2012北京市西城高考一模试题及答案(理科全套)
- 格式:doc
- 大小:4.28 MB
- 文档页数:65
北京市西城区2012年高三一模试卷参考答案及评分标准英语2012.4 第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)1. C2. B3. A4.C5. A第二节(共10小题;每小题1.5分,共15分)6. B7. C8. A9. A 10. C 11. C 12. B 13. B 14. B 15. A第三节(共5小题;每小题1.5分,共7.5分)每小题1.5分。
如出现拼写错误不计分;出现大小写、单复数错误扣0.5分;如每小题超过一个词不计分。
16. Gorden 17. 075294426 18. double 19. extra 20. August第二部分:知识运用(共两节,45分)第一节单项填空(共15小题;每小题1分,共15分)21. B 22. A 23. D 24. D 25. B 26. A 27. A 28. C 29. D 30. C 31. B 32. C 33. D 34. B 35. A第二节完形填空(共20小题;每小题1.5分,共30分)36. C 37. D 38. B 39. A 40. D 41. A 42. B 43. C 44. A 45. D 46. C 47. C 48. A 49. B 50. B 51. D 52. A 53. D 54. B 55. C第三部分:阅读理解(共两节,40分)第一节(共15小题;每小题2分,共30分)56. A 57. C 58. B 59. D 60. B 61. A 62. D 63. C 64. A 65. B 66. C 67. C 68. D 69. B 70. D第二节(共5小题;每小题2分,共10分)71. D 72. G 73. E 74. A 75. F第四部分:书面表达(共两节,35分)第一节情景作文(20分)一、评分原则:1. 本题总分为20分,按5个档次给分。
2. 评分时,先根据文章的内容和语言质量初步确定其档次,然后以该档次的要求来衡量,确定或调整档次,最后给分。
五、三角函数11.(2012年海淀一模理11)若1tan 2α=,则cos(2)απ2+= . 答案:45-。
5.(2012年西城一模理5)已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( B )A .2B .1C .12 D .147.(2012年丰台一模理7)已知a b <,函数()=sin f x x ,()=cos g x x .命题p :()()0f a f b ⋅<,命题q :函数()g x 在区间(,)a b 内有最值.则命题p 是命题q 成立的( A )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要 4.(2012年门头沟一模理4)在ABC ∆中,已知4A π∠=,3B π∠=,1AB =,则BC 为( A )11C.311.(2012年东城11校联考理11)在ABC ∆中,角,,A B C 所对的边分别为c b a ,,,若sin A C =, 30=B ,2=b ,则边c = .答案:2。
11.(2012年房山一模11)已知函数()()ϕω+=x x f sin (ω>0, πϕ<<0)的图象如图所示,则ω=_ _,ϕ=_ _. 答案:58,910π。
6.(2012年密云一模理6) 已知函数sin(),(0,||)2y x πωϕωϕ=+><的简图如下图, 则ωϕ的值为( B ) A. 6π B. 6π C. 3π D. 3π15.(2012年海淀一模理15)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B ,C 成等差数列.(Ⅰ)若b =,3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.解:(Ⅰ)因为,,A B C 成等差数列, 所以2B A C =+. 因为A B C ++=π, 所以3B π=.因为b =3a =,2222cos b a c ac B =+-,所以2340c c --=.所以4c =或1c =-(舍去).(Ⅱ)因为23A C +=π, 所以2sin sin()3t A A π=-1sin sin )2A A A =+11cos22()22A A -=+ 11sin(2)426A π=+-. … 因为203A π<<,所以72666A πππ-<-<.所以当262A ππ-=,即3A π=时,t 有最大值34.15.(2012年西城一模理15)在△ABC 中,已知sin()sin sin()A B B A B +=+-.(Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅,求||AB AC +.解:(Ⅰ)原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=.因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . 因为(0,π)A ∈, 所以 π3A =.(Ⅱ)由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=, 所以 22||||89AB AC +=.因为 222||||||2129AB AC AB AC AB AC +=++⋅=, 所以 ||129AB AC +=15.(2012年东城一模理15)已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度,再向上平移1个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值. 解:(Ⅰ)因为22()(sin 2cos2)2sin 2f x x x x =+-sin 4cos 4x x =+)4x π=+ ,所以函数()f x 的最小正周期为2π.(Ⅱ)依题意,()y g x ==[4()8x π-4π+]1+)14x π=-+.因为04x π≤≤,所以34444x πππ-≤-≤.当442x ππ-=,即316x π=时,()g x 1; 当444x ππ-=-,即0x =时, ()g x 取最小值0.15. (2012年丰台一模理15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=.(Ⅰ)判断△ABC 的形状;(Ⅱ)若121()cos 2cos 232f x x x =-+,求()f A 的取值范围.解:(Ⅰ)(法1)因为 sin cos cos a B b C c B -=,由正弦定理可得 sin sin sin cos sin cos A B B C C B -=. 即sin sin sin cos cos sin A B C B C B =+, ……2分所以 sin()sin sin C B A B +=. …4分 因为在△ABC 中,A B C ++=π,所以 sin sin sin A A B = 又sin 0A ≠, ……5分 所以 sin 1B =,2B π=. 所以 △ABC 为2B π=的直角三角形.……6分 (法2)因为 sin cos cos a B b C c B -=,由余弦定理可得 222222sin 22a b c a c b a B b c ab ac+-+-=⋅+⋅, …4分即sin a B a =.因为0a ≠, 所以sin 1B =. ……5分 所以在△ABC 中,2B π=. 所以 △ABC 为2B π=的直角三角形. ……6分 (Ⅱ)因为121()cos 2cos 232f x x x =-+22cos cos 3x x =- …8分=211(cos )39x --. ………10分所以 211()(cos )39f A A =--.因为△ABC 是2B π=的直角三角形,所以 02A π<<,且0cos 1A <<, …11分所以 当1cos 3A =时,()f A 有最小值是19-. …12分所以()f A 的取值范围是11[,)93-. …13分15.(2012年朝阳一模理15)已知函数π()cos()4f x x =-.(Ⅰ)若()10f α=,求si n 2α的值;(II )设()()2g x f x f x π⎛⎫=⋅+ ⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.解:(Ⅰ)因为π()cos()410f αα=-=,所以sin )210αα+=, 所以 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 所以 24sin 225α=. ……6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=(cos sin )sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . …10分 当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 所以,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……13分15.