;(2)滑块抵达 D 点的速度大小;(3)木板起码为多长时,滑块才能不从木板上掉下来?在该状况下,木板在水平川面上最后滑行的总位移为多少?【答案】( 1) 1N( 2)(3)t= 1 s ;【分析】【剖析】【详解】(1)因为滑块恰巧过 C 点,则有:m1g= m1从 A 到 C 由动能定理得:Fx- m1g·2R= m1 v C2- 0代入数据联立解得:F=1 N(2)从 A 到 D 由动能定理得:2Fx= m1v D代入数据解得:v D= 5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g= 3 m/s 2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2= 2 m/s2滑块恰巧不从木板上滑下,此时滑块滑到木板的右端时恰巧与木板速度同样,有:v 共= v D- a1 tv 共= a2t,代入数据解得:t= 1 s此时滑块的位移为:x1= v D t-a1t2,木板的位移为:x2= a2t2, L=x1- x2,代入数据解得:L= 2.5 mv 共= 2 m/sx2= 1 m达到共同速度后木板又滑行x′,则有:v 共2= 2μ2gx′,代入数据解得:x′= 1.5 m木板在水平川面上最后滑行的总位移为:x 木= x2+ x′=2.5 m点睛:本题考察了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的重点理清滑块和木板在整个过程中的运动规律,选择适合的规律进行求解.6.如下图,轻绳绕过定滑轮,一端连结物块A,另一端连结在滑环 C 上,物块 A 的下端用弹簧与放在地面上的物块 B 连结, A、B 两物块的质量均为m,滑环 C的质量为M,开始时绳连结滑环 C 部分处于水平,绳恰巧拉直且无弹力,滑轮到杆的距离为L,控制滑块4C,使其沿杆迟缓下滑,当 C 下滑L 时,开释滑环C,结果滑环 C 恰巧处于静止,此时B3恰巧要走开地面,不计全部摩擦,重力加快度为g.(1)求弹簧的劲度系数;(2)若由静止开释滑环C,求当物块 B 恰巧要走开地面时,滑环 C 的速度大小.3mg(2)10(2 M m) gL【答案】( 1)48m75ML【分析】【详解】(1)设开始时弹簧的压缩量为x,则 kx=mg设 B 物块恰巧要走开地面,弹簧的伸长量为x′,则 kx′=mg所以 x′= x=mgk由几何关系得 2x=L216 L2 2 L- L=93求得 x=L3得 k=3mgL(2)弹簧的劲度系数为k,开始时弹簧的压缩量为x1=当 B 恰巧要走开地面时,弹簧的伸长量mg L x2=3k所以 A 上涨的距离为h =x1+x2=2L 3C 下滑的距离H(L h)2L2=4L3依据机械能守恒1m(vH)2 1 Mv2MgH - mgh =2H 2L22(2 M m)gL求得v10mg L k37.如下图, P 为弹射器, PA、 BC为圆滑水平面分别与传递带AB 水平相连, CD为圆滑半圆轨道,其半径R=2m,传递带AB 长为 L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg 的物体(可视为质点)由弹射器P 弹出后滑向传递带经BC紧贴圆弧面抵达 D 点,已知弹射器的弹性势能所有转变为物体的动能,物体与传递带的动摩擦因数为=0.2.取g=10m/s2,现要使物体恰巧能经过 D 点,求:(1)物体抵达 D 点速度大小;(2)则弹射器初始时拥有的弹性势能起码为多少.【答案】( 1) 2 5 m/s;(2)62J【分析】【剖析】【详解】(1)由题知,物体恰巧能经过 D 点,则有:mg m v D2 R解得: v D gR 2 5 m/s(2)物体从弹射到 D 点,由动能定理得:W mgL2mgR1m v D202W E p解得: E p62J8.如下图,一质量为 m=1kg 的小球从 A 点沿圆滑斜面轨道由静止滑下,不计经过 B 点时的能量损失,而后挨次滑入两个同样的圆形轨道内侧,其轨道半径 R=10cm,小球恰能通过第二个圆形轨道的最高点,小球走开圆形轨道后可持续向 E 点运动, E 点右边有一壕沟, E、F 两点的竖直高度d=0.8m,水平距离 x=1.2m,水平轨道 CD 长为 L1=1m , DE长为L2=3m.轨道除 CD 和 DE 部分粗拙外,其他均圆滑,小球与 CD 和 DE 间的动摩擦因数2(1)小球经过第二个圆形轨道的最高点时的速度;(2)小球经过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能经过圆形轨道的最高点,又不掉进壕沟,求小球从 A 点开释时的高度的范围是多少?【答案】 (1)1m/s ( 2) 40N (3) 0.45m h0.8m 或 h 1.25m【分析】⑴小球恰能经过第二个圆形轨道最高点,有:2 mgmv 2R求得: υ2=gR =1m/s ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: - μmgL 1mv 2 2 12②1=- 2mv 12求得: υ22 gL 1 = 5 m/s21=2在最高点时,协力供给向心力,即F N +mg= m 1③R2求得: F N = m(1- g)= 40NR依据牛顿第三定律知,小球对轨道的压力为:F NN′ =F=40N ④⑵若小球恰巧经过第二轨道最高点,小球从斜面上开释的高度为 h1,在这一过程中应用动能定理有: mgh 111 22⑤- μ mgL - mg 2R =mv22求得: h 112=0.45m=2R+μL +2g若小球恰巧能运动到 E 点,小球从斜面上开释的高度为h 1,在这一过程中应用动能定理有: mgh - μ mg(L+L )=0- 0 ⑥21 2求得: h 21 2=μ (L+L )=0.8m使小球停在 BC 段,应有 h 12≤ h ≤h,即: 0.45m ≤ h ≤ 0.8m若小球能经过 E 点,并恰巧超出壕沟时,则有12d⑦d = gt 2→ t == 0.4s2gEtEx⑧ x=v →υ= t =3m/s设小球开释高度为h3,从开释到运动E 点过程中应用动能定理有:mgh 3 - μ mg(L 1+L 2)= 1mv E 2- 0⑨22求得: h 3 =μ1 2E=1.25m(L+L)+2g即小球要超出壕沟开释的高度应知足: h ≥1.25m综上可知,开释小球的高度应知足:0.45m ≤h ≤0.8m 或 h ≥1.25m ⑩9. 