西马-阿多诺
- 格式:pptx
- 大小:161.42 KB
- 文档页数:32
西方马克思主义:第一次世界大战以后,俄国革命取得了胜利,但中西欧革命却遭到了失败。
卢卡奇、柯尔施等人在总结革命失败原因,探索革命道路的过程中,认为革命失败原因就在于无产阶级之阶级意识的丧失,而这又是第二国际庸俗经济决定论所导致的;同时,这也证明俄国革命道路在中西欧是行不通的。
到1923年,卢卡奇、柯尔施就分别著书,试图把马克思主义解释成为一种人道主义,并强调马克思思想与黑格尔思想的连续性。
从总体上说,西方马克思主义是20世纪具有国际性影响的西方社会思潮之一,又是一种具有非马克思主义倾向的非正统马克思主义。
文化革命论:葛兰西认为,对于西方发达国家而言,无产阶级革命的首要任务不是武装夺取政权,而是工资产阶级争夺文化领导权或意识形态领导权。
只有采用阵地战的方式,在市民社会中获得普遍的领导权,才能取得无产阶级革命的胜利。
实践哲学:所谓实践哲学,就是一种绝对的创造性活动。
葛兰西以此为基石,一方面批判了形而上学唯物主义的哲学观与唯心主义哲学观;另一方面,批判了对马克思思想起源和组成部分做僵化的研究。
他认为马克思主义的三个组成部分是内在统一的,是一种总体的知识。
同时,葛兰西也反对庸俗唯物主义和经济唯物主义对马克思主义的曲解。
简言之,葛兰西认为实践哲学开辟了一种新的哲学观。
哲学不是一种理论教条,而是一种历史性的政治实践。
哲学不仅描述了这个世界,而在于推翻非人的旧世界,并建立合理化的新世界。
简述卢卡其《历史与阶级意识》中的基本思想。
(1)历史与阶级意识》是匈牙利大思想家卢卡奇(1885-1971)的所有哲学著作中影响最大、引起争论最多,也许也是最重要的著作之一。
(2)《历代与阶级意识》是一部多层次的哲学著作,或者说政治哲学著作。
整部著作贯穿了必须恢复被第二国际的领袖们所遗忘和歪曲了的马克思主义的真正哲学意义的思想。
卢卡奇在其中深刻地论述了他对有关马克思主义及其辩证法本质一系列极其重要的哲学问题的理解,提出了他对历史及其主体以及物化问题的解释,阐明了无产阶段及其阶级意识的历史作用。
近年来国内学界关于西方马克思主义的评价性研究与争论作者:李健来源:《桂海论丛》2020年第05期摘要:围绕西方马克思主义解读马克思主义的逻辑理路,近年来我国学者主要针对三个关键性问题展开争论,一是西方马克思主义研究立场的学术定位是否已经达到政治自觉;二是西方马克思主义在20世纪50至60年代“终结”或“转场”后的多元研究格局与理论构建;三是西方马克思主义在新的历史方位下该往何处去的时代之问和未来展望。
这三次争论启示我们,在发展创新马克思主义的过程中,应该着力把握好两个核心问题,一是自卢卡奇以来所强调的方法,即如何回到马克思的原初语境和把握马克思的真精神;二是打通唯物史观与未来社会形态的内在关联,即如何从历史科学的视角阐述共产主义从产生到实现的在场问题。
关键词:西方马克思主义;马克思主义哲学;历史唯物主义中图分类号:A81文献标识码:A文章编号:1004-1494(2020)05-0035-05我国西方马克思主义研究经历了四十多年的发展,已经成为理解和创新马克思主义的重要组成部分,成为全球化时代下批判资本主义的理论和政治资源。
客观全面呈现西方马克思主义在中国的发展历程,将其内部争论以辩证的张力关系表达出来,从思想史和学术史,从叙述方式和研究方式,从具体和综合等不同角度评判我国西方马克思主义研究取得的成果与未来研究需要加强的地方,这成为当前亟需解决的理论任务,将对我们发展21世纪马克思主义、推进当代中国马克思主义的时代化、大众化以及国际化产生积极效应。
一、政治立场:西方马克思主义的学科定位针对“什么是西方马克思主义”这一原初性问题,我国曾在20世纪末21世纪初产生过两次争论。
一次是20世纪80年代的“徐杜论战”①,一次是21世纪初的“徐王论战②。
这两次论战激发了国内学者研究西方马克思主义的学术兴趣,在理清西方马克思主义的概念、范围、特征,尤其是政治立场方面为后来的研究者提供了有价值的参考。
直至今天,国内学者依然将研究立场视为西方马克思主义研究的前提性问题。
Observation of Gravitational Waves from a Binary Black Hole MergerB.P.Abbott et al.*(LIGO Scientific Collaboration and Virgo Collaboration)(Received21January2016;published11February2016)On September14,2015at09:50:45UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal.The signal sweeps upwards in frequency from35to250Hz with a peak gravitational-wave strain of1.0×10−21.It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole.The signal was observed with a matched-filter signal-to-noise ratio of24and a false alarm rate estimated to be less than1event per203000years,equivalent to a significance greaterthan5.1σ.The source lies at a luminosity distance of410þ160−180Mpc corresponding to a redshift z¼0.09þ0.03−0.04.In the source frame,the initial black hole masses are36þ5−4M⊙and29þ4−4M⊙,and the final black hole mass is62þ4−4M⊙,with3.0þ0.5−0.5M⊙c2radiated in gravitational waves.All uncertainties define90%credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems.This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.DOI:10.1103/PhysRevLett.116.061102I.INTRODUCTIONIn1916,the year after the final formulation of the field equations of general relativity,Albert Einstein predicted the existence of gravitational waves.He found that the linearized weak-field equations had wave solutions: transverse waves of spatial strain that travel at the speed of light,generated by time variations of the mass quadrupole moment of the source[1,2].Einstein understood that gravitational-wave amplitudes would be remarkably small;moreover,until the Chapel Hill conference in 1957there was significant debate about the physical reality of gravitational waves[3].Also in1916,Schwarzschild published a solution for the field equations[4]that was later understood to describe a black hole[5,6],and in1963Kerr generalized the solution to rotating black holes[7].Starting in the1970s theoretical work led to the understanding of black hole quasinormal modes[8–10],and in the1990s higher-order post-Newtonian calculations[11]preceded extensive analytical studies of relativistic two-body dynamics[12,13].These advances,together with numerical relativity breakthroughs in the past decade[14–16],have enabled modeling of binary black hole mergers and accurate predictions of their gravitational waveforms.While numerous black hole candidates have now been identified through electromag-netic observations[17–19],black hole mergers have not previously been observed.The discovery of the binary pulsar system PSR B1913þ16 by Hulse and Taylor[20]and subsequent observations of its energy loss by Taylor and Weisberg[21]demonstrated the existence of gravitational waves.This discovery, along with emerging astrophysical understanding[22], led to the recognition that direct observations of the amplitude and phase of gravitational waves would enable studies of additional relativistic systems and provide new tests of general relativity,especially in the dynamic strong-field regime.Experiments to detect gravitational waves began with Weber and his resonant mass detectors in the1960s[23], followed by an international network of cryogenic reso-nant detectors[24].Interferometric detectors were first suggested in the early1960s[25]and the1970s[26].A study of the noise and performance of such detectors[27], and further concepts to improve them[28],led to proposals for long-baseline broadband laser interferome-ters with the potential for significantly increased sensi-tivity[29–32].By the early2000s,a set of initial detectors was completed,including