(2012年东城11校联考理15)已知函数x x x x f ωωωcos sin 3cos )(2⋅-= )0(>ω的最小正周期是π,(1)求函数)(x f 的单调递增区间和对称中心;(2)若A 为锐角ABC ∆的内角,求)(A f 的取值范围.解:(1)x x x f ωω2sin 2322cos 1)(-+=21)32cos(++=πωx πωπ==22T 1=ω 21)32cos()(++=πx x fππππππππk x k Zk k x k +-≤≤+-∈≤+≤+-632,2322函数)(x f 的单调增区间为⎥⎦⎤⎢⎣⎡+-+-ππππk k 6,32,Z k ∈Z k k k x k x ∈+∴+=+=+),21,212(212,232πππππππ对称中心为令 ………7分(2)所以)(A f 的取值范围为 )1,21⎢⎣⎡- ………13分15.(2012年石景山一模理15)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a cos cos )2(=-.(Ⅰ)求角B 的大小;(Ⅱ)若cos 22A a ==,求AB C ∆的面积.解:(Ⅰ)因为C b B c a cos cos )2(=-,由正弦定理,得C B B C A cos sin cos )sin sin 2(=-. …2分∴ A C B C B B C B A sin )sin(cos sin cos sin cos sin 2=+=+=.…4分 ∵ 0A π<<, ∴0sin ≠A ,121)32cos(2121)32cos(13432320<++≤-<+≤-<+<<<ππππππA A A A∴ 21cos =B . 又∵ π<<B 0 , ∴ 3π=B . ……6分(Ⅱ)由正弦定理BbA a sin sin =,得b = …8分由 cos A =可得4A π=,由3π=B ,可得sin C =, …11分∴113sin 22242s ab C +==⨯=. ……13分15.(2012年房山一模15)已知ABC ∆的三个内角A ,B ,C 所对的边分别是a ,b ,c ,tan tan tan A B A B +,,2=a c (Ⅰ)求tan()A B +的值; (Ⅱ)求ABC ∆的面积.解:(I )解tan tan tan A B A B +tan tan )A B =-tan tantan()1tan tan A BA B A B+∴+=-=………5分(II )由(I )知 60A B +=︒,120C ∴=︒ ……7分C ab b a c cos 2222-+=∴⎪⎭⎫⎝⎛-⨯⨯-+=21224192b b ∴3=b ……10分 ∴233221sin 21⨯⨯⨯==∆C ab S ABC 233=…13分15.(2012年密云一模理15) 已知函数()22sin sin()2f x x x x π=+⋅+.(I)求()f x 的最小正周期 ,最大值以及取得最大值时x 的集合.(II) 若A 是锐角三角形ABC ∆的内角,()05,7,f A b a ===,求ABC ∆的面积.解:(I):()22sin .sin(22sin .cos 2f x x x x x x x π=+++)32sin 2=2sin(2x x x π++ ……4分().f x π∴的最小正周期是 ……5分=+2,.322k k Z x πππ∈+令:+,.12x k k Z ππ=∈解得+,}.12()2,x k k Z f x x ππ∴=∈的最大值是取得最大值时的集合是{x| ……7分(II)()sin(2)032f A A πππ=+=∴,0<A<A=3……9分ABC ∆在中,2222.cos a b c bc A =+-,25240c c --=,解得83c c ==-或(舍) ……11分1.sin 2ABC S bc A ∆∴==……13分15.(2012年门头沟一模理15)已知:函数2()sincos222xxxf x ωωω=+(0)ω>的周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的单调递增区间.解:(Ⅰ)1()cos )sin 2f x x x ωω=-+ …………4分()sin()3f x x πω=-……… 6分 因为函数的周期为π所以2ω= ………7分(Ⅱ)由(Ⅰ)知 ()s i n (2)32f x x π=-+ ………8分当 222()232k x k k Z πππππ-≤-≤+∈ 时函数单增……………10分5()1212k x k k Z ππππ-≤≤+∈ …………12分所以函数()f x 的单增区间为5[,]1212k k ππππ-+,其中k Z ∈ ……13分。
北京市西城区2012年高三一模试卷理科综合能力测试(化学)2012年4月可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Cl 35.56.下列说法不正确...的是A.二氧化硅可制玻璃、单质硅、光导纤维B.食盐、糖、醋可作调味剂,不可作食品防腐剂C.金属腐蚀的本质是金属原子失电子被氧化的过程D.大量服用阿司匹林会出现水杨酸中毒症,可静脉滴注NaHCO3溶液7.雷雨天闪电时空气中有臭氧(O3)生成。
下列说法正确的是A.O2和O3互为同位素 B.O2转化为O3为化学变化C.相同物质的量的O2和O3的体积相同 D.相同质量的O2和O3含有相同的分子数8.下列说法正确的是A.蔗糖水解只生成葡萄糖 B.含有碳碳双键的有机物均存在顺反异构现象C.向混有苯酚的苯中加入金属Na有无色气体生成D.CH2=CHCOONa在一定条件下缩聚可得到高分子化合物9.现有5种短周期元素X、Y、Z、Q、W,原子序数依次增大,在周期表中X原子半径最小;X 和W同主族;Y元素原子核外电子总数是其次外层电子数的3倍;Q元素是地壳中含量最高的元素。
下列说法不正确...的是A.原子半径:Y<Q<W B.ZX3可使紫色石蕊溶液变蓝C.X、Z、Q 3种元素可组成离子化合物或共价化合物D.X2Q2、Y2X6 2种分子中含有的电子数、化学键种类都相同10.下列离子方程式书写正确的是A.将Na2O2加入H2O中:Na2O2+H2O=2Na++2OH-+O2↑B.向Al2(SO4)3溶液中加入过量的氨水:Al3++4NH3·H2O=AlO2-+4NH4++2H2OC.向Ba(OH)2溶液中滴加NaHSO4溶液至中性:Ba2++OH-+H++SO42-=BaSO4↓+H2OD.向海带灰浸出液中加入硫酸、双氧水:2I-+2H++H2O2=I2+2H2O11.下列实验“操作和现象”与“结论”对应关系正确的是12.用CO 合成甲醇(CH 3OH )的化学方程式为CO(g)+2H 2(g)CH 3OH(g) ΔH<0,按照相同的物质的量投料,测得CO 在不同温度下的平衡转化率与压强的关系如右下图所示。
北京市西城区2012年高三一模试卷数 学(理科) 2012.4第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1) (B )(0,1](C )(,0](1,)-∞+∞ (D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A)2 (B)2 (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c << (B )a b c << (C )c b a << (D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1] (B )(0,2)(C )[1,2)(D)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120(C )2997(D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),, [1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M.若OC =1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()4ρθ+=_____.ABCOMN13. 已知函数12,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B分别在射线(0)y x x =≥和(0)y x =≥上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是_____.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅,求||AB AC +.16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)axaf x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间. 19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为3,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由. 20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数 列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=-,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1.C;2. D;3. A;4.A;5. B;6. D;7. A;8. D .