如下图,倾角 θ=30°的圆滑斜面上,一轻质弹簧一端固定在挡板上,另一端连结质量m B=0.5kg的物块B,B 经过轻质细绳越过圆滑定滑轮与质量m A=4kg的物块 A 连结,细绳平行于斜面, A 在外力作用下静止在圆心角为α=60°、半径R=lm的圆滑圆弧轨道的顶端a 处,此时绳索恰巧拉直且无张力;圆弧轨道最低端b 与粗拙水平轨道bc相切,bc与一个半径r=0.12m的圆滑圆轨道光滑连结,静止开释A,当 A 滑至b 时,弹簧的弹力与物块A 在顶端 d 处时相等,此时绳索断裂,已知bc长度为d=0.8m,求:(g取 l0m/s2)(1)轻质弹簧的劲度系数k;(2)物块 A 滑至 b 处,绳索断后瞬时,圆轨道对物块 A 的支持力大小;(3)为了让物块 A 能进入圆轨道且不脱轨,则物体与水平轨道bc间的动摩擦因数μ 应满足什么条件?【答案】(1)k5N / m()72N() 0.350.5或0.12523【分析】(1) A 位于 a 处时,绳无张力弹簧处于压缩状态,设压缩量为x对 B 由均衡条件能够获取:kx m B g sin当 A 滑至 b 时,弹簧处于拉伸状态,弹力与物块 A 在顶端 a 处时相等,则伸长量也为x,由几何关系可知:R 2x ,代入数据解得: k5N / m ;(2)物块 A 在 a 处和在 b 处时,弹簧的形变量同样,弹性势能同样由机械能守恒有:m A gR 1cos m B gR sin 1m A v A21m B v B2 22将 A 在 b 处,由速度分解关系有:v B v A sin代入数据解得:v A22m / s2在 b 处,对 A 由牛顿定律有:N b m A gm Av AR 代入数据解得支持力:N b72 N .(3)物块 A 不离开圆形轨道有两种状况:①不超出圆轨道上与圆心的等高点由动能定理,恰能进入圆轨道时需要知足:1m A gd01m A v A2 2恰能到圆心等高处时需要知足条件:m A gr2 m A gd01m A v A2 2代入数据解得:10.5,2 0.35②过圆轨道最高点,则恰巧过最高点时:v 2m A g m A r由动能定理有:2m A gr3m A gd1m A v21m A v A 222代入数据解得:3 0.125为使物块 A 能进入圆轨道且不脱轨,有:0.35 0.5 或0.125 .10. 某高中物理课程基地拟采买一种能帮助学生对电偏转和磁偏转理解的实验器械 .该器械的中心构造原理可简化为如下图 .一匀强电场方向竖直向下,以竖直线ab 、 cd 为界限,其宽度为 L ,电场强度的大小为 E3mv 02 . 在 cd 的左边有一与 cd 相切于 N 点的圆形有qL界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为 m ,电荷量为 q 的带正电粒子自 O 点以水平初速度 v 0 正对 M 点进入该电场后,从 N 点飞离 cd 界限,再经磁场偏转后 又从 P 点垂直于 cd 界限回到电场地区,并恰能返回O 点 .粒子重力不计 .试求:1 粒子从 N 点飞离 cd 界限时的速度大小和方向;2 P 、 N 两点间的距离;3 圆形有界匀强磁场的半径以及磁感觉强度大小;4 该粒子从 O 点出发至再次回到O 点的总时间.【答案】1 2v 0 ,方向与界限 cd 成 30o角斜向下; 25 3L , ;( 3) 5L ,8 48 3mv 0 ; 4 3L 5 3 L5qL2v 0 18v 0【分析】【剖析】(1)利用运动的合成和分解,联合牛顿第二定律,联立刻可求出粒子从 N 点飞离 cd 界限时的速度大小,利用速度倾向角公式即可确立其方向;( 2)利用类平抛规律联合几何关系,即可求出P、 N 两点间的距离;(3)利用洛伦兹力供给向心力联合几何关系,联立刻可求出圆形有界匀强磁场的半径以及磁感觉强度大小;( 4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,联合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立刻可求出该粒子从O 点出发至再次回到O 点的总时间.【详解】(1)画出粒子轨迹过程图,如下图:L粒子从 O 到 N 点时间: t 1=v0粒子在电场中加快度: a= qE=3v 02 m L粒子在 N 点时竖直方向的速度:v y 10=at = 3 v粒子从 N 点飞离 cd 界限时的速度: v=2v0v y=,故=600,即速度与界限cd 成 300角斜向下.速度偏转角的正切: tanθ=3v0θL(2)粒子从 P 到 O 点时间: t2= 2v0粒子从 P 到 O 点过程的竖直方向位移:y2=1at22= 3 L28粒子从 O 到 N 点过程的竖直方向位移:y1=12=3at L 212故 P、 N 两点间的距离为: Y PN=y1+y2= 53 L8(3)设粒子做匀速圆周运动的半径为r,依据几何关系可得:r cos600 +r= 5 3L 8解得粒子做匀速圆周运动的半径:r= 53L 12依据洛伦兹力供给向心力可得:qvB=m v2 r解得圆形有界匀强磁场的磁感觉强度: B=mv8 3mv0=qr5qL依据几何关系能够确立磁场地区的半径:R=2r cos300即圆形有界匀强磁场的半径: R=5L4(4)粒子在磁场中运动的周期:2πr T=v粒子在匀强磁场中运动的时间:2 5 3πL t 3=T=318v0粒子从 O 点出发至再次回到3L 5 3πL O 点的总时间: t=t 1+t2+t 3=+2v 018v 0【点睛】本题考察带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律联合运动学公式求解,粒子在磁场中的运动运用洛伦兹力供给向心力联合几何关系求解,解题重点是要作出临界的轨迹图,正确运用数学几何关系,还要剖析好从电场射入磁场连接点的速度大小和方向;运用粒子在磁场中转过的圆心角,联合周期公式,求解粒子在磁场中运动的时间.。