TAMA300in Japan,GEO600 in Germany,the Laser Interferometer Gravitational-Wave Observatory(LIGO)in the United States,and Virgo in binations of these detectors made joint obser-vations from2002through2011,setting upper limits on a variety of gravitational-wave sources while evolving into a global network.In2015,Advanced LIGO became the first of a significantly more sensitive network of advanced detectors to begin observations[33–36].A century after the fundamental predictions of Einstein and Schwarzschild,we report the first direct detection of gravitational waves and the first direct observation of a binary black hole system merging to form a single black hole.Our observations provide unique access to the*Full author list given at the end of the article.Published by the American Physical Society under the terms of the Creative Commons Attribution3.0License.Further distri-bution of this work must maintain attribution to the author(s)and the published article’s title,journal citation,and DOI.properties of space-time in the strong-field,high-velocity regime and confirm predictions of general relativity for the nonlinear dynamics of highly disturbed black holes.II.OBSERVATIONOn September14,2015at09:50:45UTC,the LIGO Hanford,W A,and Livingston,LA,observatories detected the coincident signal GW150914shown in Fig.1.The initial detection was made by low-latency searches for generic gravitational-wave transients[41]and was reported within three minutes of data acquisition[43].Subsequently, matched-filter analyses that use relativistic models of com-pact binary waveforms[44]recovered GW150914as the most significant event from each detector for the observa-tions reported here.Occurring within the10-msintersite FIG.1.The gravitational-wave event GW150914observed by the LIGO Hanford(H1,left column panels)and Livingston(L1,rightcolumn panels)detectors.Times are shown relative to September14,2015at09:50:45UTC.For visualization,all time series are filtered with a35–350Hz bandpass filter to suppress large fluctuations outside the detectors’most sensitive frequency band,and band-reject filters to remove the strong instrumental spectral lines seen in the Fig.3spectra.Top row,left:H1strain.Top row,right:L1strain.GW150914arrived first at L1and6.9þ0.5−0.4ms later at H1;for a visual comparison,the H1data are also shown,shifted in time by this amount and inverted(to account for the detectors’relative orientations).Second row:Gravitational-wave strain projected onto each detector in the35–350Hz band.Solid lines show a numerical relativity waveform for a system with parameters consistent with those recovered from GW150914[37,38]confirmed to99.9%by an independent calculation based on[15].Shaded areas show90%credible regions for two independent waveform reconstructions.One(dark gray)models the signal using binary black hole template waveforms [39].The other(light gray)does not use an astrophysical model,but instead calculates the strain signal as a linear combination of sine-Gaussian wavelets[40,41].These reconstructions have a94%overlap,as shown in[39].Third row:Residuals after subtracting the filtered numerical relativity waveform from the filtered detector time series.Bottom row:A time-frequency representation[42]of the strain data,showing the signal frequency increasing over time.propagation time,the events have a combined signal-to-noise ratio(SNR)of24[45].Only the LIGO detectors were observing at the time of GW150914.The Virgo detector was being upgraded, and GEO600,though not sufficiently sensitive to detect this event,was operating but not in observational mode.With only two detectors the source position is primarily determined by the relative arrival time and localized to an area of approximately600deg2(90% credible region)[39,46].The basic features of GW150914point to it being produced by the coalescence of two black holes—i.e., their orbital inspiral and merger,and subsequent final black hole ringdown.Over0.2s,the signal increases in frequency and amplitude in about8cycles from35to150Hz,where the amplitude reaches a maximum.The most plausible explanation for this evolution is the inspiral of two orbiting masses,m1and m2,due to gravitational-wave emission.At the lower frequencies,such evolution is characterized by the chirp mass[11]M¼ðm1m2Þ3=5121=5¼c3G596π−8=3f−11=3_f3=5;where f and_f are the observed frequency and its time derivative and G and c are the gravitational constant and speed of light.Estimating f and_f from the data in Fig.1, we obtain a chirp mass of M≃30M⊙,implying that the total mass M¼m1þm2is≳70M⊙in the detector frame. This bounds the sum of the Schwarzschild radii of thebinary components to2GM=c2≳210km.To reach an orbital frequency of75Hz(half the gravitational-wave frequency)the objects must have been very close and very compact;equal Newtonian point masses orbiting at this frequency would be only≃350km apart.A pair of neutron stars,while compact,would not have the required mass,while a black hole neutron star binary with the deduced chirp mass would have a very large total mass, and would thus merge at much lower frequency.This leaves black holes as the only known objects compact enough to reach an orbital frequency of75Hz without contact.Furthermore,the decay of the waveform after it peaks