二、填空题:本大题共6小题,每小题5分,共30分.;11.1;9.54;10.16012 13.1-和0,(0,4]; 14.2,2(1. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . ………………5分因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC +=. ………………10分因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分所以 ||129AB AC += ………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==. ………………4分(Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分334341111(5)2C ()()2224P X -===, ………………10分335251115(6)2C ()()22216P X -==⋅=, ………………11分336361115(7)2C ()()22216P X -==⋅=. ………………12分比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以平面FBC//平面EAD . ………………7分又⊂FC 平面FBC , 所以FC// 平面EAD . ………………8分(Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以(3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x '=⋅+-. ………………2分由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分(Ⅱ)解:2(1)[(1)1]()e axx a x f x a x++-'=,0x ≠. ………………6分① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞. (8)分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………11分④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a-===-, 得 23b a =. ………………2分依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C的方程是22194x y +=. ………………5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立, 消去x得22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补, 所以0=+PB PA k k . ………………9分设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. ………………12分将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ………………13分由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分(Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==. (Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤.令()n n B T A =,i p q b a a =-,其中p q a a ≥.因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =. 下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列. 不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理) ① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c--,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,T A a a b b -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b--,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a , (()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.………………13分薄雾浓云愁永昼,瑞脑消金兽。
北京市西城区2012届高三4月第一次模拟考试试题理科综合能力测试本试卷分为选择题和非选择题两个部分,选择题非选择题,共 300分。
考试时长 150分钟。
考生务必将答案填写在答题卡上和答题纸的相应区域内,在试卷上作答无效。
考试结束后,将本试卷及答题卡和答题纸一并交回。
可能用到的相对原子质量: HI C 12 O 16 Na 23 Cl 35. 5选择题(共20题每小题6分共120 分)在每小题列出的四个选项中,选出符合题目要求的一项。
1.下图为某种植物根尖细胞分裂过程中染色质与染色体规律性变化的模式图。
下列相关判B. 低温处理导致④T ⑤过程中染色单体不分开使染色体数目加倍C. ⑤T ⑥过程处于有丝分裂后期,细胞中的染色体组数增加一倍D. ⑥T ⑦过程中 DNA 解旋酶可使染色体解旋变为细丝状的染色质2 .人被狗咬伤后,需要立即到医院处理伤口,注射狂犬疫苗并在伤口周围注射抗血清。
下 列有关叙述不正确的是A. 注射抗血清可使体内迅速产生抗原一抗体反应B. 注射疫苗的作用是刺激体内记忆细胞增殖分化C. 病毒的清除需非特异性免疫与特异性免疫配合D. 免疫记忆的形成依赖抗原刺激和淋巴因子作用3 .基因转录出的初始 RNA ,经不同方式的剪切可被加工成翻译不同蛋白质的mRNA 。
某些剪切过程不需要蛋白质性质的酶参与。
大多数真核细胞 mRNA 只在个体发育的某一阶段合成,不同的 mRNA 合成后以不同的速度被降解。
下列判断不正确的是A. 某些初始RNA 的剪切加工可由 RNA 催化完成B. —个基因可能参与控制生物体的多种性状C. mRNA 的产生与降解与个体发育阶段有关D. 初始RNA 的剪切、加工在核糖体内完成4 .组氨酸缺陷型沙门氏菌是由野生菌种突变形成的,自身不能合成组氨酸。
将其接种在缺 乏组氨酸的平板培养基上进行培养,有极少量菌落形成。
2-氨基芴是一种致突变剂,将沾有2-氨基芴的滤纸片放到上述平板培养基中,再接种组氨酸缺陷型沙门氏菌进行培 养,会有较多菌落出现。
理科综合能力测试试卷 第1页(共42页)理科综合能力测试试卷 第2页(共42页)绝密★启用前 2012普通高等学校招生全国统一考试(北京卷)理科综合能力测试本试卷共14页,300分。
考试时长150分钟。
考试生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
以下数据可供解题时参考:可能用到的相对原子质量:H —1 C —12 O —16 Na —23 Cl —35.5 Br —80第一部分(选择题 共120分)本部分共20小题,每小题6分,共120分,在每小题列出的四个选项中,选出最符合题目要求的一项。
1. 细胞中不能合成ATP 的部位是( )A. 线粒体的内膜B. 叶绿体中进行光反应的膜结构C. 内质网的膜D. 蓝藻(蓝细菌)中进行光反应的膜结构 2. 从生命活动的角度理解,人体的结构层次为( )A. 原子、分子、细胞器、细胞B. 细胞、组织、器官、系统C. 元素、无机物、有机物、细胞D. 个体、种群、群落、生态系统3. 金合欢蚁生活在金合欢树上,以金合欢树的花蜜等为食,同时也保护金合欢树免受其他植食性动物的伤害。
如果去除金合欢蚁,则金合欢树的生长减缓且存活率降低。
由此不能得出的推论是( )A. 金合欢蚁从金合欢树获得能量B. 金合欢蚁为自己驱逐竞争者C. 金合欢蚁为金合欢树驱逐竞争者D. 金合欢蚁和金合欢树共同(协同)进化4. 下图所示实验能够说明 ( )A. 病毒抗原诱导B 细胞分化的作用B. 浆细胞产生抗体的作用C. 病毒刺激淋巴细胞增殖的作用D. 效应T 淋巴细胞的作用5. 高中生物学实验中,在接种时不进行严格无菌操作对实验结果影响最大的一项是( )A. 将少许干酵母加入到新鲜的葡萄汁中B. 将毛霉菌液接种在切成小块的鲜豆腐上C. 将转基因植物叶片接种到无菌培养基上D. 将土壤浸出液涂布在无菌的选择培养基上 6. ( )ABCD7. 下列解释实验现象的反应方程式正确的是( )A. 切开的金属Na 暴露在空气中,光亮表面逐渐变暗2222Na+O Na O B. 向AgCl 悬浊液中滴加2Na S 溶液,白色沉淀变成黑色 22 2AgCl+S Ag S Cl+2--↓C. 22Na O 在潮湿的空气中放置一段时间,变成白色黏稠物 222232 2Na O +2CO 2Na CO+O D. 向3NaHCO 溶液中加入过量的澄清石灰水,出现白色沉淀 2+23332 2HCO +Ca +2OH CaC O +CO +2H -----------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科综合能力测试试卷 第3页(共42页)理科综合能力测试试卷 第4页(共42页)8. 下列实验中,所选装置不合理的是 ( ) A. 分离23Na CO 溶液和325CH COOC H ,选④B. 用4CCl 提取碘水中的碘,选③C. 用2FeCl 溶液吸收2Cl ,选⑤D. 粗盐提纯,选①和②9. 已知33As ,35Br 位于同一周期。