高考物理曲线运动专项训练100(附答案)及解析一、高中物理精讲专题测试曲线运动1.“抛石机”是古代战争中常用的一种设备,如图所示,为某学习小组设计的抛石机模型,其长臂的长度L = 2 m ,开始时处于静止状态,与水平面间的夹角α=37°;将质量为m =10.0㎏的石块装在长臂末端的口袋中,对短臂施力,当长臂转到竖直位置时立即停止转动,石块被水平抛出,其落地位置与抛出位置间的水平距离x =12 m 。
不计空气阻力, 重力加速度g 取10m/s²,取水平地面为重力势能零参考平面。
sin37°= 0.6,cos37°= 0.8。
求:(1)石块在最高点的重力势能E P (2)石块水平抛出的速度大小v 0; (3)抛石机对石块所做的功W 。
【答案】(1)320J (2)15m/s (3)1445J【解析】(1)石块在最高点离地面的高度:h =L +L sin α=2×(1+0.6)m = 3.2m 由重力势能公式:E P =mgh=320J (2)石块飞出后做平抛运动 水平方向 x = v 0t竖直方向 212h gt =解得:v 0 = 15m/s(3)长臂从初始位置转到竖直位置过程, 由动能定理得: 2012W mgh mv -= 解得: W = 1445J点睛:要把平抛运动分解水平方向上的匀速和竖直方向上的自由落体运动。
2.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+3.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.4.如图所示,长为3l的不可伸长的轻绳,穿过一长为l的竖直轻质细管,两端分别拴着质量为m、2m的小球A和小物块B,开始时B静止在细管正下方的水平地面上。
曲线运动一、选择题1、对曲线运动的速度,下列说法正确的是: ( )A、速度的大小与方向都在时刻变化B、速度的大小不断发生变化,速度的方向不一定发生变化C、质点在某一点的速度方向是在这一点的受力方向D、质点在某一点的速度方向是在曲线的这一点的切线方向2、一个物体在两个互为锐角的恒力作用下,由静止开始运动,当经过一段时间后,突然去掉其中一个力,则物体将做()A.匀加速直线运动B.匀速直线运动 C.匀速圆周运动 D.变速曲线运动3、下列说法错误的是()A、物体受到的合外力方向与速度方向相同,物体做加速直线运动B、物体受到的合外力方向与速度方向相反时,物体做减速直线运动C、物体只有受到的合外力方向与速度方向成锐角时,物体才做曲线运动D、物体只要受到的合外力方向与速度方向不在一直线上,物体就做曲线运动4.下列说法中正确的是()A.物体在恒力作用下一定作直线运动 B.若物体的速度方向和加速度方向总在同一直线上,则该物体可能做曲线运动C.物体在恒力作用下不可能作匀速圆周运动 D.物体在始终与速度垂直的力的作用下一定作匀速圆周运动5、关于运动的合成和分解,说法错误的是()A、合运动的方向就是物体实际运动的方向B、由两个分速度的大小就可以确定合速度的大小C、两个分运动是直线运动,则它们的合运动不一定是直线运动D、合运动与分运动具有等时性6、关于运动的合成与分解的说法中,正确的是:()A 、合运动的位移为分运动的位移矢量和 B、合运动的速度一定比其中的一个分速度大C、合运动的时间为分运动时间之和D、合运动的位移一定比分运动位移大7.以下关于分运动和合运动的关系的讨论中,错误的说法是:()A.两个直线运动的合运动,可能是直线运动,也可能是曲线运动;B.两个匀速直线运动的合运动,可能是直线运动,也可能是曲线运动;C.两个匀变速直线运动的合运动,可能是直线运动,也可能是曲线运动;D.两个分运动的运动时间,一定与它们的合运动的运动时间相等。
【物理】高考物理曲线运动专项训练100( 附答案 ) 含分析一、高中物理精讲专题测试曲线运动1.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为 m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达M 点(3)2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR2 100.45 m/s=3m/svy4tan53 °v D3所以: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v y232 2.252m/s=3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由 D 到 M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,所以物块不可以抵达M 点(3)由题意知x= 4t - 2t2,物块在桌面上过 B 点后初速度v B= 4m/s ,加快度为:a 4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数 :0.4质量 m1= 0.4kg 的物块将弹簧迟缓压缩到 C 点,开释后弹簧恢还原长时物块恰停止在B点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC 2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.2.如下图,圆滑的水平川面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高考物理一轮复习《曲线运动》练习题(含答案)一、单选题1.在弯道上高速行驶的汽车,后轮突然脱离赛车,关于脱离了的后轮的运动情况,以下说法正确的是()A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能2.“旋转纽扣”是一种传统游戏。
