第四章 核酸序列分析
- 格式:ppt
- 大小:3.28 MB
- 文档页数:3
第4章核酸序列分析了解:1.DNA携带的两类遗传信息。
2.DNA与RNA序列分析的常见内容及相关数据库和工具。
3.ORF与CDS的区别。
4.原核基因和真核基因启动子的结构。
5.原核和真核的基因结构。
6.lncRNA的研究现状。
熟悉:1.限制性核酸内切酶的命名规则,II型限制酶的特点。
2.重复序列依重复次数和组织形式的分类。
3.基因识别的三大类方法。
4.miRNA及其靶基因预测的方法和工具。
掌握:1.CpG岛的概念及其识别依据和判别标准。
2.mRNA选择性剪接的产生机制。
3.解决问题的思路。
4.查找数据库和分析工具的方法。
5.学习数据库与分析工具使用方法的策略。
4.1引言“龙生龙,凤生凤,老鼠的儿子会打洞!”1“种瓜得瓜,种豆得豆。
”“爹矬矬一个,娘矬矬一窝。
”“一母生九子,连母十个样。
”“龙生九子各不同。
”“天下乌鸦一般黑。
”这些都是大家耳熟能详的谚语。
不管是天上飞的、地上跑的、水里游的,还是能动的、不能动的,它们的后代都和它们非常相像,但却也会有少许的差异。
这些现象大家都已司空见惯,所以可能没有啥感觉。
但仔细想想,你就会发现大自然的奇妙所在。
当然,对于生物专业的人来说,这个就没什么奇怪的了,因为我们都知道分子生物学的中心法则(The central dogma of molecular biology):DNA转录成RNA,RNA翻译成蛋白质。
蛋白质执行特定的生物功能从而决定最终的表型,而DNA则携带着最原始的决定个体性状的遗传信息,RNA主要参与遗传信息的表达和调控。
在各种生物中,A、C、G、T/U都是构成DNA和RNA核酸序列的基本组分。
仅仅这么四种碱基怎么可能构建出缤纷多彩的大千世界呢?其秘诀就在于四种核苷酸的排列顺序。
就像搭积木一样,通过不同的排列组合我们可以构建出不同的形状。
类似于二进制中运用一连串的0和1以及英文字母表中运用26个不同的字母来表达信息,基因所包含的信息来自于4中不同核苷酸沿DNA 分子的排列顺序。
核酸序列分析在生物学领域中,核酸序列分析是一项重要的研究工具,它可以帮助科学家们理解生物体内的基因组结构和功能。
通过分析核酸序列,我们可以揭示基因的组合方式、基因在不同物种之间的演化关系以及基因与疾病之间的关联。
本文将介绍核酸序列分析的基本步骤和常用方法,并探讨它在生物研究中的应用。
一、核酸序列分析的基本步骤1. 数据收集与清洗:首先,我们需要获取相关的核酸序列数据。
这些数据可以来自于公共数据库(如GenBank、ENSEMBL等)或实验室内部的测序项目。
收集到的数据可能存在噪声或错误,所以我们需要对数据进行清洗和筛选,以保证分析的准确性。
2. 序列比对:接下来,我们需要将不同样本的核酸序列进行比对。
序列比对是核酸序列分析的核心步骤之一,它可以帮助我们发现序列之间的相似性和差异性。
常用的序列比对算法包括Smith-Waterman算法和Needleman-Wunsch算法等。
3. 序列注释:在比对完成后,我们可以根据已知的功能注释信息来对序列进行注释。
注释可以告诉我们该序列可能的编码蛋白质的功能、寻找潜在的基因等。
4. 比对结果分析:通过分析比对结果,我们可以了解到序列的保守区域和变异区域。
保守区域可能是功能区域,例如编码蛋白质的区域,变异区域可能涉及到物种之间的进化差异或突变相关的功能。
5. 结果可视化:最后,我们需要将分析的结果进行可视化呈现。
通过可视化,我们可以更直观地理解数据,并对进一步实验设计或研究方向提出建议。
二、核酸序列分析的常用方法1. 比对工具:常用的核酸序列比对工具包括BLAST、ClustalW和MAFFT等。
BLAST(基本局部比对序列工具)是一种快速的局部比对算法,它能够快速地找到序列之间的相似性。
ClustalW和MAFFT则更适用于多序列比对,它们可以比较多个序列之间的相似性和差异性。
2. 注释工具:常用的核酸序列注释工具包括NCBI的Entrez、ENSEMBL和UniProt等。
生物化学中的核酸序列分析生物化学是研究生命现象与生理功能的科学,而核酸是构成生命的分子之一,它们在生物体内扮演着重要的角色。
核酸是由核苷酸单元组成的长链,其中DNA是一个双螺旋分子,可以储存生物遗传信息,而RNA则可以转录DNA的信息并参与蛋白质合成。
在生物研究中,对核酸序列的分析非常重要。
通过对DNA序列的分析,可以推测出蛋白质编码信息并预测基因功能;而对RNA序列的分析,则可以了解基因的表达和调控。
本文将从分子生物学和生物信息学的角度来探讨核酸序列分析。
1. PCR扩增与测序分析PCR(聚合酶链式反应)是一种常用的分子生物学技术,可以从少量的DNA或RNA样品中扩增出目标片段,为进一步的分析提供足够的材料。
PCR过程中需要用到一组引物,其可以通过生物信息学分析DNA序列寻找到设计合适的引物。
PCR扩增得到的产物可以进一步进行测序分析,最常用的测序方式为Sanger测序技术。