is consistent with the damped oscillations of a black hole relaxing to a final stationary Kerr configuration. Below,we present a general-relativistic analysis of GW150914;Fig.2shows the calculated waveform using the resulting source parameters.III.DETECTORSGravitational-wave astronomy exploits multiple,widely separated detectors to distinguish gravitational waves from local instrumental and environmental noise,to provide source sky localization,and to measure wave polarizations. The LIGO sites each operate a single Advanced LIGO detector[33],a modified Michelson interferometer(see Fig.3)that measures gravitational-wave strain as a differ-ence in length of its orthogonal arms.Each arm is formed by two mirrors,acting as test masses,separated by L x¼L y¼L¼4km.A passing gravitational wave effec-tively alters the arm lengths such that the measured difference isΔLðtÞ¼δL x−δL y¼hðtÞL,where h is the gravitational-wave strain amplitude projected onto the detector.This differential length variation alters the phase difference between the two light fields returning to the beam splitter,transmitting an optical signal proportional to the gravitational-wave strain to the output photodetector. To achieve sufficient sensitivity to measure gravitational waves,the detectors include several enhancements to the basic Michelson interferometer.First,each arm contains a resonant optical cavity,formed by its two test mass mirrors, that multiplies the effect of a gravitational wave on the light phase by a factor of300[48].Second,a partially trans-missive power-recycling mirror at the input provides addi-tional resonant buildup of the laser light in the interferometer as a whole[49,50]:20W of laser input is increased to700W incident on the beam splitter,which is further increased to 100kW circulating in each arm cavity.Third,a partially transmissive signal-recycling mirror at the outputoptimizes FIG. 2.Top:Estimated gravitational-wave strain amplitude from GW150914projected onto H1.This shows the full bandwidth of the waveforms,without the filtering used for Fig.1. The inset images show numerical relativity models of the black hole horizons as the black holes coalesce.Bottom:The Keplerian effective black hole separation in units of Schwarzschild radii (R S¼2GM=c2)and the effective relative velocity given by the post-Newtonian parameter v=c¼ðGMπf=c3Þ1=3,where f is the gravitational-wave frequency calculated with numerical relativity and M is the total mass(value from Table I).the gravitational-wave signal extraction by broadening the bandwidth of the arm cavities [51,52].The interferometer is illuminated with a 1064-nm wavelength Nd:Y AG laser,stabilized in amplitude,frequency,and beam geometry [53,54].The gravitational-wave signal is extracted at the output port using a homodyne readout [55].These interferometry techniques are designed to maxi-mize the conversion of strain to optical signal,thereby minimizing the impact of photon shot noise (the principal noise at high frequencies).High strain sensitivity also requires that the test masses have low displacement noise,which is achieved by isolating them from seismic noise (low frequencies)and designing them to have low thermal noise (intermediate frequencies).Each test mass is suspended as the final stage of a quadruple-pendulum system [56],supported by an active seismic isolation platform [57].These systems collectively provide more than 10orders of magnitude of isolation from ground motion for frequen-cies above 10Hz.Thermal noise is minimized by using low-mechanical-loss materials in the test masses and their suspensions:the test masses are 40-kg fused silica substrates with low-loss dielectric optical coatings [58,59],and are suspended with fused silica fibers from the stage above [60].To minimize additional noise sources,all components other than the laser source are mounted on vibration isolation stages in ultrahigh vacuum.To reduce optical phase fluctuations caused by Rayleigh scattering,the pressure in the 1.2-m diameter tubes containing the arm-cavity beams is maintained below 1μPa.Servo controls are used to hold the arm cavities on resonance [61]and maintain proper alignment of the optical components [62].The detector output is calibrated in strain by measuring its response to test mass motion induced by photon pressure from a modulated calibration laser beam [63].The calibration is established to an uncertainty (1σ)of less than 10%in amplitude and 10degrees in phase,and is continuously monitored with calibration laser excitations at selected frequencies.Two alternative methods are used to validate the absolute calibration,one referenced to the main laser wavelength and the other to a radio-frequencyoscillator(a)FIG.3.Simplified diagram of an Advanced LIGO detector (not to scale).A gravitational wave propagating orthogonally to the detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening the other during one half-cycle of the wave;these length changes are reversed during the other half-cycle.The output photodetector records these differential cavity length variations.While a detector ’s directional response is maximal for this case,it is still significant for most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth).Inset (a):Location and orientation of the LIGO detectors at Hanford,WA (H1)and Livingston,LA (L1).Inset (b):The instrument noise for each detector near the time of the signal detection;this is an amplitude spectral density,expressed in terms of equivalent gravitational-wave strain amplitude.The sensitivity is limited by photon shot noise at frequencies above 150Hz,and by a superposition of other noise sources at lower frequencies [47].Narrow-band features include calibration lines (33–38,330,and 1080Hz),vibrational modes of suspension fibers (500Hz and harmonics),and 60Hz electric power grid harmonics.