如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。
拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为()A.10m/s2B.100m/s2C.1000m/s2D.10000m/s23.如图所示,A、B两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是()A.A比B先落入篮筐B.A、B运动的最大高度相同C.A在最高点的速度比B在最高点的速度小D.A、B上升到某一相同高度时的速度方向相同4.无人配送小车某次性能测试路径如图所示,半径为3m的半圆弧BC与长8m的直线路径AB相切于B点,与半径为4m的半圆弧CD相切于C点。
小车以最大速度从A点驶入路径,到适当位置调整速率运动到B点,然后保持速率不变依次经过BC和CD。
为保证安全,小车速率最大为4m/s。
在ABC段的加速度最大为21m/s。
小车2m/s,CD段的加速度最大为2视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .7π2s,8m 4t l ⎛⎫=+= ⎪⎝⎭B .97πs,5m 42⎛⎫=+= ⎪⎝⎭t lC .576π26s, 5.5m 126⎛⎫=++= ⎪⎝⎭t lD .5(64)π26s, 5.5m 122⎡⎤+=++=⎢⎥⎣⎦t l 5.如图所示,某同学用一个小球在O 点对准前方的一块竖直放置的挡板,O 与A 在同一高度,小球的水平初速度分别是123v v v 、、,不计空气阻力。
最新高中物理曲线运动题20 套( 带答案 )一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA在A点相切. BC 为圆弧轨道的直径.O 为圆心,OA和OB 之间的夹角为3α, sin α=,一质量为m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过 C 点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图,一位宇航员站一斜坡上 A 点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t 落到斜坡上另一点B,斜坡倾角为α,已知该星球的半径为R,引力常量为G,求:(1)该星球表面的重力加快度g;(2)该星球的密度.【答案】(1)2vtan(2)3vtant 2 RtG【分析】试题剖析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,依据平抛运动的规律求出星球表面的重力加快度.依据万有引力等于重力争出星球的质量,联合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tan α===因此星球表面的重力加快度为:g=.(2)在星球表面上,依据万有引力等于重力,得:mg=G解得星球的质量为为:M=3星球的体积为: V= πR.则星球的密度为: ρ=整理得: ρ=点晴:解决本题重点为利用斜面上的平抛运动规律:常常利用斜面倾解的正切值进行求得星球表面的重力加快度,再利用mg=G 和 ρ= 求星球的密度 .3. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18 N ,最后从 C 点水平飞离轨道,落到水平川面上的 P. B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力, g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点 P 与 B 点的水平距最大. 【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L 3.36m【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点 的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从O到 B 的过程中重力和阻力做功,由动能定理可得:mg R R W f 1mv B2022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC 1mv C21mv B2 22解得: L BC v B2v C2 2g从 C 点到落地的时间:t02h0.8s gB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:124L 44v C5v C由数学知识可知,当v C 1.6m / s时, P 到 B 的水平距离最大,为:L=3.36m【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.4.如下图,半径为 R 的四分之三圆滑圆轨道竖直搁置,CB是竖直直径, A 点与圆心等高,有小球 b 静止在轨道底部,小球 a 自轨道上方某一高度处由静止开释自 A 点与轨道相切进入竖直圆轨道,a、 b 小球直径相等、质量之比为3∶ 1,两小球在轨道底部发生弹性正碰后小球 b 经过 C点水平抛出落在离 C 点水平距离为22R 的地面上,重力加快度为g,小球均可视为质点。