此技术基于DNA链延伸过程中的dNTP和ddNTP的竞争关系,通过荧光信号和电泳进行测序。
测序结果可以通过生物信息学工具进行比对、序列注释和统计分析。
2. 基因功能预测高通量基因组测序技术的出现,导致了大量未知基因序列的暴增。
对于这些基因序列的功能预测,通常需要先进行同源比对。
同源比对基于多序列比对的原理,将物种间已知的方向同源序列,与未知序列比对,寻找到相似的序列区域,从而对未知序列的基因功能进行推测。
同源比对时,需要注意序列的物种来源和序列的质量。
不同物种间的序列可能在不同位置发生突变,导致序列的比对不准确;若序列存在较多的突变,也可能会影响比对结果。
因此,如何选择合适的工具和参数进行同源比对很关键。
同时,基因家族和重复序列也可能会干扰比对结果,因此需要进行筛除和过滤。
3. RNA测序与转录组分析RNA测序技术可以获得全基因组水平的转录信息,从而了解基因的表达状态和调控机理。
RNA测序通常经过文库构建和深度测序等多个步骤。
核酸序列分析【实验目的】1、掌握已知或未知序列接受号的核酸序列检索的基本步骤;2、掌握使用BioEdit软件进行核酸序列的基本分析;3、熟悉基于核酸序列比对分析的真核基因结构分析(内含子/外显子分析);4、了解基因的电子表达谱分析。
【实验原理】针对核酸序列的分析就是在核酸序列中寻找基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。
在此过程中,确认一段DNA序列是一个基因需要有多个证据的支持。
一般而言,在重复片段频繁出现的区域里,基因编码区和调控区不太可能出现;如果某段DNA片段的假想产物与某个已知的蛋白质或其它基因的产物具有较高序列相似性的话,那么这个DNA片段就非常可能属于外显子片段;在一段DNA序列上出现统计上的规律性,即所谓的"密码子偏好性",也是说明这段DNA是蛋白质编码区的有力证据;其它的证据包括与"模板"序列的模式相匹配、简单序列模式如TATA Box等相匹配等。
一般而言,确定基因的位置和结构需要多个方法综合运用,而且需要遵循一定的规则:对于真核生物序列,在进行预测之前先要进行重复序列分析,把重复序列标记出来并除去;选用预测程序时要注意程序的物种特异性;要弄清程序适用的是基因组序列还是cDNA序列;很多程序对序列长度也有要求,有的程序只适用于长序列,而对EST这类残缺的序列则不适用。
1. 重复序列分析对于真核生物的核酸序列而言,在进行基因辨识之前都应该把简单的大量的重复序列标记出来并除去,因为很多情况下重复序列会对预测程序产生很大的扰乱,尤其是涉及数据库搜索的程序。
2. 数据库搜索把未知核酸序列作为查询序列,在数据库里搜索与之相似的已有序列是序列分析预测的有效手段。
在理论课中已经专门介绍了序列比对和搜索的原理和技术。
但值得注意的是,由相似性分析作出的结论可能导致错误的流传;有一定比例的序列很难在数据库里找到合适的同源伙伴。
对于EST序列而言,序列搜索将是非常有效的预测手段。
核酸序列分析1、核酸序列检索可通过NCBI使用Entrez系统进行检索,也可用EBI的SRS服务器进行检索。
在同时检索多条序列时,可通过罗逻辑关系式按照GenBank接受号进行批量检索。
如用“AF113671 [ac] OR AF113672 [ac]”可同时检索这两条序列。
其中“[ac]”是序列接受号的描述字段。
2、核酸序列的基本分析(1)分子质量、碱基组成、碱基分布分子质量、碱基组成、碱基分布可通过一些常用软件等直接获得。
如:BioEdit(/BioEdit/bioedit.html),DNAMAN()。
(2)序列变换进行序列分析时,经常需要对DNA序列进行各种变换,例如反向序列、互补序列、互补反向序列、显示DNA双链、转换为RNA序列等。
这些用DNAMAN软件可很容易实现,这些功能集中在Sequence→Display,从中可选择不同的序列变换方式对当前通道的序列进行转换。
(3)限制性酶切分析该方面最好的资源是限制酶数据库(Restriction Enzyme Database,REBASE)。
REBASE数据库(,/rebase)中含有限制酶的所有信息,包括甲基化酶、相应的微生物来源、识别序列位点、裂解位点、甲基化特异性、酶的商业来源及公开发表的和未发表的参考文献。
其它资源还有:WebGene:/~tjyin/WebGene/RE.html,/personal/tyin.htmlWebCutter2:http://www//firstmarkert/firstmarket/cutter/cut2.html同时,很多软件也能够识别REBASE限制酶数据库。
强烈推荐使用集成化的软件如BioEdit和DNAMAN等。
所得出的结果给出指定DNA序列的酶切位点信息,为克隆鉴定和亚克隆提供了重要信息。
在实际进行分子生物学实验中,有时需要对多条相关序列(如发生突变的一批序列)同时进行酶切分析,以便为后续的克隆鉴定提供参考。