csa联盟提出的matter标准
- 格式:docx
- 大小:37.50 KB
- 文档页数:4
品质英语专有名词(2)部门名称的专有名词QS uality system品质系统CS:Coutomer Sevice 客户服务QC uality control品质管理IQC:Incoming quality control 进料检验LQC ine Quality Control 生产线品质控制IPQC:In process quality control 制程检验FQC:Final quality control 最终检验OQC utgoing quality control 出货检验QA uality assurance 品质保证SQA:Source(supplier) Quality Assurance 供应商品质保证(VQA) CQA:Customer Quality Assurance客户质量保证PQA rocess Quality Assurance 制程品质保证QE uality engineer 品质工程CE:component engineering零件工程EE:equipment engineering设备工程ME:manufacturing engineering制造工程TE:testing engineering测试工程PPE roduct Engineer 产品工程IE:Industrial engineer 工业工程ADM: Administration Department行政部RMA:客户退回维修CSDI:检修PC:producing control生管MC:mater control物管GAD: General Affairs Dept总务部A/D: Accountant /Finance Dept会计LAB: Laboratory实验室DOE:实验设计HR:人资PMC:企划RD:研发W/H:withholding仓库SI:Sourcing Inspection 客验PD: Product Department生产部PA:采购(PUR: Purchaing Dept)SMT:Surface mount technology 表面粘着技术MFG:Manufacturing 制造MIS:Management information system 资迅管理系统DCC ocument control center 文件管制中心厂内作业中的专有名词QT uality target品质目标QP uality policy目标方针QI uality improvement品质改善CRITICAL DEFECT:严重缺点(CR)MAJOR DEFECT:主要缺点(MA)MINOR DEFECT:次要缺点(MI)MAX:Maximum最大值MIN:Minimum最小值DIA iameter直径DIM imension尺寸LCL ower control limit管制下限UCL:Upper control limit管制上限EMI:电磁干扰ESD:静电防护EPA:静电保护区域ECN:工程变更ECO:Engineering change order工程改动要求(客户)ECR:工程变更需求单CPI:Continuous Process Improvement 连续工序改善Compatibility:兼容性Marking:标记DWG rawing图面Standardization:标准化Consensus:一致Code:代码ZD ero defect零缺点Tolerance:公差Subject matter:主要事项Auditor:审核员BOM:Bill of material物料清单Rework:重工ID:identification识别,鉴别,证明PILOT RUN: (试投产)FAI:首件检查FPIR:First Piece Inspection Report首件检查报告FAA:首件确认SPC:统计制程管制CP: capability index(准确度)CPK: capability index of process(制程能力)PMP:制程管理计划(生产管制计划)MPI:制程分析DAS efects Analysis System 缺陷分析系统PPB:Parts Per Billion 十亿分之一Flux:助焊剂P/N:Part Number 料号L/N:Lot Number批号Version:版本Quantity:数量Valid date:有效日期MIL-STD:Military-Standard军用标准ICT: In Circuit Test (线路测试)ATE:Automatic Test Equipment自动测试设备MO: Manafacture Order生产单T/U: Touch Up (锡面修补)I/N:手插件P/T:初测F/T: Function Test (功能测试-终测)ASY:组立P/K:包装TQM Total quality control全面品质管理MDA:manufacturing defect analysis制程不良分析(ICT) RUN-IN:老化实验HI-pot:高压测试FMI:Frequency Modulation Inspect高频测试DPPM: Defect Part Per Million(不良率的一种表达方式:百万分之一) 1000PPM即为0.1% Corrective Action: (CAR改善对策)ACC:Accept 允收REJ:Reject 拒收S/S:Sample size抽样检验样本大小SI-SIV:Special I-Special IV特殊抽样水平等级CON:Concession / Waive特采ISO:International Standardization Organization 国际标准化组织ISA:Industry Standard Architecture工业标准体制结构OBA:开箱稽核FIFO:First In First Out 先进先出PDCA:管理循环Plan do check action计划,执行,检查,总结WIP:Work In Process 在制品(半成品)S/O: Sales Order (业务订单)P/O: Purchase Order (采购订单)P/R: Purchase Request (请购单)AQL:acceptable quality level允收品质水准LQL;Limiting quality level最低品质水准QVL:qualified vendor list合格供应商名册AVL :认可的供货商清单(Approved Vendor List)QCD: Quality cost delivery(品质,交期,成本)MPM:Manufacturing project management制造专案管理KPI:Key performance indicate重要绩效指标MVT:Manufacturing Verification Test制造验证试产Q/R/S:Quality/Reliability/Service质量/可靠度/服务STL:ship to line(料到上线)NTF:No trouble found误判CIP:capacity improvement plan(产能改善计划)MRB:material review board(物料审核小组)MRB:Material reject bill退货单JIT:just in time(即时管理)5S:seiri seiton seiso seiketsu Shituke(整理,整顿,清扫,清洁,修养)SOP:standard operation process(标准作业程序)SIP:Specification inspection process制程检验规格TOP: Test Operation Process (测试作业流程)WI: working instruction(作业指导书)SMD:surface mounting device(表面粘着原件)FAR Failure aualysis report故障分析报告CAR:Corrective action report改善报告BPR:企业流程再造 (Business Process Reengineering) ISAR :首批样品认可(Initial Sample Approval Request)- JIT:实时管理 (Just In Time)QCC :品管圈 (Quality Control Circle)Engineering Department (工程部)TQEM: Total Quality Environment Management(全面品质环境管理)PD: Production Department (制造)LOG: Logistics (后勤支持)Shipping: (进出口)AOQ:Average Output Quality平均出货质量AOQL:Average Output Quality Level平均出货质量水平FMEA:failure model effectiveness analysis失效模式分析CRB: Change Review Board (工程变更会议)CSA:Customer Simulate Analysis客户模拟分析SQMS:Supplier Quality Management System供应商品质管理系统QIT: Quality Improvement Team 品质改善小组QIP:Quality Improvement Plan品质改善计划CIP:Continual Improvement Plan持续改善计划M.Q.F.S: Material Quality Feedback Sheet (来料品质回馈单) SCAR: Supplier Corrective Action Report (供货商改善对策报告) 8D Sheet: 8 Disciplines sheet ( 8D单)PDCA:PDCA (Plan-Do-Check-Action) (管理循环)MPQ: Material Packing Quantity (物料最小包装量)DSCN: Delivery Schedule Change Notice (交期变更通知) QAPS: Quality Assurance Process Sheet (品质工程表)DRP :运销资源计划 (Distribution Resource Planning)DSS:决策支持系统 (Decision Support System)EC :电子商务 (Electronic Commerce)EDI :电子资料交换 (Electronic Data Interchange)EIS :主管决策系统 (Excutive Information System)ERP:企业资源规划 (Enterprise Resource Planning)FMS :弹性制造系统 (Flexible Manufacture System)KM :知识管理 (Knowledge Management)4L :逐批订购法 (Lot-for-Lot)LTC :最小总成本法 (Least Total Cost)LUC :最小单位成本 (Least Unit Cost)MES :制造执行系统 (Manufacturing Execution System)MPS :主生产排程 (Master Production Schedule)MRP :物料需求规划 (Material Requirement Planning)MRPⅡ:制造资源计划 (Manufacturing Resource Planning)OEM :委托代工 (Original Equipment Manufacture)ODM :委托设计与制造 (Original Design & Manufacture) OLAP:线上分析处理 (On-Line Analytical Processing)OLTP:线上交易处理 (On-Line Transaction Processing)OPT :最佳生产技术 (Optimized Production Technology) PDCA:PDCA管理循环 (Plan-Do-Check-Action)PDM:产品数据管理系统 (Product Data Management))RCCP:粗略产能规划 (Rough Cut Capacity Planning)SCM :供应链管理 (Supply Chain Management)SFC :现场控制 (Shop Floor Control)TOC:限制理论 (Theory of Constraints)TQC :全面品质管制 (Total Quality Control)FYI/R or your information/reference仅供参考ASAP:尽快S/T:Standard time标准时间TPM:total production maintenance:全面生产保养ESD Wrist strap:静电环IT:information technology信息技术,资讯科学CEO:Chief Executive Officer执行总裁COO:Chief Operaring Officer首席业务总裁SWOT:Strength,Weakness,Opportunity,Threat优势﹐弱点﹐机会﹐威胁Competence:专业能力Communication:有效沟通Cooperation:统御融合Vibration Testing:振动测试IDP:Individual Development Plan个人发展计划MRP:Material Requirement Planning物料需求计划MAT'S:Material材料LRR:Lot Rejeet Rate批退率ATIN:Attention知会3C:Computer ,Communication , Consumer electronic消费性电子5W1H:When , Where , Who , What , Why , Ho5M: Man , Machine , Material , Method , Measurement人,机器,材料,方法,测量4MIE: Man,Material,Machine,Method,Environment人力,物力,财务,技术,时间(资源)7M1I: Manpower , Machine , Material , Method, Market , Management , Money , Information 人力,机器,材料,方法, 市场,管理,资金,资讯。
天合联盟服务英语地面相关天合联盟服务英语(修订稿)目录第一部份公共英语一、公共服务英语50句第二部份业务英语一、售票服务英语50句二、常旅客服务英语50句三、地面服务英语Ⅰ、国际、国内值机英语50句Ⅱ、贵宾休息室英语50句Ⅲ、行李查询英语50句Ⅳ、候机厅、中转服务英语50句第一部份公共英语一、公共服务英语50句1.Good morning/ afternoon / evening, Sir/Madam. May I help you? 先生、小姐早上/下午/晚上好,要我帮忙吗?Can I help you?2.Excuse me. 对不起。
(为了引起他人注意或因为打扰别人)3.I am sorry. 对不起.( 为某事道歉) I apologize for……4.It doesn’t matter/Never mind. 没关系5.You’re welcome./ It’s my pleasure别客气。
6.Have a nice trip./ Enjoy your trip./祝您(在中国)旅途愉快!Enjoyyour flight.7.May I have your name? Could you please advise your name? Could youplease spell it for us? 请问您尊姓大名?/请问您的姓名如何拼写?/您贵姓?/请问您大名?8.What is the departure time / arrival time of the flight??飞机几点起飞/到达?9.It depends (on)... /I’m not quite sure that…..看情况吧。