高考物理曲线运动模拟试题含解析一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ; (3)落地点离桌面边缘的水平距离2m . 【解析】 【分析】 【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg 、桌面弹力F N 和细线的拉力F ,重力mg 和弹力F N 平衡,线的拉力提供向心力,有: F N =F =mω2R ,设原来的角速度为ω0,线上的拉力是F 0,加快后的角速度为ω,线断时的拉力是F 1,则有: F 1:F 0=ω2: 20ω=9:1, 又F 1=F 0+40N ,所以F 0=5N ,线断时有:F 1=45N .(2)设线断时小球的线速度大小为v ,由F 1=2v m R,代入数据得:v =5m /s .(3)由平抛运动规律得小球在空中运动的时间为:t 220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.4.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦;(2)设物块AB 在传送带上向右滑行的最远距离为s , 由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.5.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R ,A 点与圆心O 等高,B 点在O 的正上方,AD 为与水平方向成θ=45°角的斜面,AD 长为R .一个质量为m 的小球(视为质点)在A 点正上方h 处由静止释放,自由下落至A 点后进入圆形轨道,并能沿圆形轨道到达B 点,且到达B 处时小球对圆轨道的压力大小为mg ,重力加速度为g ,求:(1)小球到B 点时的速度大小v B(2)小球第一次落到斜面上C 点时的速度大小v(3)改变h ,为了保证小球通过B 点后落到斜面上,h 应满足的条件 【答案】2gR 10gR 332R h R ≤≤ 【解析】 【分析】 【详解】(1)小球经过B 点时,由牛顿第二定律及向心力公式,有2Bv mg mg m R+=解得2B v gR(2)设小球离开B 点做平抛运动,经时间t ,下落高度y ,落到C 点,则212y gt =cot B y v t θ=两式联立,得2244B v gR y R g g===对小球下落由机械能守恒定律,有221122B mv mgy mv += 解得222810B v v gy gR gR gR =+=+=(3)设小球恰好能通过B 点,过B 点时速度为v 1,由牛顿第二定律及向心力公式,有21v mg m R=又211()2mg h R mv -=得32h R =可以证明小球经过B 点后一定能落到斜面上设小球恰好落到D 点,小球通过B 点时速度为v 2,飞行时间为t ',21(722)sin 2R R gt θ+=' 2(722)cos R R v t θ+='解得22v gR =又221()2mg h R mv -=可得3h R =故h 应满足的条件为332R h R ≤≤ 【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.6.如图所示,半径为R 的四分之三光滑圆轨道竖直放置,CB 是竖直直径,A 点与圆心等高,有小球b 静止在轨道底部,小球a 自轨道上方某一高度处由静止释放自A 点与轨道相切进入竖直圆轨道,a 、b 小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b 经过C 点水平抛出落在离C 点水平距离为22R 的地面上,重力加速度为g ,小球均可视为质点。
高中物理《曲线运动》练习题(附答案解析)学校:___________姓名:___________班级:___________ 一、单选题1.下列关系式中不是利用物理量之比定义新的物理量的是()A.FEq=B.pEqϕ=C.Fam=D.tθω=2.一船以恒定的速率渡河,水速恒定(小于船速)。
要使船垂直河岸到达对岸,则()A.船应垂直河岸航行B.船的航行方向应偏向上游一侧C.船不可能沿直线到达对岸D.河的宽度一定时,船垂直到对岸的时间是任意的3.如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。
若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvRB.2mvRC.22mvRD.2mvR4.如图所示,细线一端固定在A点,另一端系着小球。
给小球一个初速度,使小球在水平面内做匀速圆周运动,关于该小球的受力情况,下列说法中正确的是()A.受重力、向心力作用B.受细线拉力、向心力作用C.受重力、细线拉力作用D.受重力、细线拉力和向心力作用5.下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒6.把地球设想成一个半径为地球半径R=6 400km的拱形桥,如图所示,汽车在最高点时,若恰好对“桥面”压力为0,g=9.8m/s2,则汽车的速度为()A.7.9m/s B.7.9m/h C.7.9km/s D.7.9km/h7.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图所示),与此同时对质点加上沿x轴正方向的恒力Fx和沿y轴正方向的恒力Fy,则()A.因为有Fx,质点一定做曲线运动B.如果Fy>Fx,质点向y轴一侧做曲线运动C.质点不可能做直线运动D.如果Fy<Fx tanα,质点向x轴一侧做曲线运动8.在2022年2月5日北京冬奥会上,我国选手运动员在短道速滑比赛中的最后冲刺阶段如图所示,设甲、乙两运动员在水平冰面上恰好同时到达虚线PQ,然后分别沿半径为r1和r2(r2>r1)的滑道做匀速圆周运动,运动半个圆周后匀加速冲向终点线。