2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U=R,集合A={x|1x≥1},则∁U A()A.(0, 1)B.(0, 1]C.(−∞, 0]∪(1, +∞)D.(−∞, 0)∪[1, +∞)2. 执行如图所示的程序框图,若输入x=2,则输出y的值为()A.2B.5C.11D.233. 若实数x,y满足条件{x+y≥0x−y+3≥00≤x≤3,则z=2x−y的最大值为()A.9B.3C.0D.−34. 已知正六棱柱的底面边长和侧棱长均为2cm,其三视图中的俯视图如图所示,则其左视图的面积是()A.4√3cm2B.2√3cm2C.8cm2D.4cm25. 已知函数f(x)=sin4ωx−cos4ωx的最小正周期是π,那么正数ω=()A.2B.1C.12D.146. 若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<cB.a<b<cC.c<b<aD.b<c<a 7. 设等比数列{a n}的各项均为正数,公比为q,前n项和为S n.若对∀n∈N∗,有S2n<3S n,则q的取值范围是()A.(0, 1]B.(0, 2)C.[1, 2)D.(0,√2)8. 已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中a k∈{0, 1, 2}(k=0, 1, 2, 3),且a3≠0.则A中所有元素之和等于()A.3240B.3120C.2997D.2889二、填空题共6小题,每小题5分,共30分.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.(x−2)6的展开式中x3的系数是________.(用数字作答)如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=√3,OM=1,则MN=________.在极坐标系中,极点到直线l:ρsin(θ+π4)=√2的距离是________.已知函数f(x)={x12,0≤x≤cx2+x,−2≤x<0其中c>0.那么f(x)的零点是________;若f(x)的值域是[−14,2],则c的取值范围是________.在直角坐标系xOy 中,动点A ,B 分别在射线y =√33x(x ≥0)和y =−√3x(x ≥0)上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为________;△OAB 周长的最小值是________. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.在△ABC 中,已知sin (A +B)=sin B +sin (A −B). (1)求角A ;(2)若|BC →|=7,AB →⋅AC →=20,求|AB →+AC →|.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBF =60∘,且FA =FC .(1)求证:AC ⊥平面BDEF ;(2)求证:FC // 平面EAD ;(3)求二面角A −FC −B 的余弦值.已知函数f(x)=e ax ⋅(ax +a +1),其中a ≥−1.(1)当a =1时,求曲线y =f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√53,定点M(2, 0),椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分∠APB ?若存在,求出点P 的坐标;若不存在,说明理由.对于数列A n :a 1,a 2,…,a n (a i ∈N, i =1, 2,…,n),定义“T 变换”:T 将数列A n 变换成数列B n :b 1,b 2,…,b n ,其中b i =|a i −a i+1|(i =1, 2,…,n −1),且b n =|a n −a 1|,这种“T 变换”记作B n =T(A n ).继续对数列B n 进行“T 变换”,得到数列C n ,…,依此类推,当得到的数列各项均为0时变换结束.(1)试问A 3:4,2,8和A 4:1,4,2,9经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(2)求A 3:a 1,a 2,a 3经过有限次“T 变换”后能够结束的充要条件;(3)证明:A 4:a 1,a 2,a 3,a 4一定能经过有限次“T 变换”后结束.参考答案与试题解析2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】补集及其运算【解析】求出集合A的不等式的解集,然后求出集合A在R上的补集即可.【解答】解:∵全集U=R.集合A={x|1x≥1}={x|0<x≤1},∴∁U A={x|x≤0, 或x>1}.故选C.2.【答案】D【考点】循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:x y是否继续循环循环前25是第一圈511是第二圈1123否故输出y的值为23.故选D.3.【答案】A【考点】简单线性规划【解析】画出不等式表示的平面区域,z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,根据图形可得结论.【解答】解:画出不等式表示的平面区域z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,由{x=3x+y=0可得交点坐标为(3, −3),根据图形可知在点(3, −3)处,z=2x−y取得最大值,最大值为9故选A.4.【答案】A【考点】简单空间图形的三视图【解析】正六棱柱的底面边长和侧棱长均为2cm,故左视图是长方形,长为2√3,宽为2,由此能求出左视图的面积.【解答】解:∵正六棱柱的底面边长和侧棱长均为2cm,∴左视图是长方形,长为√4+4−2×4×cos120∘=2√3,宽为2,∴左视图的面积是2√3×2=4√3(cm2),故选A.5.【答案】B【考点】二倍角的三角函数【解析】利用平方差公式化简函数y=sin4ωx−cos4ωx,再利用二倍角公式化为一个角的一个三角函数的形式,根据周期求出ω.【解答】y=sin4ωx−cos4ωx=sin2ωx−cos2ωx=−cos2ωx因为T=π,所以ω=16.【答案】D【考点】不等式比较两数大小【解析】根据a=lg3lg2>1,b=lg2lg3<1,c=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=a,从而得出结论.【解答】解:∵a=log23=lg3lg2>1,b=log32=lg2lg3<1,c=log46=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=lg3lg2,故有b<c<a,故选D.7.【答案】A【考点】数列的求和【解析】当q=1时,S2n<3S n成立容易检验,当q≠1时,由S2n<3S n恒成立可得a1(1−q2n)1−q <3a1(1−q n)1−q,讨论整理可求q的范围.【解答】解:当q=1时,S2n<3S n成立当q≠1时,由S2n<3S n恒成立∴a1(1−q2n)1−q <3a1(1−q n)1−q∵q>1,显然不恒成立,则q2n−3q n+2<0,解得q n<1(q n>2舍去),∵等比数列{a n}的各项均为正数,∴q>0,∴0<q<1综上可得0<q≤1故选A8.【答案】D【考点】集合的确定性、互异性、无序性数列的求和【解析】由题意可知a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,利用数列求和即可求得A中所有元素之和.【解答】由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,由分步计数原理可得共有3×3×3×2种方法,∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种方法,即集合A中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A中含有a1项的所有数的和为(3×0+3×1+3×2)×18;集合A中含有a2项的所有数的和为(32×0+32×1+32×2)×18;集合A中含有a3项的所有数的和为(33×1+33×2)×27;由分类计数原理得集合A中所有元素之和:S=(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18(3+9+27)+81×27=702+2187=2889.