/ 我不太确定。
10.Very nice to meet you! 很高兴认识您。
11.It is a direct flight. 这是直达航班。
12.When do I have to get to the airport?我要何时到达机场?/. Pleasearrive at the airport at least X hrs/mins before the departure time.您至少要在起飞前到达机场。
protectorate (被)保护国asylum 庇护;避难forntier region, border region 边界地区boundary negotiation 边界谈判status quo of the boundary 边界现状never to attach any conditions 不附带任何条件non-aligned countries 不结盟国家patrimonial sea 承袭海consultations 磋商the third world 第三世界imperialism 帝国主义200-nauticalmile maritime rights 二百海里海洋权developing countries 发展中国家dependency 附庸国plebiscite 公民投票generally-accepted principles of international relations 公认的国际关系原则joint action 共同行动normalization of relations 关系正常化an established principle of international law 国际法准则rudimentary code of international relations 国际关系中最起码的准则international waters 国际水域international situation 国际形势merger of states 国家合并national boundary 国界maritime resources 海洋资源mutual understanding and mutual accommodation 互谅互让exchange of needed goods 互通有无détente缓和fundamental rights 基本权利reduction or cancellation of debts 减轻债务负担Near East 近东right of residence 居留权arms dealer, merchant of death 军火商territorial sea 领海limits of territorial sea 领海范围breadth of territorial sea 领海宽度territorial air 领空territorial waters 领水inalienability of territory 领土的不可割让性territorial jurisdiction 领土管辖权territorial contiguity 领土毗连territorial integrity 领土完整refugee camp 难民营country of one's residence 侨居国complete prohibition and thorough destruction of nuclear weapons 全面禁止和彻底销毁核武器people-to-people contacts and exchanges 人民之间的联系和交流sacred and inviolable 神圣不可侵犯ecocide 生态灭绝practical, efficient, economical and convenient for use 实用,有效,廉价,方便bilateral and multilateral economic cooperation 双边和多边经济合作bilateral trade 双边贸易dual nationality 双重国籍trusteeship 托管制度outer space 外层空间sole legal government 唯一合法政府loans with no or low interest 无息和低息贷款colonialism and neo-colonialism 新老殖民主义delayed repayment of capital and interest 延期还本付息extradition 引渡Zionism 犹太复国主义friendly exchanges 友好往来disputed areas 有争议的地区fishery resources 渔业资源political offender 政治犯political fugitive 政治逃犯Middle East, Mideast 中东neutral state, neutral country 中立国neutralized state 永久中立国apartheid, racial segregation 种族隔离genocide 种族灭绝sovereign state 主权国家exclusive economic zone 专属经济区suzerain state, metropolitan state 宗主国suzerainty 宗主权to maintain neutrality 保持中立to safeguard national sovereignty and national resources 保卫国家主权和民族资源to take concerted steps 采取协调行动to undertake obligations in respect of the nuclear-free zone 对无核区承担义务to develop relations of peace and friendship, equality and mutual benefit, and prolonged stability 发展和平友好、平等互利、长期稳定的关系to develop the national economy 发展民族经济to peddle munitions 贩卖军火All countries, big or small, should be equal. 国家不分大小,应该一律平等。
csat指标体系-回复什么是CSAT指标体系?CSAT指标体系,全程Customer Satisfaction(客户满意度)指标体系,是衡量客户满意度的一种评价方法。
CSAT指标体系通过综合客户反馈数据,提供客观的、量化的评价,帮助企业了解客户对其产品或服务的满意程度。
CSAT指标通常使用调查问卷或定期的客户反馈,将结果以数值表达,便于分析和比较。
步骤一:确定研究目的和受众第一步是确定研究目的和受众。
确定研究目的是为了明确为什么要进行CSAT调查,以及希望通过调查获得哪些结果。
受众是指收集到的数据将被用于哪些部门或个人。
例如,一个电子商务公司可能希望了解其在线购物平台的用户对其服务的满意程度。
研究目的可能是了解用户对网站布局、商品种类、购物体验等方面的满意度。
受众可能包括销售团队、运营团队以及其他与客户互动最多的团队。
步骤二:确定调查工具和内容第二步是确定调查工具和内容。
CSAT调查可以通过电话、在线调查问卷、面对面访谈等形式进行。
在选择调查工具之前,需要明确所选工具的优缺点以及受众的特点。
在线调查问卷可能更适用于大规模数据的收集,而面对面访谈则可以更深入地了解客户的需求和意见。
在确定调查内容时,可以参考一些常见的CSAT指标,例如购物满意度、产品质量满意度、服务满意度等。
根据研究目的,选择适当的指标进行调查。
步骤三:样本抽取和数据收集第三步是确定样本抽取方法和进行数据收集。
样本抽取是指从整体受众中选择一部分人作为调查对象,以代表整体的意见。
为了获取可靠的结果,样本抽取需要根据一定的规则进行,以保证结果的可比性和代表性。
常见的样本抽取方法包括随机抽样、分层抽样等。
数据收集可以通过调查问卷、电话访谈、在线评价等方式进行。
根据所选的调查工具,合理安排数据收集的时间和方式,并确保数据的准确性和完整性。
步骤四:数据处理和分析第四步是对收集到的数据进行处理和分析。
首先,需要对数据进行清理,删除无效数据和异常值。
matter 认证测试详解-概述说明以及解释1.引言1.1 概述:Matter 认证测试作为一种重要的测试方法,被广泛应用于物联网行业中。
通过对物联网设备在符合Matter标准的网络中进行验证和测试,可以确保设备的互通性和稳定性。
本文将对Matter 认证测试进行详细的解读和分析,探讨其定义、背景、流程和步骤,以及重要性和应用。
读者将通过本文全面了解Matter 认证测试的意义和作用,为物联网设备的开发和推广提供指导和借鉴。
1.2文章结构1.2 文章结构本文将按照以下结构展开内容。
首先,在引言部分将对matter认证测试进行概述,介绍本文的结构和目的。
然后,在正文部分将详细介绍matter认证测试的定义和背景,包括其起源和发展历程。
接着,我们将深入探讨matter认证测试的流程和步骤,包括具体的操作流程和注意事项。
最后,我们将解释matter认证测试的重要性和应用,探讨它在实际生产和研发中的价值和作用。
通过以上内容的逐一展开,读者将对matter认证测试有一个全面的了解,包括其定义、背景、流程、重要性和应用。
希望本文能为读者提供有益的信息和帮助,引起读者对matter认证测试的关注和思考。
1.3 目的matter 认证测试的目的是为了确保物质的可靠性和稳定性。
通过对物质进行测试,可以验证其质量和性能是否符合规定标准,从而保证其在实际应用中的可靠性和安全性。
此外,matter 认证测试也可以帮助制造商了解产品的性能表现和潜在问题,有助于提高产品质量和竞争力。
通过深入了解这些测试的目的,可以更好地理解其重要性和应用范围,为企业的产品质量和市场竞争力提供有力支持。
2.正文2.1 matter 认证测试的定义和背景Matter 认证测试是一种标准化的测试程序,旨在验证物联网设备的兼容性和互操作性。
随着物联网设备不断增多和种类繁多,为了确保不同设备能够顺利相互通信,Matter 认证测试应运而生。
Matter 认证测试的背景来源于Thread Group、Zigbee Alliance、Google 和Apple 等公司的共同努力,旨在为物联网设备提供一个统一的标准,使得设备之间的连接更加简单、可靠和安全。
Features• The monostable spool valves in conformity with IEC 61508 Standard (2010 route 2H version) have TÜV certified with integraty levels : SIL 2 for HFT = 0 / SIL 3 for HFT = 1• All the exhaust ports of the spool valve are connectable, providing better environmental protection.Particularly recommended for sensitive areas, such as clean rooms, and applications in the pharmaceutical and food processing sectors• The v alves o ffer e nvironmental p rotection a gainst t he i ngress o f l iquids, d usts o r o ther f oreign matter (environmentally-protected construction)• Can b e e xternally p iloted (external a ir p ilot s upply) t o c onvert v alve t o z ero m inimum o peration by flipping a gasket• The solenoid valves satisfy all relevant EU directivesGeneralDifferential pressure 2 - 10,4 bar [1 bar =100 kPa]Materials in contact with fluid(✶) Ensure that the compatibility of the fluids in contact with the materials is verified Body, end covers Brass Spool valve internal parts Brass, stainless steel, POM Core tube Stainless steel Core and plugnut Stainless steel Core spring Stainless steelSeals & discs NBR Top disc PA Disc holder POM Cartridge (low power) Welded, packless AISI 430Seat Brass Seat insert POM Shading coil CopperRider rings (low power) PTFE (NF/WSNF solenoids only)Specifications(1) Certified IEC 61508 Functional Safety data, use suffix "SL". (2)Zero minimum is only achieved if external pressure is applied.-2019/R 01POWER LEVELS - cold electrical holding values (watt)ASCO™ Solenoid Valvessingle/dual solenoid - pilot operated - brass body - 1/4 tapped 5/2SERIES 551Prefix tableprefixdescription power level1234567LP RP MP BP E F Explosionproof - NEMA 7, 9 - Zinc plated steel conduit m--l E V Explosionproof - NEMA 7, 9 - 316 SS conduit m--l E M Waterproof IP66/67 - Metal enclosure (EN/IEC 60079-7,-18 and -31)*l--lE T Threaded conduit/hole (M20 x 1,5)l--l L P KF Flameproof - Aluminium (EN/IEC 60079-1, 60079-31)*l---N F Flameproof - Aluminium (EN/IEC 60079-1, 60079-31)*l--l P V Encapsulated epoxy moulded (EN/IEC 60079-18)*m--l S C Solenoid with spade plug connector (EN/IEC 60730)l--l W P Waterproof IP67 - Metal enclosure l--l L I I.S. with Aluminium IP66/IP67 enclosure (EN/IEC 60079-11+31)*m---W S Waterproof IP67 - 316 SS enclosure l--l W S L P K F Flameproof 316L SS (EN/IEC 60079-1, 60079-31)*l---W S E M Waterproof IP66/67 - 316 SS enclosure (EN/IEC 60079-0+7+18+31)*l--l W S L I I.S. with 316L SS IP66/IP67 enclosure (EN/IEC 60079-11+31)*m---W S N F Flameproof 316L SS (EN/IEC 60079-1, 60079-31)*l--l T Threaded conduit (1/2" NPT)l--lH T Class H - High temperature, +80°C ambient temp.