[64].Additionally,the detector response to gravitational waves is tested by injecting simulated waveforms with the calibration laser.To monitor environmental disturbances and their influ-ence on the detectors,each observatory site is equipped with an array of sensors:seismometers,accelerometers, microphones,magnetometers,radio receivers,weather sensors,ac-power line monitors,and a cosmic-ray detector [65].Another∼105channels record the interferometer’s operating point and the state of the control systems.Data collection is synchronized to Global Positioning System (GPS)time to better than10μs[66].Timing accuracy is verified with an atomic clock and a secondary GPS receiver at each observatory site.In their most sensitive band,100–300Hz,the current LIGO detectors are3to5times more sensitive to strain than initial LIGO[67];at lower frequencies,the improvement is even greater,with more than ten times better sensitivity below60Hz.Because the detectors respond proportionally to gravitational-wave amplitude,at low redshift the volume of space to which they are sensitive increases as the cube of strain sensitivity.For binary black holes with masses similar to GW150914,the space-time volume surveyed by the observations reported here surpasses previous obser-vations by an order of magnitude[68].IV.DETECTOR VALIDATIONBoth detectors were in steady state operation for several hours around GW150914.All performance measures,in particular their average sensitivity and transient noise behavior,were typical of the full analysis period[69,70]. Exhaustive investigations of instrumental and environ-mental disturbances were performed,giving no evidence to suggest that GW150914could be an instrumental artifact [69].The detectors’susceptibility to environmental disturb-ances was quantified by measuring their response to spe-cially generated magnetic,radio-frequency,acoustic,and vibration excitations.These tests indicated that any external disturbance large enough to have caused the observed signal would have been clearly recorded by the array of environ-mental sensors.None of the environmental sensors recorded any disturbances that evolved in time and frequency like GW150914,and all environmental fluctuations during the second that contained GW150914were too small to account for more than6%of its strain amplitude.Special care was taken to search for long-range correlated disturbances that might produce nearly simultaneous signals at the two sites. No significant disturbances were found.The detector strain data exhibit non-Gaussian noise transients that arise from a variety of instrumental mecha-nisms.Many have distinct signatures,visible in auxiliary data channels that are not sensitive to gravitational waves; such instrumental transients are removed from our analyses [69].Any instrumental transients that remain in the data are accounted for in the estimated detector backgrounds described below.There is no evidence for instrumental transients that are temporally correlated between the two detectors.V.SEARCHESWe present the analysis of16days of coincident observations between the two LIGO detectors from September12to October20,2015.This is a subset of the data from Advanced LIGO’s first observational period that ended on January12,2016.GW150914is confidently detected by two different types of searches.One aims to recover signals from the coalescence of compact objects,using optimal matched filtering with waveforms predicted by general relativity. The other search targets a broad range of generic transient signals,with minimal assumptions about waveforms.These searches use independent methods,and their response to detector noise consists of different,uncorrelated,events. However,strong signals from binary black hole mergers are expected to be detected by both searches.Each search identifies candidate events that are detected at both observatories consistent with the intersite propa-gation time.Events are assigned a detection-statistic value that ranks their likelihood of being a gravitational-wave signal.The significance of a candidate event is determined by the search background—the rate at which detector noise produces events with a detection-statistic value equal to or higher than the candidate event.Estimating this back-ground is challenging for two reasons:the detector noise is nonstationary and non-Gaussian,so its properties must be empirically determined;and it is not possible to shield the detector from gravitational waves to directly measure a signal-free background.The specific procedure used to estimate the background is slightly different for the two searches,but both use a time-shift technique:the time stamps of one detector’s data are artificially