第四讲 旅行商问题PPT课件
- 格式:ppt
- 大小:98.50 KB
- 文档页数:12
关于旅行商问题的数学模型旅行商问题(TravelingSalesmanProblem,TSP)是著名的组合优化问题,它的目标是找到一条路径,使得一个旅行商可以经过所有给定的城市,路径总长度最短。
这个问题在实际生活中有着广泛的应用,例如物流配送、电路板布线、DNA序列比对等领域。
本文将介绍旅行商问题的数学模型和解法。
1. 问题描述假设有n个城市,它们的位置分别为(xi,yi),i=1,2,...,n。
旅行商要从一个城市出发,经过所有城市恰好一次,最后回到出发城市。
城市之间的距离可以用欧几里得距离表示:d(i,j) = sqrt((xi-xj)^2 + (yi-yj)^2)旅行商问题的目标是找到一条路径,使得路径总长度最短。
2. 数学模型2.1 定义变量我们定义变量xij表示从城市i到城市j的路径是否被选择,如果被选择则xij=1,否则xij=0。
例如,x12表示从城市1到城市2的路径是否被选择。
2.2 目标函数旅行商问题的目标是找到一条路径,使得路径总长度最短。
因此,我们可以定义目标函数为:minimize ∑i∑j d(i,j)xij其中,i,j表示城市的编号,d(i,j)表示城市i和城市j之间的距离,xij表示从城市i到城市j的路径是否被选择。
2.3 约束条件旅行商需要经过所有城市恰好一次,因此我们需要添加以下约束条件:1. 每个城市只能被经过一次:∑j xij = 1, i=1,2,...,n2. 每个城市离开后只能到达一个城市:∑i xij = 1, j=1,2,...,n3. 不能出现子回路:∑i∈S ∑j∈S xij ≤ |S|-1, S{1,2,...,n}, |S|≥2其中,第一个约束条件表示每个城市只能被经过一次,第二个约束条件表示每个城市离开后只能到达一个城市,第三个约束条件表示不能出现子回路。
3. 解法旅行商问题是一个NP难问题,没有多项式时间算法可以求解。
因此,我们需要使用一些启发式算法来求解这个问题。
图算法--旅⾏商问题旅⾏商问题的描述试想⼀下,⼀个业务员因⼯作需要必须访问多个城市。
他的⽬标是每个城市只访问⼀次,并且尽可能地缩短旅⾏的距离,最终返回到他开始旅⾏的地点,这就是旅⾏商问题的主要思想。
在⼀幅图中,访问每个顶点⼀次,并最终返回起始顶点,这个访问的轨迹称为哈密顿圈。
要解决旅⾏商问题,需要⽤图G=(V,E)作为模型,寻找图中最短的哈密顿圈。
G是⼀个完整的、⽆⽅向的带权图,其中V代表将要访问的顶点的集合,E为连接这些顶点的边的集合。
E中每条边的权值由顶点之间的距离决定。
由于G中⼀个完整的、⽆⽅向的图,因此E包含V(V-1)/2条边。
事实上,旅⾏商问题是⼀种特殊的⾮多项式时间问题,称为NP完全问题。
NP完全问题是指那些多项式时间算法未知,倘没有证据证明没有解决的可能性的问题。
考虑到这种思想,通常⽤⼀种近似算法来解决旅⾏商问题。
最近邻点法的应⽤⼀种近似的计算旅⾏商路线的⽅法就是使⽤最近邻点法。
其运算过程如下:从⼀条仅包含起始顶点的路线开始,将此顶点涂⿊。
其他顶点为⽩⾊,在将其他顶点加⼊此路线中后,再将相应顶点涂⿊。
接着,对于每个不在路线中的顶点v,要为最后加⼊路线的顶点u与v之间的边计算权值。
在旅⾏商问题中,u与v之间边的权值就是u到v 之间的距离。
这个距离可以⽤每个顶点的坐标计算得到。
两个点(x1,y1)与(x2,y2)之间距离的计算公式如下:r = √(x2 - x1)2 + (y2 - y1)2 (注意是求和的平⽅根)利⽤这个公式,选择最接近u的顶点,将其涂⿊,同时将其加⼊路线中。
接着重复这个过程,直到所有的顶点都涂成⿊⾊。
此时再将起始顶点加⼊路线中,从⽽形成⼀个完整的回路。
下图展⽰了使⽤最近邻点法来解决旅⾏商问题的⽅法。
通常,在为旅⾏商问题构造⼀个图时,每个顶点之间相连的边不会显⽰表⽰出来,因为这种表⽰会让图不清晰了,也没有必要。