---lX Other special constructions l--l Suffix tablesuffixdescription power level1234567LP RP MP BP M O Push type manual operator m/l--lS L Certified IEC 61508 Functional Safety data(2)m/l--lOptions &Accessoriesl Available featurem Available feature in DC only- Not available* A TEX/IECEx valves using these solenoids are approved according to EN ISO 80079-36 (2016) and EN ISO 80079-37 (2016) [non electrical](1)Provided with "SL" suffix(2)Not to use with MO suffixProduct selection guideSTEP 1Select b asic c atalogue n umber, i ncludingpipe thread indentification letter. Referto the specifications table on page: 1Example: G551A419STEP 2Select prefix (combination). Refer to thespecifications table and the prefix table,respect the indicated power level.Example: EMSTEP 3Select suffix (combination) if required.Refer to the suffix table, respect theindicated power level.Example: MOSTEP 4Select v oltage.R efer t o s tandard v oltageson page: 3Example: 230V / 50HzSTEP 5Final catalogue / ordering number.Example:EM G551A419MO 230 V / 50 HzOrdering examples valves:SC G551 A 419230V/50 HzSC G551 A 419SL230V/50 HzSC G551 A 420MO230V/50 HzSCHT8551 A 420MO230V/50 HzWSLPKF G551 A 319MO24V/DCLPKF G551 A 319MO24V/DCLPKF G551 A 319MO230V/50 HzLI G551 A 31924V/DCWSLI G551 A 320MO24V/DCEM8551 A 419MO230V/50 HzEF G551 H 419MS240V/60 Hzprefix(3)pipe thread voltage basic number (3)suffix(3)P refix EF and EV should always be used in conjunction with change letter H inthe basic number-219/R15/2 SERIES 551Explanation of temperature ranges of solenoid valvesValve temperature range The valve temperature range (TS) is determined by the selected seal material, the temperaturerange for proper operation of the valve and sometimes by the fluid (e.g. steam)Operator ambient temperature range The operator ambient temperature range is determined by the selected power level and thesafety codeTotal temperature range The temperature range of the complete solenoid valve is determined by the limitations of bothtemperature ranges aboveElectrical characteristicsCoil insulation class FElectrical safety IEC 335Standard voltages DC (=) 24V - 48V(5)(1)Temperature range can be limited by sealings(2)Refer to the dimensional drawings on pages: 4 to 7(3)L I/WSLI: Check the electrical characteristics in the corresponding catalogue pages(4)Multiple coil kits are available under ATEX/IECEx, contact us(5)Only available in 24, 48 and 110V/DC(6)L I/WSLI:Low Power, 24 V DC only (LI: For use in zone 0 locations, see the installation conditionsgiven in the I&M instructions)(7)LPKF/WSLPKF:24 V DC, max. ambient temp. +80°C, contact us (48 V DC = 2,1 W)(8)Max. power ratings values: 115 V AC (2,4 W), 48 V DC (2,1 W)-Not availableAdditional options• Valves configured for external pilot air supply, TPL 20547• Other pipe threads are available on request• Ex mb/mD (prefix "PV") solenoid can be supplied with various cable lengths• Compliance with "UL", "CSA" and other local approvals available on requestInstallation• Multi language installation/maintenance instructions are included with each valve•The solenoid valves can be mounted in any position without affecting operation• Do not connect the pressure supply to the exhaust port 3.The “environmentally-protected” construction is not adapted for a “distributing” function or use in NO function.Contact us for functions available in specific versions• IEC 61508 Functional Safety (suffix SL).Check temperature range of valve body and solenoid for suitability. For probability of failure, contact us• It is necessary to connect pipes or fittings to the exhaust ports to protect the internal parts of the spool valve and its pneumatic operator if used outside or in harsh environments (dusts, liquids etc.)• Threaded pipe connection identifier is 8 = NPT (ANSI 1.20.3); G = G (ISO 228/1)• E x db Prefix "NF/WSNF" enclosure is provided with a 1/2" NPT threaded entry hole, M20 x 1,5 (prefix "ET") is optional. These are -219/R15/2SERIES551Dimensions (mm), Weight (kg)A 2 mounting holes: 5,3 mm dia.; Spotfacing: 9 mm dia., depth 5 mmTYPE 01:Epoxy mouldedSC: IEC 335 / ISO 4400551A419 / 551A420TYPE 02:Aluminium, epoxy coated / AISI 316L SS NF / WSNF: EN/IEC 60079-1, 60079-31551A419 / 551A420TYPE 04:Metal, epoxy coated / AISI 316L SS WP / WS: IEC 335EM / WSEM: EN/IEC 60079-7+18+31551A419 / 551A420All types-2019/R 015/2SERIES 551TYPE 05:Epoxy encapsulatedPV: EN/IEC 60079-18551A419 / 551A420TYPE 06:Epoxy encapsulatedEF and EV: NEMA type 7, 9 / ICS-6 ANSI551G419 / 551G420TYPE 07:Epoxy mouldedSC: IEC 335 / ISO 4400551A319 / 551A320TYPE 08:Aluminium, epoxy coated / AISI 316L SSNF / WSNF: EN/IEC 60079-1, 60079-31551A319 / 551A320Dimensions (mm), Weight (kg)TYPE 09:Metal, epoxy coated / AISI 316L SSWP / WS: IEC 335EM / WSEM: EN/IEC 60079-7+18+31551A319 / 551A320TYPE 10:Epoxy encapsulatedPV: EN/IEC 60079-18551A319 / 551A320-219/R15/2SERIES551TYPE 11:Epoxy encapsulatedEF and EV: NEMA type 7, 9 / ICS-6 ANSI551H319 / 551G320Dimensions (mm), Weight (kg)TYPE 13:Aluminium, cataphorese black painting / AISI 316L SSLPKF/WSLPKF: EN/IEC 60079-1, 60079-31TYPE 14:Aluminium, cataphorese black painting / AISI 316L SSLI / WSLI: EN/IEC 60079-11, 60079-31551A319 / 551A320551A319 / 551A320-219/R1 5/2SERIES551(1)Incl. coil(s) and connector(s).2 Ex d certified cable gland (on request)3 Three-core cable, length 2 m4 Cable gland for unarmoured cable with 7 to 12 mm dia. sheath 6 Connector rotatable by 90° increments (cable Ø 6 - 10 mm)8 Manual operator location, suffix MO 9 External pilot air supply, 1/8 pipe sizeConnectable pilot exhaust portNon-connectable pilot exhaust port1/81/41011exhaust protector (stainless steel)Dimensions (mm), Weight (kg)-2019/R 015/2SERIES 551t y , d e s i g n a n d s p e c i fi c a t i o n s a r e s u b j e c t t o c h a n g e w i t h o u t n o t i c e . A l l r i g h t s r e s e r v e d .-2019/R 015/2SERIES 551。
2023年的智能家居,Matter将无处不在!阅读好书共进步Matter——全球统一基于IP的物联网标准,目前重点应用于智能家居领域。
Matter 1.0的发布,让其在智能家居圈仿若明星一样,烙印在每一位智能人的心中。
历经3年,Matter 1.0正式发布2022年10月5日,国庆放假期间,CSA连接标准联盟(Connectivity Standards Alliance)正式发布的Matter1.0,获得了极其重磅的关注,行业内朋友圈几乎刷屏,行业人非常振奋。
10月初亮相,对于海外市场来说,正好赶上了年底的圣诞假日购物季前,预示着产品也将在今年第四季度大规模上市,消费者将可以大规模购买到Matter认证的产品,三箭头Logo即将在设备包装上体现。
Matter已经成为智能家居圈最大的话题,1.0版本由全球550家科技公司共同参与贡献,堪称史诗级的里程碑事件。
CSA连接标准联盟推出Matter 1.0版本的同时,针对智能家居设备的认证也同步开放。
Matter认证非常重要,只有有效认证,才能解决智能家庭设备间的兼容性问题,真正实现跨品牌以及跨生态的保障。
目前支持Matter1.0标准的智能家居设备,将可以兼容Alexa、Google Home和HomeKit生态,而且国内的Matter模组厂家也开始打通国内与国外的平台,全球化生态平台的互联势不可挡。
Matter的时间脉络回顾2019年12月18日,亚马逊、苹果、谷歌、三星SmartThings 和 Zigbee 联盟宣布合作组建 Project Connected Home over IP 工作组。
2021年5月11日,Project Chip更名为Matter,同时Zigbee 联盟也更名为CSA(Connectivity Standards Alliance,连接标准联盟)。