shifted by an offset that is large compared to the intersite propagation time,and a new set of events is produced based on this time-shifted data set.For instrumental noise that is uncor-related between detectors this is an effective way to estimate the background.In this process a gravitational-wave signal in one detector may coincide with time-shifted noise transients in the other detector,thereby contributing to the background estimate.This leads to an overestimate of the noise background and therefore to a more conservative assessment of the significance of candidate events.The characteristics of non-Gaussian noise vary between different time-frequency regions.This means that the search backgrounds are not uniform across the space of signals being searched.To maximize sensitivity and provide a better estimate of event significance,the searches sort both their background estimates and their event candidates into differ-ent classes according to their time-frequency morphology. The significance of a candidate event is measured against the background of its class.To account for having searchedmultiple classes,this significance is decreased by a trials factor equal to the number of classes [71].A.Generic transient searchDesigned to operate without a specific waveform model,this search identifies coincident excess power in time-frequency representations of the detector strain data [43,72],for signal frequencies up to 1kHz and durations up to a few seconds.The search reconstructs signal waveforms consistent with a common gravitational-wave signal in both detectors using a multidetector maximum likelihood method.Each event is ranked according to the detection statistic ηc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2E c =ð1þE n =E c Þp ,where E c is the dimensionless coherent signal energy obtained by cross-correlating the two reconstructed waveforms,and E n is the dimensionless residual noise energy after the reconstructed signal is subtracted from the data.The statistic ηc thus quantifies the SNR of the event and the consistency of the data between the two detectors.Based on their time-frequency morphology,the events are divided into three mutually exclusive search classes,as described in [41]:events with time-frequency morphology of known populations of noise transients (class C1),events with frequency that increases with time (class C3),and all remaining events (class C2).Detected with ηc ¼20.0,GW150914is the strongest event of the entire search.Consistent with its coalescence signal signature,it is found in the search class C3of events with increasing time-frequency evolution.Measured on a background equivalent to over 67400years of data and including a trials factor of 3to account for the search classes,its false alarm rate is lower than 1in 22500years.This corresponds to a probability <2×10−6of observing one or more noise events as strong as GW150914during the analysis time,equivalent to 4.6σ.The left panel of Fig.4shows the C3class results and background.The selection criteria that define the search class C3reduce the background by introducing a constraint on the signal morphology.In order to illustrate the significance of GW150914against a background of events with arbitrary shapes,we also show the results of a search that uses the same set of events as the one described above but without this constraint.Specifically,we use only two search classes:the C1class and the union of C2and C3classes (C 2þC 3).In this two-class search the GW150914event is found in the C 2þC 3class.The left panel of Fig.4shows the C 2þC 3class results and background.In the background of this class there are four events with ηc ≥32.1,yielding a false alarm rate for GW150914of 1in 8400years.This corresponds to a false alarm probability of 5×10−6equivalent to 4.4σ.FIG.4.Search results from the generic transient search (left)and the binary coalescence search (right).These histograms show the number of candidate events (orange markers)and the mean number of background events (black lines)in the search class where GW150914was found as a function of the search detection statistic and with a bin width of 0.2.The scales on the top give the significance of an event in Gaussian standard deviations based on the corresponding noise background.The significance of GW150914is greater than 5.1σand 4.6σfor the binary coalescence and the generic transient searches,respectively.Left:Along with the primary search (C3)we also show the results (blue markers)and background (green curve)for an alternative search that treats events independently of their frequency evolution (C 2þC 3).The classes C2and C3are defined in the text.Right:The tail in the black-line background of the binary coalescence search is due to random coincidences of GW150914in one detector with noise in the other detector.