二、填空题共6小题,每小题5分,共30分.【答案】54【考点】分布和频率分布表频率分布直方图【解析】根据从左到右的5个小矩形的面积之比为1:3:7:6:3及它们的面积之和为1,做出成绩在[16, 18]的频率,从而得出成绩在[16, 18]的学生人数.【解答】因从左到右的5个小矩形的面积之比为1:3:7:6:3,且它们的面积之和为1,∴最后两个小矩形的面积和为6+320×1=920,即成绩在[16, 18]的频率为920,由频率分布直方图知,成绩在[16, 18]的人数为120×920=54(人)【答案】−160【考点】二项式定理及相关概念【解析】根据题意,由二项式定理可得(x−2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=−160x3,即可得答案.【解答】根据题意,(x−2)6的展开式的通项为T r+1=C6r x6−r(−2)r=(−1)r⋅2r⋅C6r x6−r,令6−r=3可得r=3,此时T4=(−1)3⋅23⋅C63x3=−160x3,即x3的系数是−160;【答案】1【考点】与圆有关的比例线段【解析】根据题设条件,先由勾股定理求出BM,再由相交弦定理求MN.【解答】解:∵AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.OC=√3,OM=1,∴OB=√3,BM=√3+1=2,设MN=x,∵CM⋅AM=BM⋅MN,∴(√3+1)(√3−1)=2x,∴x=1,即MN=1.故答案为:1.【答案】√2【考点】圆的极坐标方程【解析】利用公式x=ρcosθ,y=ρsinθ,得出直线直角坐标方程,再利用点到直线的距离公式求解即可.【解答】解:直线方程ρsin(θ+π4)=√2,即为ρ(√22cosθ+√22sinθ)=√2,化为普通方程为x+y−2=0,极点的直角坐标为(0, 0),根据点到直线的距离公式求得d=√2=√2故答案为:√2;【答案】−1和0,0<c≤4【考点】函数的值域及其求法函数的零点【解析】分x为正数和负数两种情况讨论,分别解方程即可得到么f(x)的零点.根据二次函数的图象与性质,求出当x∈[−2, 0)时,函数f(x)的值域恰好是[−14,2],所以当0≤x≤c时,f(x)=x12的最大值不超过2,由此建立不等式,可解出实数c的取值范围.【解答】当x≥0时,令x 12=0,得x=0;当x<0时,令x2+x=0,得x=−1(舍零)∴f(x)的零点是−1和0∵函数y=x2+x在区间[−2, −12)上是减函数,在区间(−12, 0)上是增函数∴当x∈[−2, 0)时,函数f(x)最小值为f(−12)=−14,最大值是f(−2)=2∵当0≤x≤c时,f(x)=x12是增函数且值域为[0, √c]∴当f(x)的值域是[−14,2],√c≤2,即0<c≤4【答案】√32,2(1+√2)【考点】基本不等式在最值问题中的应用直线的点斜式方程【解析】根据题意,OA、OB的斜率之积为−1,得OA⊥OB.设A(x1, √33x1),B(x2, −√3x2),算出|OA|=2√33x1,|OB|=2x2,结合三角形面积为1列式,化简即得x1x2=√32.再由基本不等式算出△OAB周长|OA|+|OB|+|AB|≥2+2√2,当且仅当2√33x1=2x2=√2时,△OAB周长取最小值2(1+√2).【解答】解:∵y =√33x的斜率k1=√33,y=−√3x的斜率k2=−√3∴k1⋅k2=−1,可得OA⊥OB设A(x1, √33x 1),B(x2, −√3x2)∴|OA|=√x12+13x12=2√33x1,|OB|=√x22+3x22=2x2,可得△OAB的面积为S=12|OA|×|OB|=12×2√33x1×2x2=1解之,得x1x2=√32∵|AB|2=|OA|2+|OB|2=43x12+4x22∴|AB|=√(43x12+4x22)≥×2√33x12=√8√33x12=√8√33×√32=2又∵|OA|+|OB|=2√33x1+2x2≥2√2√33x1×2x2=2√4√33x1x2=2√4√33×√32=2√2∴△OAB周长|OA|+|OB|+|AB|≥2+2√2=2(1+√2)当且仅当2√33x1=2x2=√2,即x1=√62,x2=√22时,△OAB周长取最小值2(1+√2)故答案为:√32,2(1+√2)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】解:(1)原式可化为:sin B=sin(A+B)−sin(A−B)=sin A cos B+cos A sin B−sin A cos B+cos A sin B=2cos A sin B,…∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【考点】求两角和与差的正弦 向量的模平面向量数量积的性质及其运算律【解析】(1)将已知等式移项变形并利用两角和与差的正弦函数公式化简,整理后根据sin B 不为0,得出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(2)利用余弦定理列出关系式|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,将已知条件利用平面向量的数量积运算法则化简后代入求出|AB →|2+|AC →|2的值,把所求式子平方并利用完全平方公式展开,将各自的值代入开方即可求出值.【解答】 解:(1)原式可化为:sin B =sin (A +B)−sin (A −B)=sin A cos B +cos A sin B −sin A cos B +cos A sin B =2cos A sin B ,… ∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【答案】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,…乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,… P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:【考点】离散型随机变量及其分布列 互斥事件的概率加法公式 相互独立事件的概率乘法公式【解析】(1)先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,甲以4比1获胜,根据独立重复试验公式公式,列出算式,得到结果.(2)记“乙获胜且比赛局数多于5局”为事件B .B 包括乙以4:2获胜和乙以4:3获胜,根据独立重复试验公式列出算式,得到结果.(3)比赛结束时比赛的局数为X ,则X 的可能取值为4,5,6,7,根据独立重复试验公式计算出各自的概率即可得到分布列. 【解答】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,… 乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,…P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以 O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0).设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0). 由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【考点】直线与平面垂直的判定 直线与平面平行的判定 用空间向量求平面间的夹角【解析】(1)设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点.由FA =FC ,知AC ⊥FO .由此能够证明AC ⊥平面BDEF .(2)因为四边形ABCD 与BDEF 均为菱形,所以AD // BC ,DE // BF ,平面FBC // 平面EAD .由此能够证明FC // 平面EAD .(3)因为四边形BDEF 为菱形,且∠DBF =60∘,所以△DBF 为等边三角形.因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘,则BD =2,所以 CF →=(√3,0,√3),CB →=(√3,1,0).求得平面BFC 的法向量为n →=(1,−√3,−1),平面AFC 的法向量为v →=(0, 1, 0).由此能求出二面角A −FC −B 的余弦值. 【解答】(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点, 所以FO ⊥BD , 故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0). 设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0).