2022年10月5日,Matter1.0版本全球正式发布。
Matter——软硬解耦促进智能家居业务模式的变革CSA联盟首先表示,无论是全球市场还是中国市场,非常高兴Matter1.0在经历若干次延迟后,最终与大家见面!2019年底,亚马逊、苹果、谷歌、三星 SmartThings 和 Zigbee 联盟宣布合作组建 Project Connected Home over IP 工作组。
csat指标体系-回复CSAT指标体系是一种评估顾客满意度的方法,即Customer Satisfaction Score。
该体系能够帮助企业了解顾客对其产品或服务的感受,进而优化经营策略和提高顾客满意度。
本文将一步一步回答有关CSAT指标体系的问题,深入探讨其应用和重要性。
第一部分:CSAT指标体系的概述和定义(200字)CSAT指标体系是通过调查顾客对产品或服务的满意度来衡量企业业绩的工具。
它以标准化的问卷调查方式收集数据,通常使用一到五的评分范围,其中一表示极度不满意,五表示非常满意。
通过收集顾客的反馈,企业可以应对问题、改进产品或服务并提升顾客满意度。
第二部分:如何设计一份有效的CSAT调查问卷(400字)设计一份有效的CSAT调查问卷需要考虑以下几个关键因素。
首先,问题应该简洁明了,避免使用复杂的词汇和术语,以免引起误解。
其次,问题应该具体而明确,以确保顾客能够提供具体的反馈意见。
此外,问卷应该包含开放性问题,允许顾客自由发表自己的意见和建议。
最后,问卷应该保持简洁,避免过长过复杂,以免顾客的参与度下降。
第三部分:如何分析和解读CSAT调查结果(400字)分析和解读CSAT调查结果是理解顾客满意度的关键步骤。
首先,需要计算总体满意度得分,即顾客的平均得分。
其次,要识别出得分高和低的关键要素,以便重点关注和改进。
例如,如果在服务方面的得分较低,企业可以采取措施提升服务水平。
此外,应该与之前的调查结果进行比较,以了解满意度的变化趋势。
最后,应根据得分分布,将顾客分类为满意、不满意或中立,以进一步分析他们的特点和需求。
第四部分:CSAT指标体系对企业的价值和应用(500字)CSAT指标体系对企业具有重要的价值和应用。
首先,它能够帮助企业了解顾客的需求和期望,从而引导产品和服务的改进。
通过分析顾客的反馈意见,企业可以及时调整策略,以满足顾客的需求。
其次,CSAT指标体系能够帮助企业评估营销活动的效果。
Solid State Nuclear Magnetic Resonance 33(2008)41–56International Union of Pure and Applied Chemistry,Physical and Biophysical Chemistry DivisionFurther conventions for NMR shielding and chemical shiftsIUPAC recommendations 2008$Prepared for publication by Robin K.Harris a,Ã,Edwin D.Becker b ,Sonia M.Cabral De Menezes c ,Pierre Granger d ,Roy E.Hoffman e ,Kurt W.Zilm faDepartment of Chemistry,University of Durham,South Road,Durham DH13LE,UKbNational Institutes of Health,Bethesda,MD 20892-0520,USAcPETROBRAS/CENPES/QM,Av.Horacio Macedo 950,Cidade Universita´ria,21941-598,Rio de Janeiro,RJ,Brazil dInstitute of Chemistry,University Louis Pasteur,Strasbourg,1rue Blaise Pascal,67008Strasbourg,Cedex,France eDepartment of Organic Chemistry,The Hebrew University of Jerusalem,Safra Campus,Givat Ram,Jerusalem 91904,IsraelfDepartment of Chemistry,Yale University,P.O.Box 208107,New Haven,CT 06520-8107,USAReceived 6February 2008Available online 20February 2008AbstractIUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR)data,especially chemical shifts.The most recent publication [Pure Appl.Chem.73,1795(2001)]recommended that tetramethylsilane (TMS)serve as a universal reference for reporting the shifts of all nuclides,but it deferred recommendations for several aspects of this subject.This document first examines the extent to which the 1H shielding in TMS itself is subject to change by variation in temperature,concentration,and solvent.On the basis of recently published results,it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate,DSS,often used as a reference for aqueous solutions]varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm).Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation,including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS).This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids,based on high-resolution MAS studies.Procedures are given for relating 13C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase.The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail,and recommendations are given for best practice.r 2008IUPAC.Published by Elsevier Inc.All rights reserved.Keywords:Nuclear magnetic resonance;Recommendations;Chemical shifts;Conventions;IUPAC physical and biophysical chemistry division;Shielding tensors1.IntroductionIUPAC has published a number of recommendations for handling data relating to nuclear magnetic resonance (NMR)[1–4].The most recent recommendations in 2001[4]focused particularly on conventions for reporting chemical shifts.These recommendations included a minor redefinition of the chemical shift d for a nuclide X:d sample ðX Þ¼½n sample ðX ÞÀn reference ðX Þ =n reference ðX Þ(1)Eq.(1)differs from previous definitions in deleting a factor of 106,for reasons explained in Ref.[4].Because the/locate/ssnmr0926-2040/$-see front matter r 2008IUPAC.Published by Elsevier Inc.All rights reserved.doi:10.1016/j.ssnmr.2008.02.004Abbreviations:TMS,tetramethylsilane;DSS,sodium-3-(trimethylsilyl)-propanesulfonate—commonly called sodium-2,2-dimethyl-2-silapentane-5-sulfonate,sodium salt;TSP,sodium-3-(trimethylsilyl)propionate;DMSO,dimethyl sulfoxide;THF,tetrahydrofuran;NMR,nuclear magnetic resonance;MAS,magic-angle spinning;ZAS,zero-angle spinning;PAS,principal axis system;SA,shielding anisotropy;CSA,chemical shift anisotropy;cgs,centimeter gram second system of units.$Reprinted with permission from Pure Appl.Chem.80(2008)59,which may be freely accessed and downloaded from /publications/pac/80/1/0059.Membership of the relevant IUPAC Commit-tee is listed therein.ÃCorresponding author.E-mail address:r.k.harris@numerator is normally expressed in Hz whereas the denominator is given in MHz,this formulation leads to values readily expressed in ppm.The suffix ‘‘ppm’’is interchangeable with ‘‘Â10À6’’in equations,just as ‘‘%’’is interchangeable with ‘‘Â0.01’’.The signs that can be attached to Larmor frequencies are ignored herein.Also recommended [4]was a unified scale for reporting chemical shifts of any nuclide X (other than 1H)in any sample relative to a primary internal reference,viz.the proton resonance of tetramethylsilane (TMS)1in a dilute solution in CDCl 3(volume fraction j o 1%).To relate data on the unified scale to chemical shifts expressed relative to a secondary reference of the same nuclide X,a quantity X (Greek capital Xi)was defined as the ratio of the secondary (isotope-specific)frequency,n obs (X),to that for 1H of TMS in CDCl 3,n obs TMS ,in the same magnetic field:X ¼n obs sample ðX Þ=n obs TMS(2)As pointed out in Ref.[4],X can conveniently be expressed as a percentage.The tables of X ,reported therein,for the secondary references of all nonradioactive (together with a few radioactive)but NMR-active nuclides,are condensed to a convenient form for reference in Appendix A.The document [4]discussed the use of three techniques for referencing chemical shifts:(a)internal reference;(b)external reference;and (c)substitution method,with the field locked on an internal deuterium resonance for both sample and reference measurements.Methods a and c were recommended,where feasible,because they avoid the magnetic susceptibility artifact introduced by method b.An alternative substitution method,with no field-frequency lock (or an external lock)was not discussed there but will be covered in this document primarily because it is commonly used for solids.The 2001recommendations document set aside tem-porarily a number of more specialized (but nevertheless important)areas for later discussion.As a result,an IUPAC task group has now addressed several matters,as follows:temperature dependence of the 1H chemical shift of TMSshape factor for making magnetic susceptibility correc-tions when an external reference must be used and samples cannot be considered as infinite cylinders solvent dependence of the 1H chemical shift of TMS alternative scenarios for referencing (with relevant X values)for certain nuclides,including 15N aspects of MAS for both liquids and solidsprocedures for chemical shift referencing in solid samplesterminology for reporting chemical shift/shielding tensorsEach of these subjects is considered in this document,along with related comments and relevant recommenda-tions for future practice.Section 2discusses general concepts,whereas Sections 3–8relate mostly to solutions.Sections 9and 10refer mostly to solids.2.General aspects of chemical shiftsThe definition of chemical shift (symbol d ),as expressed in Eq.