(This type of event is practically absent in the generic transient search background because they do not pass the time-frequency consistency requirements used in that search.)The purple curve is the background excluding those coincidences,which is used to assess the significance of the second strongest event.For robustness and validation,we also use other generic transient search algorithms[41].A different search[73]and a parameter estimation follow-up[74]detected GW150914 with consistent significance and signal parameters.B.Binary coalescence searchThis search targets gravitational-wave emission from binary systems with individual masses from1to99M⊙, total mass less than100M⊙,and dimensionless spins up to 0.99[44].To model systems with total mass larger than 4M⊙,we use the effective-one-body formalism[75],whichcombines results from the post-Newtonian approach [11,76]with results from black hole perturbation theory and numerical relativity.The waveform model[77,78] assumes that the spins of the merging objects are alignedwith the orbital angular momentum,but the resultingtemplates can,nonetheless,effectively recover systemswith misaligned spins in the parameter region ofGW150914[44].Approximately250000template wave-forms are used to cover this parameter space.The search calculates the matched-filter signal-to-noiseratioρðtÞfor each template in each detector and identifiesmaxima ofρðtÞwith respect to the time of arrival of the signal[79–81].For each maximum we calculate a chi-squared statisticχ2r to test whether the data in several differentfrequency bands are consistent with the matching template [82].Values ofχ2r near unity indicate that the signal is consistent with a coalescence.Ifχ2r is greater than unity,ρðtÞis reweighted asˆρ¼ρ=f½1þðχ2rÞ3 =2g1=6[83,84].The final step enforces coincidence between detectors by selectingevent pairs that occur within a15-ms window and come fromthe same template.The15-ms window is determined by the10-ms intersite propagation time plus5ms for uncertainty inarrival time of weak signals.We rank coincident events basedon the quadrature sumˆρc of theˆρfrom both detectors[45]. To produce background data for this search the SNR maxima of one detector are time shifted and a new set of coincident events is computed.Repeating this procedure ∼107times produces a noise background analysis time equivalent to608000years.To account for the search background noise varying acrossthe target signal space,candidate and background events aredivided into three search classes based on template length.The right panel of Fig.4shows the background for thesearch class of GW150914.The GW150914detection-statistic value ofˆρc¼23.6is larger than any background event,so only an upper bound can be placed on its false alarm rate.Across the three search classes this bound is1in 203000years.This translates to a false alarm probability <2×10−7,corresponding to5.1σ.A second,independent matched-filter analysis that uses adifferent method for estimating the significance of itsevents[85,86],also detected GW150914with identicalsignal parameters and consistent significance.When an event is confidently identified as a real gravitational-wave signal,as for GW150914,the back-ground used to determine the significance of other events is reestimated without the contribution of this event.This is the background distribution shown as a purple line in the right panel of Fig.4.Based on this,the second most significant event has a false alarm rate of1per2.3years and corresponding Poissonian false alarm probability of0.02. Waveform analysis of this event indicates that if it is astrophysical in origin it is also a binary black hole merger[44].VI.SOURCE DISCUSSIONThe matched-filter search is optimized for detecting signals,but it provides only approximate estimates of the source parameters.To refine them we use general relativity-based models[77,78,87,88],some of which include spin precession,and for each model perform a coherent Bayesian analysis to derive posterior distributions of the source parameters[89].The initial and final masses, final spin,distance,and redshift of the source are shown in Table I.The spin of the primary black hole is constrained to be<0.7(90%credible interval)indicating it is not maximally spinning,while the spin of the secondary is only weakly constrained.These source parameters are discussed in detail in[39].The parameter uncertainties include statistical errors and systematic errors from averaging the results of different waveform models.Using the fits to numerical simulations of binary black hole mergers in[92,93],we provide estimates of the mass and spin of the final black hole,the total energy radiated in gravitational waves,and the peak gravitational-wave luminosity[39].The estimated total energy radiated in gravitational waves is3.0þ0.5−0.5M⊙c2.The system reached apeak gravitational-wave luminosity of3.6þ0.5−0.4×1056erg=s,equivalent to200þ30−20M⊙c2=s.Several analyses have been performed to determine whether or not GW150914is consistent with a binary TABLE I.Source parameters for GW150914.We report median values with90%credible intervals that include statistical errors,and systematic errors from averaging the results of different waveform models.Masses are given in the source frame;to convert to the detector frame multiply by(1þz) [90].The source redshift assumes standard cosmology[91]. Primary black hole mass36þ5−4M⊙Secondary black hole mass29þ4−4M⊙Final black hole mass62þ4−4M⊙Final black hole spin0.67þ0.05−0.07 Luminosity distance410þ160−180MpcSource redshift z0.09þ0.03−0.04。
西方马克思主义西方马克思主义是一种有别于经典马克思主义的的哲学体系和思想体系。
从地理差异上来看,所谓西方马克思主义其实是一种地缘政治的产物。
代表人物有卢卡奇,霍克海默,阿多诺和本雅明,萨特和阿尔都塞等,西马的代表人物所在国家尽管有着工人运动组织,但共产主义并非官方意识形态,他们的家庭和生活环境也未给他们提供充分进入工人运动的条件。