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
高中物理曲线运动专项训练100(附答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
不计空气阻力,重力加速度求:滑块刚滑离平板车时,车和滑块的速度大小; 滑块与平板车间的动摩擦因数。
【答案】(1),(2)【解析】 【详解】设滑块刚滑到平板车右端时,滑块的速度大小为,平板车的速度大小为, 由动量守恒可知:滑块滑离平板车后做平抛运动,则有:解得:,;由功能关系可知:解得:【点睛】本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞后系统的动量相等列方程进行解答。
高考物理曲线运动模拟试题一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR = (2)123gRv =,253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =3.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ .【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯===(2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v 0水平抛出,小球落在斜面上的某点P ,过P 点放置一垂直于斜面的直杆(P 点和直杆均未画出)。
高考物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
最新高考物理曲线运动专项训练100(附答案)一、高中物理精讲专题测试曲线运动1.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)【解析】 【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2 水平方向:s 1=v c t 解得:v c =10m/s(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10m/s设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。
最新高中物理曲线运动模拟试题一、高中物理精讲专题测试曲线运动1.如下图,倾角为45的粗拙平直导轨与半径为r 的圆滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰巧击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为 e 点,重力加快度为g,不计空气阻力. 求:(1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果能够保存根号)【答案】( 1)142 mgr ;()′;()2=6mg2F314【分析】【剖析】【详解】(1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r v a t竖直方向: r1gt 22解得:v a gr小滑块在 a 点飞出的动能E k1mv a21mgr22(2)设小滑块在 e 点时速度为v m,由机械能守恒定律得:1mv m21mv a2mg 2r22在最低点由牛顿第二定律:F mg mv m2r由牛顿第三定律得:F′=F解得: F′ =6mg(3) bd 之间长度为L,由几何关系得:L 2 2 1 r从 d 到最低点 e 过程中,由动能定理mgHmg cos L1mv m22解得42142.如下图,在风洞实验室中,从 A 点以水平速度v0向左抛出一个质最为m 的小球,小球抛出后所受空气作使劲沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加快度为g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv022m2 gv02v0F24m2g2 2F(2)2( 3)F F【分析】【剖析】(1)依据水平方向的运动规律,联合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球抵达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依据运动学公式联合平行四边形定章求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma xv 02=2ax mx解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t=v1a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0 V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的重点将小球的运动的运动分解,搞清分运动的规律,联合等时性,运用牛顿第二定律和运动学公式进行求解.