(1),is based on observation,not theory;that is,d describes a measured value for the nuclide.The value of d obtained by applying Eq.(1)to a particular nuclide in a given chemical compound can vary substantially,depend-ing on the conditions used for measuring the sample and reference frequencies.The basic requirement for a valid measurement is that the resonance frequencies for sample and reference be obtained under precisely the same value of the magnetic induction,B 0.In some experimental measure-ments,as described below,B 0(sample)¼B 0(reference)as a result of bulk (isotropic)magnetic susceptibility (BMS)effects,which give rise to demagnetizing fields [5].In these circumstances,it is essential to apply a suitable correction,as described in Section 5,and it is appropriate to designate a ‘‘corrected’’or ‘‘true’’chemical shift to distinguish it from the ‘‘apparent’’or observed value obtained by rote application of Eq.(1)when an external referencing procedure is employed.At the theoretical level,the shielding s that is the basis for the chemical shift is known to depend on complex intramolecular factors and,except for gases at very low pressure,on many intermolecular factors as well.It is,therefore,important to record any experimental conditions (e.g.,solvent,temperature,concentration,pressure)that are thought to be significant for the particular investigation and to recognize that the value of d may vary as these parameters are changed.However,it is generally not desirable to speak of ‘‘correcting’’a chemical shift that has been properly measured under a particular set of conditions or of converting that value to a ‘‘true’’chemical shift (except as mentioned above for BMS effects).Provided the measurements are made as described in the preceding paragraph,no measured chemical shift is more ‘‘correct’’than another.Nevertheless,it is often highly desirable to compare chemical shifts (even for the same resonance)obtained under different experimental conditions.To make such comparisons or to interpret variations in observed shifts in terms of possible molecular mechanisms,it is important to know whether and how the resonance frequency of a reference,especially that of the universal reference TMS,varies with change in parameters such as temperature and solvent.Those subjects will be addressed in Sections 4–6.3.ReferencingFor internal referencing in isotropic liquids,the sample and reference compound are molecularly dispersed in a1To be more precise,the dominant proton resonance line from 12C 41H 1228Si.Resonances at slightly different chemical shifts can be observed from other isotopomers (usually as 13C and 29Si ‘‘satellites’’).R.K.Harris et al./Solid State Nuclear Magnetic Resonance 33(2008)41–5642homogeneous liquid contained in a single sample tube (usually cylindrical),within which B0is constant(except for unavoidable gradients,which apply equally to sample and reference).Thus,the measured values of n sample and n reference can be used directly in Eq.(1)to provide a chemical shift,albeit one that may be highly dependent on intermolecular effects.2For external referencing,the sample and reference substances are physically confined in separate containers within the same magnet gap,often in coaxial cylindrical tubes.If the applied magneticfield H0is sufficiently homogeneous(as is normally true),both sample and reference experience the same externalfield.However,the magnetic inductionfield(B0)within each substance depends on its bulk volume magnetic susceptibility,k sample and k reference,which are normally not identical,and the effect of average shape factors¯a sample and¯a reference,which are normally very similar.Hence,the measured frequencies must be adjusted to take into account the different magnitudes of B0—a subject that will be discussed in detail in Section5.Two quite different scenarios arise for chemical shifts measured by the substitution method.The substitution method implies that the reference is substituted for the sample in the probe,so the measurements of n sample and n reference are made consecutively,not concurrently.If the magneticfield is thought to have adequate stability for the measurement being conducted,as in most experiments with solid samples and occasionally with some high-resolution studies of liquid samples,the experimenter might rely on this stability,without afield/frequency lock,to ensure that H0remains the same for the two measurements.This then results in the same situation as in external referencing:in general,B0(sample)¼B0(reference),and a correction is needed for the effect of BMS.(If the sample and reference are both very dilute solutions in the same solvent,then the susceptibility correction may,of course,be negligible).One important restriction in using the substitution method without a lock is that the magneticfield must not be re-shimmed between the two measurements,since a small but unknown z0component often accompanies higher-order field gradient shims.The second substitution method uses afield/frequency lock based on a substance(usually involving the2H signal of a deuterated solvent)contained within each of the two tubes being measured(containing sample of interest and reference,respectively).This internally locked substitution method presents an entirely different situation.Here,the lock ensures that the instrument alters H0in order to maintain B0within the tube at a constant magnitude.If the lock substance is identical for the sample and refer-ence measurements and is not influenced appreciably by different intermolecular interactions in the two instances, then d sample(D)¼d reference(D),B0is constant,and the measured frequencies may be used in Eq.