由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【答案】解:(1)当a =1时,f(x)=e x ⋅(1x+2),f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的单调性【解析】(1)先求导数f ′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x =0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(2)对字母a 进行分类讨论,再令f ′(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间. 【解答】解:(1)当a =1时,f(x)=e x ⋅(1x +2), f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【答案】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得 ba =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.… 所以 y 1+y 2=−16m 4m +9,y 1y 2=−204m +9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x 2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得 2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m 2+9,y 1y 2=−204m 2+9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92.综上,存在定点P(92,0),使PM 平分∠APB .…【考点】直线与椭圆结合的最值问题 椭圆的标准方程 【解析】(1)利用离心率为√53,可得b a=23,由椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2,可得△MB 1B 2是等腰直角三角形,由此可求椭圆C 的方程;(2)设线AB 的方程与椭圆C 的方程联立,利用韦达定理,结合PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,建立方程,即可求得结论.【解答】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得b a =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.…所以 y 1+y 2=−16m 4m 2+9,y 1y 2=−204m 2+9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my 2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m +9,y 1y 2=−204m +9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92. 综上,存在定点P(92,0),使PM 平分∠APB .…【答案】(1)解:数列A 3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. …数列A 4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.… (2)解:A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.… 若a 1=a 2=a 3,则经过一次“T 变换”就得到数列0,0,0,从而结束. …当数列A 3经过有限次“T 变换”后能够结束时,先证命题“若数列T(A 3)为常数列,则A 3为常数列”. 当a 1≥a 2≥a 3时,数列T(A 3):a 1−a 2,a 2−a 3,a 1−a 3.由数列T(A 3)为常数列得a 1−a 2=a 2−a 3=a 1−a 3,解得a 1=a 2=a 3,从而数列A 3也为常数列. 其它情形同理,得证.在数列A 3经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A 3也为常数列. …所以,数列A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.(3)证明:先证明引理:“数列T(A n )的最大项一定不大于数列A n 的最大项,其中n ≥3”. 证明:记数列A n 中最大项为max (A n ),则0≤a i ≤max (A n ). 令B n =T(A n ),b i =a p −a q ,其中a p ≥a q . 因为a q ≥0,所以b i ≤a p ≤max (A n ),故max (B n )≤max (A n ),证毕. … 现将数列A 4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max (B 4)≤max (A 4)−1.第二类是含有为0的项,且与最大项相邻,此时max (B 4)=max (A 4). 下面证明第二类数列A 4经过有限次“T 变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T(T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…【考点】数列的应用【解析】(1)根据新定义,可得数列A3:4,2,8不能结束,数列A4:1,4,2,9能结束,并可写出各数列;(2)A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3,先证明a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束,再证明命题“若数列T(A3)为常数列,则A3为常数列”,即可得解;(3)先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”,再分类讨论:第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.【解答】(1)解:数列A3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形.…数列A4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.…(2)解:A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.…若a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束.…当数列A3经过有限次“T变换”后能够结束时,先证命题“若数列T(A3)为常数列,则A3为常数列”.当a1≥a2≥a3时,数列T(A3):a1−a2,a2−a3,a1−a3.由数列T(A3)为常数列得a1−a2=a2−a3=a1−a3,解得a1=a2=a3,从而数列A3也为常数列.其它情形同理,得证.在数列A3经过有限次“T变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A3也为常数列.…所以,数列A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.(3)证明:先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”.证明:记数列A n中最大项为max(A n),则0≤a i≤max(A n).令B n=T(A n),b i=a p−a q,其中a p≥a q.因为a q≥0,所以b i≤a p≤max(A n),故max(B n)≤max(A n),证毕.…现将数列A4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).下面证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T (T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…。
高中化学学习材料唐玲出品北京市西城区2012年高三一模试卷理科综合能力测试(化学)2012年4月可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Cl 35.56.下列说法不正确...的是A.二氧化硅可制玻璃、单质硅、光导纤维B.食盐、糖、醋可作调味剂,不可作食品防腐剂C.金属腐蚀的本质是金属原子失电子被氧化的过程D.大量服用阿司匹林会出现水杨酸中毒症,可静脉滴注NaHCO3溶液7.雷雨天闪电时空气中有臭氧(O3)生成。
下列说法正确的是A.O2和O3互为同位素 B.O2转化为O3为化学变化C.相同物质的量的O2和O3的体积相同 D.相同质量的O2和O3含有相同的分子数8.下列说法正确的是A.蔗糖水解只生成葡萄糖 B.含有碳碳双键的有机物均存在顺反异构现象C.向混有苯酚的苯中加入金属Na有无色气体生成D.CH2=CHCOONa在一定条件下缩聚可得到高分子化合物9.现有5种短周期元素X、Y、Z、Q、W,原子序数依次增大,在周期表中X原子半径最小;X 和W同主族;Y元素原子核外电子总数是其次外层电子数的3倍;Q元素是地壳中含量最高的元素。