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为m、电量为+q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mgqE (2)在物理最高点F:tanmg 解得α=370;过 F 点的临界条件:v F=0从开始到 F 点:-1mgx qE (x R sin)mg ( R R cos ) 01mv02 2解得v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到 F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg2R01mv022s x R x1解得: s(44)R4.如下图,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁圆滑,圆轨道右边的水平面BC 与圆心等高.质量为m 的小球从离 B 点高度为h 处(3R h3R )的 A 点由静止开始着落,从 B 点进入圆轨道,2重力加快度为g ).(1)小球可否抵达D点?试经过计算说明;(2)求小球在最高点对轨道的压力范围;(3)经过计算说明小球从 D 点飞出后可否落在水平面BC 上,若能,求落点与 B 点水平距离d的范围.【答案】(1)小球能抵达D点;(2)0F3mg;( 3)2 1 R d22 1 R【分析】【剖析】【详解】(1)当小球恰巧经过最高点时应有:mv D2 mg R由机械能守恒可得: mg h R mv D2 2联立解得 h 3R ,因为h的取值范围为 3 R h3R ,小球能抵达 D 点;22(2)设小球在D点遇到的压力为 F ,则F mg mv D2 Rmg h R mv D2 2联立并联合 h 的取值范围33R解得: 0F3mg R h2据牛顿第三定律得小球在最高点对轨道的压力范围为:0 F 3mg (3)由( 1)知在最高点D速度起码为v D min gR此时小球飞离 D 后平抛,有:R 1 gt22x min v D min t联立解得x min2R R ,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:mg3mg m v D2maxR 解得v D max2gR 小球飞离 D 后平抛 R 1gt 2 ,2x max vD maxt联立解得x max 2 2R故落点与 B 点水平距离 d 的范围为: 2 1 R d 2 2 1 R5.如下图 ,半径为l,质量为 m 的小球与两根不行伸长的轻绳a,b 连结 ,两轻绳的另一端分4别固定在一根竖直圆滑杆的A,B 两点上 .已知 A,B 两点相距为 l,当两轻绳挺直后A、B 两点到球心的距离均为 l,重力加快度为 g.(1)装置静止时 ,求小球遇到的绳索的拉力大小T;(2)现以竖直杆为轴转动并达到稳固(轻绳a,b 与杆在同一竖直平面内).①小球恰巧走开竖直杆时,竖直杆的角速度0多大?②轻绳 b 挺直时 ,竖直杆的角速度多大?【答案】 (1)4 150 15g 2gT15 mg (2)①ω=2②15ll【分析】【详解】(1)设轻绳 a 与竖直杆的夹角为α15 cos4 对小球进行受力剖析得mg Tcos解得:T4 15mg15(2)①小球恰巧走开竖直杆时,小球与竖直杆间的作使劲为零。
最新高考物理曲线运动模拟试题一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求:(1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=3.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小4.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得cos mgT α=解得:415T =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
可知小球做圆周运动的半径为r=4l 20tan mg m r αω=解得:ω0=15215gl②轻绳b 刚伸直时,轻绳a 与竖直杆的夹角为60°,可知小球做圆周运动的半径为sin60r l '=︒2tan 60mg m r ω'︒=解得:ω=2g l 轻绳b 伸直时,竖直杆的角速度2g lω≥5.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零; (3)转台从静止开始加速到角速度3gLω=的过程中,转台对物块做的功.【答案】(1)1g Lμω=(2)233g Lω=(3)132mgL⎛ ⎝ 【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1g Lμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =+【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.6.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。
(1)当轻绳与OM 的夹角θ=37°时,求轻绳上张力F 。
(2)当轻绳与OM 的夹角θ=37°时,求物块B 的动能E kB 。
(3)若缓慢增大直角杆转速,使轻绳与OM 的夹角θ由37°缓慢增加到53°,求这个过程中直角杆对A 和B 做的功W A 、W B 。