(1).However,if different lock substances are used,then a correction must be applied to account for the different chemical shifts of these two materials.This matter was discussed in some detail in the2001recommendations document[4].With most recently installed spectrometers,the manufacturers have built such corrections into the software,but it is important for the experimenter to ascertain whether that has been done and what values of the chemical shifts for the lock compounds have been entered into the spectro-meter’s look-up tables.4.Temperature dependence of the1H chemical shift of tetramethylsilaneMost NMR studies are carried out at a single temperature,often the ambient temperature of the probe. In some instances,however,it is important to examine the variation of one or more chemical shifts within a sample as the probe temperature is varied.Such chemical shifts are measured with respect to TMS,and the implicit assump-tion is often made that the1H chemical shift of TMS does not vary with temperature.However,that assumption has no theoretical basis,since excitation of vibrational and rotational modes with increased temperature may alter the intramolecular shielding of TMS,and changes in solvent effects may also influence the intermolecular shielding of TMS.The only method that,at present,seems feasible for determining the temperature dependence of the chemical shift of TMS is to measure the1H TMS resonance as a function of temperature relative to a substance that is believed to have a resonance frequency independent of temperature.This concept was introduced by Jameson and Jameson in1973[6],when they measured the1H resonance of neat TMS relative to the resonance of129Xe in xenon gas.An isolated Xe atom has no vibrational or rotational modes that can be excited,and collisional effects on the resonance frequency,which can be substantial in129Xe, could in principle be negated by extrapolation to zero pressure.Those studies[6,7],extended by Morin et al.in 1982[8]to account for the magnetic susceptibility of TMS, reported a rather significant temperature coefficient for the TMS chemical shift.However,these investigations suffered from the shortcomings in sensitivity and reliability inherent in the use of the90-and100-MHz NMR instruments of that period.In reviewing the literature,we determined that the existing data were inadequate to serve as the basis for an IUPAC recommendation.Accordingly,members of our task group undertook new experimental observations, based on the Jameson and Jameson concept but using 3He gas at low pressure,together with modern400-MHzNMR instrumentation[9].3He has higher NMR sensitivity than129Xe and is far less susceptible to interatomic2Care must be taken when dealing with situations involving hydrogenbonding or with ionic interactions in aqueous solutions(including thoseinvolving DSS or TSP as references)and when measuring stabilityconstants by means of NMR.R.K.Harris et al./Solid State Nuclear Magnetic Resonance33(2008)41–5643interactions.In fact,its resonance frequency was found not to have any significant pressure dependence from about0.1 to2.1atmosphere(0.01to0.21MPa).Thus,we believe that 3He is an excellent temperature-independent standard.In this investigation[9],the1H chemical shift of TMS in dilute solution in CDCl3(the primary reference recom-mended in Ref.[4])was found to vary only slightly with temperature(with an average temperature coefficient of approximatelyÀ5Â10À4ppm/K)over a temperature range of more than200K(À75to+1301C).This is approximately a factor of6smaller than the temperature coefficient reported for neat TMS in1982[8]. Subsequently,Hoffman[10]repeated some measure-ments and extended the work to cover TMS in a number of commonly used organic solvents(CDCl3,CD3OD, CD3CN,[2H6]DMSO,[2H6]acetone,and[2H8]THF).He also investigated aqueous solutions,using TMS and two more soluble derivatives,DSS and TSP.Although the published results show nonlinear behavior,particularly at low temperatures,overall the results can be approximated over wide temperature ranges by average temperature coefficients for TMS in the range of0toÀ6Â10À4ppm/K. These studies necessitated the use of external referencing, since the3He gas and the solutions of TMS were in separate compartments of coaxial sample tubes.The authors corrected for the temperature variation of volume magnetic susceptibility,an effect that was comparable in magnitude with the observed changes in chemical shift and of opposite sign.Because of uncertainties in the magni-tudes of magnetic susceptibilities and in temperature calibration,we believe that the resulting chemical shift data must be used with caution.However,the totality of these results makes it clear that the chemical shift of TMS (as well as that of DSS,the reference recommended for aqueous solutions[3])has a very small temperature dependence,usually amounting to only0.01ppm over a temperature range of about20K,which is often smaller than other experimental uncertainties.Thus,the vast majority of NMR data referenced to TMS and DSS require no adjustment to account for differing tempera-tures of acquisition.Thesefindings permit us to make two recommendations, as follows:Recommendation1:The acquisition temperature should be stated(including an estimate of‘‘ambient’’probe temperature)when chemical shift data are reported,but for temperatures in the region of251C it is neither necessary nor desirable to adjust the observed chemical shift data to any‘‘standard’’temperature.Recommendation2:In instances where it is desired to make comparisons of chemical shifts measured with respect to the1H resonance of TMS over a large temperature range betweenÀ20and801C(253to 353K),IUPAC recommends that a value ofÀ5Â10À4ppm/K for the temperature coefficient of thechemical shift of TMS be used,or that data from Refs.[9,10]be consulted for values at specific temperatures and for temperatures outside this range.5.Magnetic susceptibility correction:shape factorThe observed shift,d obs,of a signal arising from a homogeneous liquid sample consists of two components: chemical shift d(including the effects of intermolecular interactions),and BMS shift d k[11].3The latter is typically 3ppm but usually varies by less than1ppm between solvents.The BMS shift is identical for all signals in a homogeneous sample(independent of the nuclide observed if expressed as a ratio,rather than as a frequency).In this case,no susceptibility measurement or correction is required if the chemical shift is reported relative to an internal Ref.[4].However,the BMS shift needs to be taken into account when comparing samples that are physically separated,such as in external referencing,as described in Section3.The BMS shift depends on the shape factor and magnetic susceptibility,as quantified in Eq.(3)(in SI electromagnetic units),4d¼d obsþd k¼d obsþð13À¯aÞðkÀk refÞ(3) where¯a is the effective average shape factor,k is the dimensionless volume magnetic susceptibility of the sam-ple,and k ref is the susceptibility of the reference liquid or solution.Knowledge of theoretical shape factors and experimental magnetic susceptibilities is clearly necessary to carry out external referencing procedures.SI units and conventions for susceptibility and shape factor are used throughout this document in line with IUPAC recommen-dations.However,most published tables of magnetic susceptibilities(e.g.,[12,13])are in cgs units.To convert from cgs units to SI,magnetic susceptibilities must be multiplied by4p and shape factors must be divided by4p. Table1lists the theoretical shape factors for some simple sample shapes.Whilst nearly all solution-state NMR experiments are conducted with cylindrical samples(gen-erally of effectively infinite length)oriented parallel to the applied magneticfield,there is particular significance in the shape factor for cylindrical samples with the cylinder axisat the magic angle,54.7361,to B0since this is13,which means that d k,the correction for BMS,is zero.This fact becomes clearer when d k for an infinite cylinder is put into a form familiar to solid-state NMR spectroscopists,d k¼k33cos2yÀ12(4)3In solids,liquid crystals,and other non-isotropic systems,a chemical shift anisotropy component also exists,as will be discussed in Section9. 