下列说法不正确...的是A.原子半径:Y<Q<W B.ZX3可使紫色石蕊溶液变蓝C.X、Z、Q 3种元素可组成离子化合物或共价化合物D.X2Q2、Y2X6 2种分子中含有的电子数、化学键种类都相同10.下列离子方程式书写正确的是A.将Na2O2加入H2O中:Na2O2+H2O=2Na++2OH-+O2↑B.向Al2(SO4)3溶液中加入过量的氨水:Al3++4NH3·H2O=AlO2-+4NH4++2H2OC.向Ba(OH)2溶液中滴加NaHSO4溶液至中性:Ba2++OH-+H++SO42-=BaSO4↓+H2OD.向海带灰浸出液中加入硫酸、双氧水:2I-+2H++H2O2=I2+2H2O11.下列实验“操作和现象”与“结论”对应关系正确的是操作和现象结论A 处理锅炉水垢中的CaSO4时,依次加入饱和溶解度:Na 2CO 3溶液和盐酸,水垢溶解 S (CaCO 3)<S (CaSO 4)B用石墨作电极电解MgSO 4溶液,某电极附近有白色沉淀生成该电极为阳极C 向FeCl 3和CuCl 2混合溶液中加入铁粉,有红色固体析出氧化性:Cu 2+>Fe 3+D 向某溶液中先滴加硝酸酸化,再滴加BaCl 2溶液,有白色沉淀生成该溶液中一定含有Ag +12.用CO 合成甲醇(CH 3OH )的化学方程式为CO(g)+2H 2(g)CH 3OH(g) ΔH<0,按照相同的物质的量投料,测得CO 在不同温度下的平衡转化率与压强的关系如右下图所示。
俯视图正视图十八、空间几何体 第一部分 三视图4.(2012年西城一模理4)已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( A ) A .2 B .2 C .28cm D .24cm5.(2012年丰台一模理5)若正四棱锥的正视图和俯视图如右图所示,则该几何体的表面积是( B )A.4B.4+4+10.(2012年朝阳一模理10) 已知某几何体的三视图如图所示,则该几何体的体积为 . 答案:32正视图侧视图6.(2012年东城11校联考理6)一个几何体的三视图如图所示,则此几何体的体积是( B ) A .112 B.80 C.72 D.647.(2012年石景山一模理7)某几何体的三视图如图所示,则它的体积是( A )A.83+B.83+C.83+D.323俯视图 侧视图10.(2012年房山一模10)一个几何体的三视图如图所示,则这个几何体的体积为 . 答案:32。
11.(2012年密云一模理11)已知某几何体的三视图如右图所示,则该几何体的体积 为 . 答案:32。
第第11题图 第12题图C3.(2012年门头沟一模理3)己知某几何体的三视图如右图所示,则其体积为( B ) A.8 B.4 C.主视图 左视图俯视图第二部分 立体几何4.(2012年朝阳一模理4)已知平面α,直线,,a b l ,且,a b αα⊂⊂,则“l a ⊥且l b ⊥”是“l α⊥”的( B )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2012年东城11校联考理3)已知直线m ,n 与平面α,β,下列命题正确的是 ( D )A .βα//,//n m 且βα//,则n m //B .βα//,n m ⊥且β⊥α,则n m ⊥C .,βm n m =⊥α且βα⊥,则α⊥n D .βα⊥⊥n m ,且βα⊥,则n m ⊥4.(2012年石景山一模理4)设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是( D )A.αα//,//,//n m n m 则若B.βαγβγα//,,则若⊥⊥C.n m n m //,//,//则若ααD.n m n m ⊥⊥则若,//,αα4.(2012年东城11校联考理4)甲从正四面体的四个顶点中任意选择两个顶点连成直线, 乙从该正四面体四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( A ) A.61 B. 92 C. 185 D. 318.(2012年海淀一模理8)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45°的点P 的个数为( B )A .0B .3C .4D .616.(2012年海淀一模理16)在四棱锥P ABCD -中,AB //CD ,AB AD ^,4,2AB AD CD ===,PA ^平面ABCD ,4PA =. (Ⅰ)设平面PAB平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ;(Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC所成角的正弦值为3,求PQPB的值.A'B'C'D'ABCDPDCBA证明:(Ⅰ) 因为AB //CD ,CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD //平面PAB . 因为CD ⊂平面PCD ,平面PAB平面PCD m =,所以CD //m .(Ⅱ):因为AP ^平面ABCD ,AB AD ^,所以以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(4,0,0)B ,(0,0,4)P,(0,D,(2,C . 所以(4,BD =-,(2,AC =,(0,0,4)AP =,所以(4)2000BD AC ⋅=-⨯+⨯=,(4)00040BD AP ⋅=-⨯++⨯=.所以 BD AC ⊥,BD AP ⊥.因为 AP AC A =,AC ⊂平面PAC ,PA ⊂平面PAC ,所以 BD ⊥平面PAC .(Ⅲ)解:设PQPBλ=(其中01λ#),(,,)Qxyz ,直线QC 与平面PAC 所成角为θ. 所以 PQ PB λ=.所以 (,,4)(4,0,4)x y z λ-=-.所以 4,0,44,x y z λλì=ïïï=íïï=-+ïïî即(4,0,44)Q λλ-+.所以(42,44)CQ λλ=---+.由(Ⅱ)知平面PAC的一个法向量为(4,BD =-.因为 sin cos ,CQ BD CQ BD CQ BDθ×=<>=×,所以3=. 解得 7[0,1]12λ=∈. 所以 712PQ PB =.17.(2012年西城一模理17)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且F A F C =.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ;(Ⅲ)求二面角B FC A --的余弦值.证明:(Ⅰ)设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点.又 FC FA =,所以 AC FO ⊥. 因为 O BD FO = ,所以 ⊥AC 平面BDEF . (Ⅱ)因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . 又⊂FC 平面FBC ,所以FC // 平面EAD . 解:(Ⅲ)因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. 设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O-. 所以 (3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n .易知平面AFC 的法向量为(0,1,0)=v .由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. 17.(2012年东城一模理17)如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使二面角1A EF B --成直二面角,连结1A B ,1A P .(如图2) (Ⅰ)求证:E A 1⊥平面BEP ;(Ⅱ)求直线E A 1与平面BP A 1所成角的大小.图1 图2证明:(Ⅰ)取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形. 又因为1AE ED ==, 所以EF AD ⊥. 所以在图2中有1A E EF ⊥,BE EF ⊥. 所以1A EB ∠为二面角1A EF B --的平面角. 又二面角1A EF B --为直二面角, 所以1A E BE ⊥. 又因为BEEF E =,所以1A E ⊥平面BEF ,即1A E ⊥平面BEP .解:(Ⅱ)由(Ⅰ)可知1A E ⊥平面BEP ,BE EF ⊥,如图,以E 为原点,建立空间直角坐标系E xyz -,则(0,0,0)E ,1(0,0,1)A ,(2,0,0)B ,,0)F 在图1中,连结DP . 因为12CF CP FA PB ==,所以PF∥BE,且12PF BE DE==.所以四边形EFPD为平行四边形.所以EF∥DP,且EF DP=.故点P的坐标为(10). 图2所以1(2,0,1)A B=-,(BP=-,1(0,0,1)EA=.不妨设平面1A BP的法向量(,,)x y z=n,则10,0.A BBP⎧⋅=⎪⎨⋅=⎪⎩nn即20,0.x zx-=⎧⎪⎨-=⎪⎩令y=(3,6)=n.