他们的理论主张的特点也和他们生活的时代和地域有着密不可分的关系。
时代为他们提出了相似又特殊的问题,而他们对时代的难题给出了自己特殊的答案,之所以相似是因为双重幻灭的境遇出事他们选择马克思主义,第一次世界大战用血腥的事实让欧洲人在巨变过程中惊慌恐惧,不仅使自有资本主义美好时代的美梦不再有,也使当时欧洲左翼知识分子信奉的时机成熟之际新秩序应运而生的经济决定论名声扫地。
二战之后法国共产党执行的苏联斯大林主义路线,使得苏联正统的马克思主义成了法国左翼知识分子的反抗对象。
对资本主义本身和苏联模式的社会主义的双重幻灭,使得这批知识分子在批判资本主义和讲话的马克思主义的双重要求下创造出来新定语的马克思主义。
西马理论者已经使文化理论的丰富性战胜了经济和政治理论,他们关注的焦点已经是作为意识形态的文化问题了。
卢卡奇师从席美尔(客观化/对象化)启蒙时期的欧洲的市民社会,尊重个性,提倡自由,堪称主观文化,进入19世纪之后,人的关系受金钱支配,日益变作冷酷无情的客观文化:它倒行逆施,榨取认得单一潜能,导致其它资质荒废。
此一客观化过程,竟将欧洲人亲自打造的现代文化,变作异己之物:它违背其心愿,封闭期心灵。
这文化愈是繁荣,人的精神就愈加贫乏。
如此人与文化的严酷对峙,边酿成了一种文化悲剧,悲剧何在,客观文化有人类活动专门化造成,其手段区分的越细,劳动者所表现的人格就越少。
异化Alliennation异化这一概念与马克思主义有着莫大的关系,但是它有悠久的历史,比如,犹太理论中,异化指的是人逐渐疏远上帝,在过去的某个时候,人类之间,人和自热和谐的生活,后来出现了一种断裂,导致人类与社会和世界的疏远,人类成了异乡人。
现象学诸人物(2011-03-26 14:39:30)标签:杂谈综述现象学是二十世纪德法哲学(一般称为欧洲大陆哲学)的主流,其次是结构主义、西方马克思主义等等。
与其对应,上个世纪英美哲学的主流是分析哲学,其次是实用主义、科学哲学。
现象学的代表人物,可以分前三巨头,后三巨头。
前三巨头是,胡塞尔,舍勒,海德格尔。
后三巨头是,萨特,梅洛-庞蒂,伽达默尔。
萨特与梅洛-庞蒂是法国人,其他人都是德国人。
胡塞尔是现象学的创始人,德国犹太人。
舍勒是现象学第二号人物,与胡塞尔亦师亦友。
海德格尔是胡塞尔的学生。
现象学,最著名的人物是海德格尔,人们耳闻目睹的是其著作《存在与时间》。
萨特与梅洛-庞蒂主要受海德格尔的影响。
伽达默尔是海德格尔的学生。
现象学以晦涩难懂而著称。
分析哲学,最杰出的人物是维特根斯坦,奥地利犹太人。
维特根斯坦跟希特勒小时候是同校同学,他们有一张合影照片,他们还是同年同月生。
据有人考证,希特勒仇恨犹太人,跟维特根斯坦有关。
当时,维特根斯坦人长的帅,成绩又好,家庭富裕;希特勒模样一般,成绩不好,家庭贫困,唯一的特长是美术,希特勒擅长风景画。
回到事物本身。
是现象学的口号。
现象学是一种方法。
辩证法也是一种方法。
与我们日常说的"透过现象看本质"是有区别的。
直观到的现象,就是事物的本质。
本质不是独立于现象之外的东西,本质实际是最佳角度显现的现象(特别是对范畴事物来说,从而有本质直观)。
维特根斯坦的回应:所谓直观,不过是语言游戏中的熟悉。
分析哲学,定义无休止的追问,导致循环定义。
现象学截断此一困境,所有的概念都是循环论证的,知识怎么可能?比如出生时,必然有不证自明的东西,本质直观。
维特根斯坦的反驳:所谓的直观不过是一种熟悉,生活世界充满语言游戏。
古希腊:认识你自己。
现象学的意识自识问题,唯识论早在1500年前就进行过深刻讨论。
最后护法提出了意识四分说:相分,见分,自证分,证自证分。
自证分与证自证分,可以参考华严宗金狮子章,双镜喻,两个镜子相互对照,是同一意识内的现量,不存在时间的无限性,不是恶无限。
Pierre Bourdieu布迪厄:语言与象征权力Language and Symbolic Power语言是什么?这是一个大难题。
我们学文学、语言、哲学和历史的博士生,读书越多,反而越糊涂:索绪尔说语言是一套严谨自律、抽象静止的“符号系统”。
在哈贝马斯看来,语言是一种不分贫贱、童叟无欺的“普遍交往”。
可在法国社会学家布迪厄目中,语言带有象征力量,其中隐含了福柯所说的“话语权力”。
索绪尔所谓的符号系统,虽然具备某些内在法则,它更是一套象征性的统治工具。
凭借这一隐秘难见的象征权力,西方发达资本主义社会及其文化网络,因而获得了天网恢恢、无处不在的政治功能、以及一种长期延续、自我循环的文化再生产逻辑。
布迪厄的见解从何而来?让我们回到新左派革命时期,去看看当时巴黎高师的学术与政治语境。
1970年,福柯入选法兰西学院,隆重讲演《话语的秩序》(The Order of Discourse)。
此文宗旨,是要以一种新式冲突论,“就西方知识的历史命运,作出政治性解答”。
然而其中关键,并非马克思的阶级斗争,而是尼采喋喋不休的权力意志。
何谓权力意志?根据尼采,它首先是一种力(Macht)。
如何让这种力量获得胜利呢?尼采说:“赋予它一种内在意志,我称为权力意志”。
对于福柯,尼采是个“权力哲学家”:他不但描述权力争斗、张扬强悍意志,而且率先将权力关系,“指定为哲学话语的核心”。
福柯拓展尼采权力观,使之广泛牵扯到:[1] 西方人上天入地、孜孜求知的浮士德精神,[2] 西方人对于“他人”和世界的征服能力;[3] 西方现代机构及其先进精密的统治技术。
尼采权力说,暗藏了他对西洋真理的一大讽喻:古希腊人原本善良天真,他们相信话语的力量,就在于谁说话、怎样说、在何种场合说。
那时节,长老在庄严仪式中发号施令,巫师神秘兮兮念动咒语。
大群愚昧听众,无不诚惶诚恐、心悦诚服。
谁知道,阴微小人柏拉图,竟从长老、国王和巫师的说话仪式中,窥见了垄断真理的手段:原来话语权力,来自神秘言说及其仪式!于是柏拉图发明辩证法、组建专家群,继而著书办学,自诩是苏格拉底的传人,从此他独揽了西方真理。
FMC LATINOAMERICA S.A. SUCURSAL Av. República de Panamá 3531, Of. 1203. San Isidro, Lima – PerúNombre: Rugby® 200 SC TELÉFONOS DE EMERGENCIA: CICOTOX 0800-13040 3287700 Junio – 2018 ESSALUD 4118000 (opción 4) Página 1 de 2FICHA TÉCNICA RUGBY® 200 CS PLAGUICIDA QUÍMICO DE USO AGRÍCOLANEMATICIDA AGRÍCOLA CAPSULAS EN SUSPENSIÓN (CS) Reg. PQUA Nro. 911 SENASATitular del Registro: FMC LATINOAMÉRICA S.A. SUCURSALCOMPOSICIÓN: Cadusafos............................................................................................................................................................ 200 g/L Aditivos....................................................................................................................................................... c.s.p . 1 LRugby® 200 CS es un nematicida no sistémico que actúa por contacto e ingestión. Pertenece al grupo de los fosforados, y como tal inhibe la enzima colinesterasa, sobreexcitando el sistema nervioso del nematodo y finalmente causándole la muerte. Rugby® 200 CS se prepara diluyendo la dosis indicada en un recipiente con agua, mezclar y luego, completar con agua hasta el volumen requerido. Aplicar con inyector o Venturi al sistema de riego, en caso no disponer sistema de riego, usar equipo de aplicación dirigido al cuello de planta (drench).Rugby® 200 CS , SOLO DEBE APLICARSE AL SUELO, NUNCA AL FOLLAJE. El suelo debe estar en capacidad de campo. NUNCA APLIQUE EN SUELOS SECOS. “CONSULTE CON UN INGENIERO AGRÓNOMO”P.C. P eríodo de carencia en días. L.M.R.: Límite máximo de residuos en ppm (partes por millón). N.A.: No aplica- Máximo 1 aplicación por Campaña. Considerando 1 campaña al año. Dosis máxima 15 L/ha. - Aplicar a la presencia de la plaga, teniendo mayor cuidado en la etapa de desarrollo radicular. - De persistir la plaga, usar otro nematicida de diferente mecanismo de acción para evitar la resistencia -No aplicar en floración.CULTIVOS NOMBRE DE LA PLAGA DOSIS P.C. (días) LMR ppm Común Científico L/ha Vid Nematodo del nudo Meloidogyne incognita 10-15 70 0.01 Pimiento Nematodo del nudo Meloidogyne incognita 15 N.A. 0.01 Papa Nematodo quiste de la papa Globodera pallida 15 102 0.01Nombre: Rugby® 200 CS junio - 2018Página 2 de 2 En pimiento: Aplicar después del transplante.En papa: El campo a tratar debe estar manejado bajo rotación de cultivos. Se debe realizar una buena preparación del terreno. Se debe realizar el deshierbo manual. Para el monitoreo de la plaga debe realizarse muestreos y observacionesen el campo. La humedad del suelo debe estar en capacidad de campo. Posterior a la aplicación del producto, se debe distanciar el siguiente riego hasta donde sea agronómicamente posible.Llenar con agua el tanque de aplicación hasta Ia mitad, agregue Ia cantidad de MARSHAL® recomendado agitando bieny completar luego con más agua.