4Eq.(3)assumes that the magnetic susceptibility is independent of magneticfield.This is true of most diamagnetic and paramagnetic systems but not for ferromagnetic and superconductive materials.In any case,the BMS shift is usually much larger than the chemical shift for ferromagnetic and superconductive materials,so chemical shifts cannot be measured reliably.R.K.Harris et al./Solid State Nuclear Magnetic Resonance33(2008)41–56 44where y is the angle between the cylinder axis and the applied magnetic field B 0.This situation holds also for points along the central axis of any cylindrically symmetrical object aligned with the magic angle.Moreover,for infinite cylinders inclined at the magic angle with respect to B 0,even points away from the central axis have a time-averaged shape factor of 13,during sample rotation,and hence the shift effect of isotropic magnetic susceptibility averages to zero.Indeed,this is true for a cylindrical sample tube of finite length and for any shape cylindrically symmetrical about the magic angle.However,spinning at the magic angle is necessary to eliminate off-axis and end effects.The required spin rates are discussed in [14].Then,chemical shift measurements made at the magic angle by replacement require no (isotropic)BMS corrections,a feature which is of particular significance for solids (see Section 9)but is also valid for solutions.MAS measurements,therefore,provide a superior method of external referencing.The idea of external referencing for both 1H and 13C using TMS,volume fraction 1%,in deuterochloroform in conjunction with the recommended X values is thus a straightforward proposition for MAS NMR studies.For all but the simplest shapes,the calculation and measurement of shape factors are complex issues that are beyond the scope of these recommendations.However,Hoffman [15]recently applied the basic theory to determine the shape factor for typical NMR sample tubes,using the geometry and receiver coil configuration of asuperconducting magnet.For a 5-mm NMR sample tube with liquid 20mm above and 20mm below the center of the receiver coil,the effective average shape factor,expressed in SI units,is approximately 0.007,as indicated in Fig.1,which is adapted from Ref.[15].The factor ð13À¯a Þthus differs by only 2%from the theoretical value of 13.For many purposes,this difference is negligible,but it may be significant when the BMS must be determined in order to compare chemical shifts in solvents of considerably different magnetic susceptibility.Moreover,the shape factor may be considerably larger for sample volumes or instrument parameters (including size and location of receiver coil)that differ from the parameters used to derive Fig.1.The volume susceptibility of most solvents,in SI units,lies in the range À4.91ppm for nitromethane to À14.53ppm for di-iodomethane,where ppm indicates ‘‘Â10À6’’[12].For common NMR solvents at room temperature (RT),it ranges from À5.66ppm for [2H 6]acet-one to À9.15ppm for [2H]chloroform [15,16].Estimates for magnetic susceptibility at other temperatures can usually be made by assuming a constant molar susceptibility and applying corrections for solvent density.Most tabulated values of bulk isotropic magnetic susceptibility have been measured using a magnetic susceptibility balance [17].In addition,various NMR methods have been proposed for measuring magnetic susceptibility,some depending on the use of the geometry of an iron-core magnet in which the sample tube axis is at 901to the magnetic field axis [18,19].Others employ a spherical sample holder inside a cylindrical sample tube [19,20]or rely on gross distortion of line-shape when the bottom of the sample tube is close to the receiver coil [16].A more promising modern NMR method for measuring susceptibility makes use of measurements from coaxial cylindrical sample tubes spun (a)about at an axis oriented parallel to the magnetic field axis and (b)at the magic angle.The true chemical shift (d in Eq.(3))can be measured directly by MAS because the BMS shift is zero.Table 1Theoretical shape factors for selected samples Shape in a vertical magnetic fieldShape factor Infinite vertical cylinderSphere,infinite cylinder at the magic angle,or any shape cylindrically symmetrical about the magic angle 13Infinite horizontal cylinder12Infinite cylinder at angle y to the field12(1Àcos 2y)Fig.1.Shape factors for a 5-mm NMR tube whose bottom is at various depths (14,16,18,and 20mm)below the receiver-coil center.This figure is adapted from Ref.[15]and depends on a number of parameters assumed there to account for instrument geometry and receiver coil sensitivity.R.K.Harris et al./Solid State Nuclear Magnetic Resonance 33(2008)41–5645Small errors in the magic angle lead to large changes in resonance frequency,but the magic angle can be set accurately,as discussed in Section9,to yield a precision in d of0.0004ppm.Since d obs,vertical depends only on differences in susceptibilities,the measurement is normally repeated with a sample of accurately known susceptibility, such as water.The differences D d,along with the known susceptibility k0,are then used in Eq.(5)to determine k:k¼D d obs;verticalÀD d magic13À¯aþk0(5)In Section6,we shall apply this technique to investigate the effect of solvent variation on the TMS chemical shift. Two recommendations follow from the discussion in this section:Recommendation3:In situations where it is necessary to use an external reference or to compare chemical shifts of samples in separate tubes oriented parallel to B0,the BMS shift,symbol d k,should be quantified and subtracted from the observed shift,symbol d obs,to yield the chemical shift,symbol d.The BMS shift may be calculated from Eq.(3),with¯a approximated as indicated in the text.Recommendation4:In line with general IUPAC recommendations,SI units and conventions should be used for average shape factor,symbol¯a,and volume magnetic susceptibility,symbol k.Because cgs unitshave been widely used in tabulations of susceptibility data,the convention should always be explicitly stated.The diamagnetic susceptibilities of common NMR solvents are small(of the order of10À6)and are conveniently quoted in ppm.6.Solvent effects on the1H chemical shift of tetramethylsilaneThe proton chemical shift of TMS in any solvent is by definition(Eq.