【答案】(1)25N F =(2) 2.25J kB E = (3)0A W = ,B 61J 12W = 【解析】 【详解】(1)因A 始终处于平衡状态,所以对A 有1cos F m g θ=得25N F =(2)设B 质量为2m 、速度为v 、做圆周运动的半径为r ,对B 有22sin v F m rθ=sin r L θ=2212kB E m v =得21sin 2cos kB m gL E θθ=2.25J kB E =(3)因杆对A 的作用力垂直于A 的位移,所以0A W =由(2)中的21sin 2cos kB m gL E θθ=知,当53θ=︒时,B 的动能为kB 16J 3E '= 杆对B 做的功等于A 、B 组成的系统机械能的增量,故B kB kB 1W E E m gh '=-+ ①其中cos37cos53h L L ︒︒=- ② 得B 61J 12W =7.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.8.某高中物理课程基地拟采购一种能帮助学生对电偏转和磁偏转理解的实验器材.该器材的核心结构原理可简化为如图所示.一匀强电场方向竖直向下,以竖直线ab 、cd 为边界,其宽度为L ,电场强度的大小为203.mv E qL=在cd 的左侧有一与cd 相切于N 点的圆形有界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为m ,电荷量为q 的带正电粒子自O 点以水平初速度0v 正对M 点进入该电场后,从N 点飞离cd 边界,再经磁场偏转后又从P 点垂直于cd 边界回到电场区域,并恰能返回O 点.粒子重力不计.试求:()1粒子从N 点飞离cd 边界时的速度大小和方向; ()2P 、N 两点间的距离;()3圆形有界匀强磁场的半径以及磁感应强度大小; ()4该粒子从O 点出发至再次回到O 点的总时间.【答案】()012v ,方向与边界cd 成30o 角斜向下;()5328L ,;(3)54L , 0835mv qL;()003534218L L v v π+【解析】 【分析】(1)利用运动的合成和分解,结合牛顿第二定律,联立即可求出粒子从N 点飞离cd 边界时的速度大小,利用速度偏向角公式即可确定其方向;(2)利用类平抛规律结合几何关系,即可求出P 、N 两点间的距离;(3)利用洛伦兹力提供向心力结合几何关系,联立即可求出圆形有界匀强磁场的半径以及磁感应强度大小;(4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,结合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立即可求出该粒子从O 点出发至再次回到O 点的总时间. 【详解】(1)画出粒子轨迹过程图,如图所示:粒子从O 到N 点时间:t 1=Lv粒子在电场中加速度:a=qE m=2L粒子在N 点时竖直方向的速度:v y =at 10 粒子从N 点飞离cd 边界时的速度:v=2v 0 速度偏转角的正切:tan θ=y 0v v故θ=600,即速度与边界cd 成300角斜向下.(2)粒子从P 到O 点时间:t 2=L2v 粒子从P 到O 点过程的竖直方向位移:y 2=221at 2粒子从O 到N 点过程的竖直方向位移:y 1=211at 2=L 2故P 、N 两点间的距离为:Y PN =y 1+y 2L (3)设粒子做匀速圆周运动的半径为r ,根据几何关系可得:r 0cos 60解得粒子做匀速圆周运动的半径:根据洛伦兹力提供向心力可得:qvB=m 2v r解得圆形有界匀强磁场的磁感应强度:B=mv qr=05qL根据几何关系可以确定磁场区域的半径:R=2r 0cos30 即圆形有界匀强磁场的半径:R=5L 4 (4)粒子在磁场中运动的周期:T=2πrv粒子在匀强磁场中运动的时间:t 3=23粒子从O 点出发至再次回到O 点的总时间:t=t 1+t 2+t 3=03L 2v【点睛】本题考查带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,还要分析好从电场射入磁场衔接点的速度大小和方向;运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.9.如图所示,AB是光滑的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,将弹簧水平放置,一端固定在A点.现使质量为m的小滑块从D点以速度v0=进入轨道DCB,然后沿着BA运动压缩弹簧,弹簧压缩最短时小滑块处于P点,重力加速度大小为g,求:(1)在D点时轨道对小滑块的作用力大小F N;(2)弹簧压缩到最短时的弹性势能E p;(3)若水平轨道AB粗糙,小滑块从P点静止释放,且PB=5l,要使得小滑块能沿着轨道BCD运动,且运动过程中不脱离轨道,求小滑块与AB间的动摩擦因数μ的范围.【答案】(1)(2)(3)μ≤0.2或0.5≤μ≤0.7【解析】(1)解得(2)根据机械能守恒解得(3)小滑块恰能能运动到B点解得μ=0.7小滑块恰能沿着轨道运动到C点解得μ=0.5所以0.5≤μ≤0.7小滑块恰能沿着轨道运动D点解得μ=0.2所以μ≤0.2综上 μ≤0.2或0.5≤μ≤0.710.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ;(2)P 点到A 点的距离h .【答案】(1)2.5R (2)23R 【解析】【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h .【详解】(1)在B 点时,由牛顿第二定律:2B B v N mg m R -=,其中N B =3mg ; 解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =, 从A 点到B 点:202111(1cos60)22A B mv mgR mv +-=2 3R联立解得h=。