•El producto no es fitotóxico al cultivo a la dosis dada, según las indicaciones dadas.•Rugby® 200 CS Puede aplicarse en mezcla con la mayoría de plaguicidas, excepto los de reacción alcalina, sin embargo se recomienda realizar mezclas preliminares para evaluar la compatibilidad física, química y biológica delos productos.•Grupo químico: Organofosforado.•En caso de ingestión, no provocar el vómito, ni dar agua a la persona si está inconsciente. Llévelo al médico.•En caso de contacto con los ojos, manténgalos abiertos y lávelos inmediatamente con agua limpia durante 15 min.Consultar al médico.•En caso de contacto con la piel, retirar la ropa y zapatos y lavar la piel con abundante agua y jabón.•En caso de inhalación, retirar al paciente a un lugar fresco y aplicar respiración artificial si fuera necesario. Consultar al médico.ANTÍDOTO: Emplear sulfato de atropina, de 1 a 2 mg cada 15 minutos (intravenosa o intramuscular) hasta síntomas de atropinización o hasta un máx. de 30 mg; también puede administrar 2 -PAM o toxigonin (Merck), en dosis de 1 a 2 g porvía intravenosa lentamente. Para menores de 12 años la dosis inicial es de 0.05 mg/Kg de peso, repitiendo de 0.02-0.05mg/kg de peso. Contraindicaciones: morfina, fenotiazinas y teofilina.EN CASO DE INTOXICACIÓN, LLAME AL MÉDICO INMEDIATAMENTEO LLEVE AL PACIENTE AL MÉDICO Y MUÉSTRELE LA ETIQUETADESPUÉS DE USAR EL CONTENIDO, ENJUAGUE TRES VECES ESTE ENVASE Y VIERTALA SOLUCIÓN EN LA MEZCLA DE APLICACIÓN Y LUEGO INUTILÍCELO, TRITURÁNDOLO OPERFORÁNDOLO Y DEPOSÍTELO EN EL LUGAR DESTINADO POR LAS AUTORIDADESLOCALES PARA ESTE FIN.REALIZAR OBLIGATORIAMENTE EL TRIPLE LAVADO DEL PRESENTE ENVASE.DEVUELVA EL ENVASE TRIPLE LAVADO AL CENTRO DE ACOPIO AUTORIZADO.Frasco de 1 LPresentaciones:。
《艺术即经验》导读考核标准:平时表现:10%讨论课程:30%期末考试:60% 四道题公共邮箱:***********************密码:chinese (文件中心-网盘-我的文档)第一讲活生生的人之一The live creature题目的翻译:The live creature杜威敬佩达尔文无论是在自然还是在社会中所有生物的求存特点为了活下去要付出大量精力商务印书馆:活的生物“活的“:与死对立生物:西方:包括人和其他生物中国:不同人的杜威:坚定的人本主义者强调人的生物性的成分,突出人和生物的连续性,弥补以往人们忽略的事实:人太把自己当人了(批判传统)文艺复兴以来,人性膨胀到无法无天的地步,不能清醒地面对自身,导致对自然的蔑视,对其他生物的鄙夷莎士比亚:人是万物的灵长杜威:人是生物,要客观、理性、清醒地认识自身第一段理论与实际的龃龉80年代:作家与评论家针锋相对90年代:作家与评论家:市场经济下合作——连狭义的批评都成了炒作艺术拒绝阐释的两个原因:①把艺术看作是物理产品艺术是一种经验,与每个读者的经验、感受有关,不仅仅是内容不会改变的物理产品Eg. 车尔尼雪夫斯基:人有很多认识上的误区,总以为莎士比亚的伟大是跨越时代的→忽略了经验的历史背景。
作品只有与人的经验结合在一起才是活的弊端:产品所有的意义都凝聚在物理作品中,与人的经验没有关系。
杜威认为,艺术应该与经验联系,物理只是一种体现。
②艺术的完美和声名直接的对象不是理论而是作品艺术的“伟大”孤立于历史之外,即是形而上学的。
历史语境:当时伟大的作品在现在也许并不伟大为什么艺术拒绝被理论阐释,因为理论本身出了问题,把艺术当做一种物理产品,坚持艺术的伟大理论带有一种强制力,要求人们的服从第二段①艺术和经验隔离的后果:造成看不清艺术的意义“艺术被移至一个独立领域,与非艺术形式下人们努力、经受以及成就的内容和目的割断了联系。
”“努力”:做的过程;“经受”:做的结果②艺术哲学的任务就是恢复艺术与经验的连续性“山峰并非腾空浮动,它们甚至并非立足在大地之上,它们就是大地。
西方马克思主义文艺理论概说西方马克思主义,即所谓的“西马”一名,源出于法国哲学家梅洛一庞蒂。
在1955年的著作《辩证法的历险》中,梅氏以Marxisme Occidental一词,追溯卢卡奇、柯尔施等人理论,强调他们同苏联学派的差异。
此说引发马克思学派与名号之争:诸如科学与人道、庸俗与批判、结构与个体,不一而足。
1976年,英国史学家安德森发表《西方马克思主义探讨》,正式为西马立论命题。
沿用梅氏之说,他以英文定称Western Marxism。
但这位拘谨求实的英国教授,反感法国人乱起名号。
他转而强调:西马是以十月革命为界,因欧洲共运失败而导致一种“历史和地理差异”:众所周知:1920年后,在西方列强武装干预下,欧洲各国共产党进入战略退却。
随后德国法西斯上台,疯狂镇压知识左派,遂“令马克思在其家乡蒙受重挫”。
此后,国际共运被分割为东西两支。
在冷战铁幕隔绝下,欧美左派日趋分散、旗号紊乱。
据此安德森称:所谓西马,乃一“巨大历史错位”。
然而它的学术成就不容置疑。
安德森强调:西马是受十月革命感召、伴随欧洲共运发展起来的一派左翼知识传统。
从地理角度看,西马养育出一批欧洲血统的革命文人,从卢卡奇、葛兰西、阿多诺,直到萨特、阿尔都塞、马尔库塞。
这些“在剧烈迁徙中”成长起来左派理论家,虽因革命退潮而悲观失落,却造就了“前所未有的批判理论、全新开放的知识体系”。
言归正传,下面我们就简要梳理。
马克思、恩格斯之后,马克思主义的文艺思想基本上是沿着两条路线发展:一条是以苏联为代表的社会主义国家的马克思列宁主义的文艺学路线。
社会主义阵营的各个国家,各自在自己的环境和条件下做着阐释、研究和发展马克思主义文艺思想的工作。
另一条则是“西方马克思主义”的学派路线,或称马克思主义文艺理论的批判学派路线,以法兰克福学派为代表,在德国、法国、英国、意大利,后来加上美国,掀起了一股“补充”、修正和批判马克思主义美学和文艺思想的浪潮。
“这股思潮发展曲折,纷繁而复杂,其中派系枝蔓,著述很多,内容广泛,既有新识新论,也有谬说妄言”,陆梅林先生的这一概括是切中肯綮的。
厦门大学硕士学位论文论二十世纪九十年代以来城市书写的物质化倾向姓名:***申请学位级别:硕士专业:中国现当代文学指导教师:***20090401内容摘要内容摘要城市与物质有着紧密的联系,城市的发展首先表现为物质的发展。
二十世纪九十年代以来,作家在直面中国城市当下的存在状况时,对物质化的现实做出了思考,普遍地运用物质化叙事对社会现实进行形象化的书写和表现,因此形成了与以往城市书写不同的新特点:物质化叙事倾向。
本文试图从以下几个部分探讨九十年代以来城市书写物质化叙事倾向的特征及成因:第一部分是第一章的“绪论",主要阐明“城市书写”和“物质化叙事"的涵义,阐述二十世纪九十年代以来“城市书写"和“物质化叙事”之间的关系,认为城市书写发展到九十年代,在现实社会背景下,势必会出现物质化叙事倾向。
同时,梳理二十世纪九十年代以来城市书写的研究现状,说明这些研究成果在物质化叙事方面研究的欠缺,表明本论题研究的价值与意义。
第二部分包含本文的第二章和第三章,以王安忆的上海书写、邱华栋的北京书写、张欣的广州书写为例,通过详尽的文本解读,分析他们以物质化叙事方式想象塑造城市的共性和不同特点。
在此基础上,由点及面,对九十年代以来城市书写的整体形态进行考察,从人与物、主体与客体的关系入手,联系、对比九十年代以前的城市书写,概括二十世纪九十年代以来城市书写物质化倾向的几个新特点:具有广泛性,丧失主体性,建构了同质化的现代城市等。
第三部分为本文的第四章,从社会现实的影响、作家创作观念两个方面探讨、分析九十年代以来城市书写物质化倾向的生成条件,指出物质化叙事倾向的产生不仅与市民社会的形成、城市化进程和城市的物质特性、现实对作家的影响相关,还与作家同城市的关系、作家的生长背景、创作观、视角、读者接受等原因不无关系。
第四部分是结语,对二十世纪九十年代以来城市书写的物质化叙事倾向进行总结,探讨其意义,提出这种叙事方式体现了作家沟通城市生活现实与人文精神、重返精神家园的努力,总结物质化叙事表现城市的文学价值。
浅谈西马文论与社会批判浅谈西马文论与社会批判论文摘要:本文主要分析了西方马克思主义文论对于文艺的社会批判功能的剖析。
具体表现在文艺与政治的关系、文艺独立性及文艺对现实的批判两方面,揭示出西方马克思主义与经典马克思主义在此问题上的不同。
论文关键词:西方马克思主义文论:文艺与政治:社会批判“西方马克思主义文论”实质是指卢卡奇、葛兰西、法兰克福学派的主要代表,英美新马克思主义者伊格尔顿、詹姆逊等人的文学、美学理论。
西方马克思主义文论的理论依据是“人的生存”和“社会批判”。
他们从各自的理论前提出发,阐释了艺术和审美在人性复归、建构无产阶级意识形态、避免异化、建立人的“新感性”、重构审美乌托邦等方面的作用。
在西马文论中,关于文艺社会功能问题的讨论主要表现在对文艺与社会政治批判关系问题的分析上。
一、文艺与政治的关系。
西方马克思主义者来说,这种影响主要体现在它对社会的批判作用上。
那么,在艺术的批判作用和它的自律性之间,究竟是一种什么样的关系呢?阿多诺对此有独到的见解,他认为艺术的社会性主要因为它站在社会的对立面。
但是,这种具有对立性的艺术只有在它成为自律性的东西时才会出现。
阿多诺深刻地指出了艺术与社会之间这种矛盾纠结状况。
从艺术的本性来说,雹与社会之间天然有一种批判关系,它的存在本身就是对社会的某种批判。
因为社会总是不完备的,总是具有某种缺陷的,而艺术却要求一种纯粹的、理想的境界,因此艺术与社会之间总是有某种紧张的张力关系,可以说艺术是社会的天然的批判者。
但另一方面,艺术对社会的这种批判是以它的自律为前提的,社会对艺术不应该有任何实用性的要求,比如,要求艺术成为某种政治理念的直接宣传者或代言者,或是要求艺术成为某个阶级的传声筒。
因此,“艺术的双重本质其自律性与其社会现实性反复不断地处于既相互依赖又彼此冲突的状态。
”1、马尔库塞从心理学角度指出了艺术对社会的批判作用。
他认为,艺术释放了被现代社会所压抑的人的心理潜能和欲望,这种释放的潜能和欲望构成了对现实的对照和批判。