(1))exactly zero when TMS is used as an internal reference or as a reference in the substitution method with an internally lockedfield.However,the magnetic shielding of the protons in TMS,measured relative to some‘‘absolute’’reference,such as a bare proton or low-pressure monatomic gas,depends not only on intramolecular electron currents but also on perturba-tions from the solvent environment.In some instances,where solvent effects on the chemical shift of a sample are significant in the interpretation of data,it may be important to take into account the change in shielding of TMS with solvent variation.Clearly,such changes can be measured only with samples that are physically separated from each other,thus requiring either correction for magnetic susceptibility or measurements at precisely the magic angle.Table2provides results for TMS in10solvents(as well as for neat TMS and for DSS in D2O),where corrections for magnetic susceptibility have been made using Eq.(3).The last column provides data obtained by MAS for nine of the samples,where no correction is required.The agreement is excellent. Although the results in Table2should not be regarded as having the quantitative reliability of critically evaluated data from several independent studies and are subject to correction in the future,they illustrate quite well the magnitude of change in shielding of the protons in TMS with change of solvent.As a nonpolar molecule,with approximately tetrahedral geometry,TMS is expected to interact with solvent molecules only rather weakly.Never-theless,the results in Table2show that the1H resonance of TMS in a variety of non-aromatic solvents varies over a range of more than0.2ppm at RT(251C).For aromatic solvents,the variation is appreciably larger,as expected because of well-known ring current effects.7.A standard state for the1H TMS reference?The2001recommendations document[4]pointed out the desirability in principle of having a physicochemical standard state for TMS,in which relevant parameters such as concentration,temperature,and pressure are specified.A study reported in that document showed that the chemical shift of TMS in CDCl3was constant below a volume fraction j E1%;hence,a precise‘‘standard’’concentration was considered unnecessary for most pur-poses.We now know(Section4)that the temperature Table2Change of the1H chemical shift in TMS with variation of solvent Solvent d obs/ppm a k/ppm b d/ppm c d MAS/ppm d [2H]Chloroform0.00À9.1530.000.000[2H6]Acetone0.97À5.700À0.16À0.160[2H3]Acetonitrile0.83À6.597À0.01À0.011[2H6]DMSO0.54À7.7300.070.062[2H4]Methanol0.72À6.606À0.11À0.106e [2H8]THF0.31À7.914À0.10À0.109[2H6]BenzeneÀ0.01À7.82À0.45—fNitro[2H5]benzeneÀ0.03À7.28À0.64—f[2H8]Toluene0.05À7.72À0.42—fTMS(neat liquid)0.58gÀ6.90À0.15À0.124hD2O(saturated solution)0.01À8.840À0.09À0.071h DSS in D2O(10mmol/dm3)i0.03À8.840À0.07À0.056ha Apparent1H chemical shift of TMS in various solvents in coaxial tubes spun parallel to B0,relative to TMS in CDCl3as an external reference; based on experimental data from Refs.[10,16]except where noted.b Volume magnetic susceptibility,where‘‘ppm’’is equivalent to ‘‘Â10À6’’,from various published sources but presented here in SI units [12,13,15,16].c d from Eq.(3),using a shape factor of0.007.d1H chemical shift of TMS in various solvents relative to TMS in CDCl3 in coaxial tubes spun at the magic angle;from Ref.[21]except where noted.e Measured using nondeuterated methanol as the solvent.f Not determined.g Unpublished result supplied by R.Hoffman.h Unpublished data supplied by F.Ziarelli and A.Thevand,University of Aix-Marseille.i Included for comparison of X and X DSS;see Section8.R.K.Harris et al./Solid State Nuclear Magnetic Resonance33(2008)41–56 46。
csam分层标准-回复CSAM(Child Sexual Abuse Material)分层标准是针对儿童性虐待材料的分类系统。
它的目的是帮助法律机构、执法人员和互联网服务提供商识别和处理这些非法和有害的内容,从而保护儿童免受性侵害。
下面将一步一步回答与CSAM分层标准相关的主题。
第一步:CSAM分层标准的背景及意义首先,我们需要了解CSAM分层标准的背景和意义。
儿童性虐待是一种极度严重的犯罪行为,对受害者造成长期的心理和身体伤害。
在数字时代,互联网的普及使得儿童性虐待材料的传播和获取更加容易,这对儿童的安全构成了巨大威胁。
为了防止和打击这种犯罪行为,需要制定一套准确、全面的分层标准,以便可以在互联网平台上识别和移除这些有害内容。
第二步:CSAM分层标准的分类体系CSAM分层标准的分类体系通常包括三个主要层次:A、B和C,每个层次又包含了具体的子层次。
这套分类系统能够帮助执法人员更好地理解和评估儿童性虐待材料的程度和种类。
1. 层次A:最严重的虐待行为在层次A中,涉及到虐待行为的视频或图片通常包括了严重的暴力、虐待或强迫儿童进行性行为的情节。
这些内容可能包括强奸、性虐待和性暴力等违法行为,对受害者造成了极大的伤害。
这一层次的内容是最需要得到严肃处理和打击的。
2. 层次B:严重虐待行为在层次B中,涉及到虐待行为的视频或图片可能包括了性暗示、猥亵、性虐待或强迫儿童进行性行为等情节。
尽管与层次A相比,这些内容可能没有那么极端和暴力,但仍然具有严重的性侵犯性质。
这一层次的内容也是需要被及时发现和打击的。
3. 层次C:成人虐待行为或非成人裸体照片在层次C中,涉及到虐待行为的视频或图片通常包括成人性行为或非成人的裸体照片。
尽管这些内容不直接涉及儿童性虐待行为,但可能涉及到非法的成人虐待行为或违反具体国家法律的非成人裸体照片。
第三步:应用CSAM分层标准的方法和工具在现实世界中,如何应用CSAM分层标准成为了一项重要的工作。
miscibility 标准一、简介Miscibility 标准是指在混合物中各组分的均匀分散程度,是衡量混合物质量的重要指标。
在化学、物理和工程领域中,混合物的 miscibility 标准都非常重要,因为它直接影响着产品的性能和应用。
本篇文档将对 miscibility 标准进行详细的介绍,包括其定义、影响因素和测试方法等。
二、定义Miscibility 标准是指在一定温度和压力下,两种或多种液体或固体均匀混合在一起的能力。
如果两种液体或固体能够完全互溶,则称为完全miscible;如果不能完全互溶,则称为部分miscible或不miscible。
Miscibility 标准是衡量混合物质量的重要指标,它直接影响着产品的性能和应用。
三、影响因素影响 miscibility 标准的主要因素包括温度、压力、组分的化学性质和分子间相互作用等。
在一定的温度和压力下,某些组分可能会因为化学性质相似而容易互溶,而某些组分则可能因为化学性质差异较大而不易互溶。
此外,分子间的相互作用也是影响 miscibility 标准的重要因素。
如果分子间的相互作用力较强,则组分更容易互溶。
四、测试方法1.外观观察法:通过观察混合物的外观,可以初步判断其 miscibility 标准。
如果混合物中存在明显的相界面或分离现象,则可能说明该混合物不互溶或部分互溶。
2.折射率法:通过测量混合物的折射率,可以判断其 miscibility 标准。
如果折射率出现明显的变化,则可能说明该混合物不互溶或部分互溶。
3.蒸馏法:通过蒸馏混合物并观察其馏出液和残液的组成,可以判断其miscibility 标准。
如果馏出液和残液的组成存在明显的差异,则可能说明该混合物不互溶或部分互溶。
4.核磁共振法(NMR):通过测量混合物中不同组分的核磁共振信号,可以判断其miscibility 标准。
如果核磁共振信号出现明显的差异,则可能说明该混合物不互溶或部分互溶。
CSA联盟提出的Matter标准
一、Matter标准的背景和意义
1.1 背景
CSA(Connected Standards Alliance)联盟是一个由智能家居和物
联网(IoT)设备制造商、服务提供商和技术公司组成的全球性组织。
CSA联盟的目标是推动智能家居和物联网设备之间的互操作性,提高
用户体验,并推动整个设备生态系统的发展。
在这个背景下,CSA联盟提出了Matter标准,旨在解决智能家居设
备之间的互操作性问题,构建一个统一的生态系统,将不同品牌、不
同类型的智能家居设备连接起来,让用户享受更便利、更智能的生活。
1.2 意义
Matter标准的提出,意味着整个智能家居行业将迎来一场变革。
通过统一的标准,不同厂商生产的智能家居设备可以实现互联互通,用户
可以通过统一的APP或者评台进行控制和管理。
这将消除用户面对不同厂商设备时需要安装多个APP的困扰,提升用户体验,降低用户的学习成本。
Matter标准的提出也将推动整个智能家居产业链的发展。
厂商可以更加专注于设备的功能、性能和创新,而不必过度关注互联互通的问题。
标准的统一也将降低生产成本,提高生产效率,促进市场的良性竞争。
二、Matter标准的技术特点
2.1 低功耗
Matter标准采用了低功耗的通信技术,支持蓝牙5.0、Wi-Fi等多种
通信协议,能够实现设备与设备之间的快速互联、低功耗通信。
2.2 安全性
Matter标准采用了高度安全的通信协议和加密算法,保障用户数据的安全性和隐私。
在设备互联的过程中,用户无需担心信息泄露或者被
攻击的风险。
2.3 互操作性
Matter标准将提供统一的设备互联协议和数据模型,将智能家居设备之间的通信标准化和规范化,从而实现设备的互联互通,用户可以通
过统一的APP或评台实现对不同厂商设备的控制和管理。
2.4 灵活性
Matter标准将支持不同类型的智能设备,包括灯光、插座、空调、音响等多种设备,满足人们对智能化生活的多样化需求。
三、Matter标准的推广和应用前景
3.1 推广
CSA联盟将积极推动Matter标准的推广和应用。
CSA联盟已经吸引
了众多知名企业的加入,包括苹果、Google、微软、三星、松下等。
这些企业将共同推动Matter标准在全球范围的推广和普及。
CSA联盟也将开展相关的宣传和推广活动,向用户普及Matter标准
的意义和优势,鼓励用户购物符合Matter标准的智能家居产品。
3.2 应用前景
Matter标准的推广和应用将为智能家居产业带来新的发展机遇。
随着Matter标准的推广和普及,越来越多的厂商将会生产符合Matter标
准的智能家居设备,用户将越来越容易地构建智能家居生态系统。
Matter标准的推广还将带动相关产业链的发展。
智能家居设备的生产、
销售、安装和维护等环节都将受益于Matter标准的推广,整个行业将迎来更快速的发展。
四、结语
Matter标准的提出,标志着智能家居产业迈入了一个新的发展阶段。
通过统一的标准和协议,将不同品牌、不同类型的智能家居设备连接起来,让用户享受更便利、更智能的生活。
Matter标准的推广和应用将带给智能家居产业更多的机遇和挑战,也将为用户带来更好的体验和便利。
希望Matter标准能够尽快得到全球范围内的推广和应用,让更多的用户受益于智能家居技术的进步。