在图中,每个顶点旁边都显⽰其坐标值,虚线表⽰在此阶段需要⽐较距离的边。
旅行商问题数学模型
旅行商问题数学模型
旅行商问题(又译旅行推销员问题)是在计算机科学及运筹学中的一个典型问题,其中的任务是“找到一条最短的路线,其中遍及全部的城市且只遍及一次”。
这个问题属于非常实用的经典优化问题,如果仅考虑一个旅行者,则是一个单顶点问题。
在这里,我们把这个问题抽象成数学模型,主要包括变量,目标函数和约束条件,并由此给出解决此问题的数学表达式。
变量:
设有n个城市:C1,C2,…,Cn,设每两个城市之间的距离为Dij,i,j=1,2,…,n,Xij表示从城市i出发到城市j的路径,则Xij=1表示该路径可行,Xij = 0表示该路径不可行。
目标函数:
本题的目标是求出长度最短的路径。
故该问题的目标函数可表示为:
min Z=∑∑DijXij
其中,i,j=1,2,…,n
约束条件:
该问题的约束条件可表示为:
(1)每个城市只访问一次。
∑Xij = 1 i=1,2,…,n;j=1,2,…,n
(2)出发和结束均是同一个城市。
Xij = 1 i=j;j=1,2,…,n
(3)Xij只能取0或1。
Xij = 0或1 i,j=1,2,…,n
总结:
因此,旅行商问题的数学模型可以表示为:
min Z=∑∑DijXij
其中,i,j=1,2,…,n
约束条件:
(1)每个城市只访问一次。
∑Xij = 1 i=1,2,…,n;j=1,2,…,n (2)出发和结束均是同一个城市。
Xij = 1 i=j;j=1,2,…,n
(3)Xij只能取0或1。
Xij = 0或1 i,j=1,2,…。
旅行商问题旅行商问题(Traveling Saleman Problem,TSP)又译为、,简称为,是最基本的路线问题,该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。
最早的旅行商问题的数学规划是由Dantzig(1959)等人提出。
目录1简介“旅行商问题”常被称为“”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。
规则虽然简单,但在地点数目增多后求解却极为复杂。
以42个地点为例,如果要列举所有路径后再确定最佳行程,那么总路径数量之大,几乎难以计算出来。
多年来全球数学家绞尽脑汁,试图找到一个高效的TSP问题在物流中的描述是对应一个物流配送公司,欲将n个客户的订货沿最短路线全部送到。
如何确定最短路线。
TSP问题最简单的求解方法是。
它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)。
可以形象地把看成是一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。
求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程。
2研究历史旅行商问题字面上的理解是:有一个推销员,要到n个城市推销商品,他要找出一个包含所有n个城市的具有最短路程的环路。
TSP的历史很久,最早的描述是1759年欧拉研究的骑士周游问题,即对于棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。
TSP由RAND公司于1948年引入,该公司的声誉以及线性规划这一新方法的出现使得TSP成为一个知名且流行的问题。
3问题解法旅行推销员的问题,我们称之为巡行(Tour),此种问题属于的问题,1、途程建构法(Tour Construction Procedures)从中产生一个近似最佳解的途径,有以下几种解法:2、途程改善法(Tour Improvement Procedure)先给定一个可行途程,然后进行改善,一直到不能改善为止。