所以111cos,||||14EAEAEA⋅<>===⨯nnn故直线1A E与平面1A BP所成角的大小为3π.16. (2012年丰台一模理16)四棱锥P—ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠B CD=60º,,E是BC中点,点Q在侧棱PC上.(Ⅰ)求证:AD⊥PB;(Ⅱ)若Q是PC中点,求二面角E-DQ-C的余弦值;(Ⅲ)若PQPCλ=,当PA // 平面DEQ时,求λ的值.证明:(Ⅰ)取AD中点O,连结OP,OB,BD.因为 PA=PD,所以 PO⊥AD.…………1分ED CBAQPPQ因为 菱形ABCD 中,∠B CD =60º, 所以 AB=BD ,所以 BO ⊥AD . …………2分 因为 BO ∩PO=O , …………3分 所以 AD ⊥平面POB .………4分 所以 AD ⊥PB . …………5分 解:(Ⅱ)由(Ⅰ)知BO ⊥AD ,PO ⊥AD .因为 侧面PAD ⊥底面ABCD , 且平面PAD ∩底面ABCD=AD ,所以PO ⊥底面ABCD . ………6分以O 为坐标原点,如图建立空间直角坐标系O-……7分则(1,0,0)D -,(E -,(0,0,1)P , (C -,因为Q 为PC 中点, 所以1()2Q -. ……8分 所以 DE =,1(0,)2DQ =, 所以平面DEQ 的法向量为1(1,0,0)n =. 因为 (DC =-,1(0,)2DQ =, 设平面DQC 的法向量为2(,,)n x y z =, 则220,DC n DQ n ⎧⋅=⎪⇔⎨⋅=⎪⎩0,10.22x y z ⎧-=+=⎪⎩ 令x =1y =,z =2(3,1,n =. …9分12121221cos ,7||||n n n n n n ⋅<>==.由图可知,二面角E-DQ-C 为锐角,所以余弦值为7. …10分 (Ⅲ)因为PQPCλ=,所以 PQ PC λ=, 由(Ⅱ)知(1)PC =--,(1,0,1)PA =-,C若设(,,)Q x y z ,则(,,1)PQ x y z =-,由 PQ PC λ=,得21x y z λλ=-⎧⎪=⎨⎪=-+⎩,在平面DEQ中,DE =,(1,,)(12,1)DQ x y z λλ=+=--,所以平面DEQ 法向量为1(1,0,21)n λλ=--, …12分 又因为 PA // 平面DEQ , 所以 10PA n ⋅=, ……13分 即(1)(1)(21)0λλ-+--=,得23λ=. 所以,当23λ=时,PA // 平面DEQ . …14分17.(2012年朝阳一模理17)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB,==1EB EF,=BC M 是BD 的中点.(Ⅰ)求证:EM//平面ADF ;(Ⅱ)求二面角D-AF-B 的大小;(Ⅲ)在线段EB 上是否存在一点P ,使得CP 与AF 所成的角为30︒?若存在,求出BP 的长度;若不存在,请说明理由.证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,CA F EBMD NCA F EBMD故EM//平面ADF. … 4分解法二:因为EB⊥平面ABD,AB BD⊥,故以B为原点,建立如图所示的空间直角坐标系-B xyz. ……1分由已知可得(0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M(Ⅰ)3=(,0,-3)(3,-2,0)2EM,AD=,设平面ADF的一个法向量是()x,y,zn=.由0,0,ADAFnn⎧⋅=⎪⎨⋅=⎪⎩得32x-y=0,=0.⎧⎪⎨⎪⎩令y=3,则n=. …3分又因为3(=3+0-3=02EM n⋅=⋅,所以EM n⊥,又EM⊄平面ADF,所以//EM平面ADF. ……4分(Ⅱ)由(Ⅰ)可知平面ADF的一个法向量是n=.因为EB⊥平面ABD,所以EB BD⊥.又因为AB BD⊥,所以BD⊥平面EBAF.故(3,0,0)BD=是平面EBAF的一个法向量.所以1cos<=2BDBD,BDnnn⋅>=⋅,又二面角D-AF-B为锐角,故二面角D-AF-B的大小为60︒. …10分(Ⅲ)假设在线段EB上存在一点P,使得CP与AF所成的角为30︒.不妨设(0,0,t)P(0t≤≤,则=(3,-2,-),=PC AFt.所以2cos<2PC AFPC,AFPC AF⋅>==⋅,=,化简得35-=,解得0t=<.所以在线段EB上不存在点P,使得CP与AF所成的角为30︒.……14分17.(2012年东城11校联考理17)如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,90DAB ∠=,//AD BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,2==AB DA ,12BC AD =,E 是线段AB 的中点.(1)求证:CD PE ⊥;(2)求四棱锥P ABCD -的体积;(3)试问线段PB 上是否存在点F ,使二面角C DE F --的余弦值为41?若存在,确定点F 的位置;若不存在,说明理由.证明:(1)因为AD ⊥侧面PAB ,PE ⊂平面PAB , 所以AD PE ⊥.又因为△PAB 是等边三角形,E 是线段AB 的中点,所以PE AB ⊥. 因为ADAB A =,所以PE ⊥平面ABCD .而CD ⊂平面ABCD ,所以PE CD ⊥. ……4分解:(2)由(1)知PE ⊥平面ABCD ,所以PE 是四棱锥P ABCD -的高.由2==AB DA ,12BC AD =,可得1=BC . 因为△PAB 是等边三角形,可求得3=PE .所以332)21(213131=⨯⨯+⨯=⋅=-PE S V ABCD ABCD P .……8分(3)以E 为原点,建立如图所示的空间直角坐标系E xyz -.(0,1,0),(0,0,0)(01,0),(11,0),(2,1,0),(0,0A E B C D P --则有,,,设000(,,),F x y z PF PB=λ,则)3,1,0()3,,(--=-λzyx(0,)F-λ所以.设(,,x y z=)n为平面DEF的法向量,(2,1,0),(0,),ED EF==-λ0,0,EDEF⎧⋅=⎪⎨⋅=⎪⎩nn200.x yy z+=⎧⎪⎨-λ+=⎪⎩,即)x1y2z⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩,所以,(1,=-所以n.设平面CDE的法向量为(0,0,1=)m.1cos,4m n==所以.化简得01232=-+λλ.解得311=-=λλ(舍)或.所以存在点F,且PBPF31= .………13分17.(2012年石景山一模理17)如图,三棱柱111CBAABC-中,1AA⊥面ABC,2,==⊥ACBCACBC,13AA=,D为AC的中点.(Ⅰ)求证:11//BDCAB面;(Ⅱ)求二面角CBDC--1的余弦值;(Ⅲ)在侧棱1AA上是否存在点P,使得1BDCCP面⊥?请证明你的结论.B1 B证明:(I )连接B 1C ,与BC 1相交于O ,连接OD . …1分 ∵BCC 1B 1是矩形,∴O 是B 1C 的中点. 又D 是AC 的中点,∴OD//AB 1.∵AB 1⊄面BDC 1,OD ⊂面BDC 1,∴AB 1//面BDC 1. 解:(II )如图,建立空间直角坐标系, 则C 1(0,0,0),B (0,3,2), C (0,3,0),A (2,3,0), D (1,3,0),1(0,3,2)C B =,1(1,3,0)C D =,……5分设111(,,)n x y z =是面BDC 1的一个法向量,则110,0n C B n C D ⎧=⎪⎨=⎪⎩即1111320,30y z x y +=⎧⎨+=⎩,取11(1,,)32n =-.…7分 易知1(0,3,0)C C =是面ABC 的一个法向量. ……8分1112cos ,7n C C n C C n C C==-⨯.∴二面角C 1—BD —C 的余弦值为27. ……9分 (III )假设侧棱AA 1上存在一点P 使得CP ⊥面BDC 1.设P (2,y ,0)(0≤y ≤3),则 (2,3,0)CP y =-, …10分则110,0CP C B CP C D ⎧=⎪⎨=⎪⎩,即3(3)0,23(3)0y y -=⎧⎨+-=⎩. …12分解之3,73y y =⎧⎪⎨=⎪⎩∴方程组无解. ……13分∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1. …14分17.(2012年房山一模17)在直三棱柱111ABC A B C -中,1BC CC AB ===2 ,BC AB ⊥.点N M ,分别是1CC ,C B 1的中点,G 是棱AB 上的动点.(I )求证:⊥C B 1平面BNG ;(II)若CG //平面M AB 1,试确定G 点的位置,并给出证明;(III)求二面角1M AB B --的余弦值.证明:(I)∵在直三棱柱111ABC A B C -中,1CC BC =,点N 是C B 1的中点,∴C B BN 1⊥ …………1分BC AB ⊥,1BB AB ⊥,B BC BB = 1∴AB ⊥平面11BCC B …………2分⊂C B 1平面11BCC B∴AB C B ⊥1,即GB C B ⊥1 ……………3分 又B BG BN =∴⊥C B 1平面BNG …………4分(II )当G 是棱AB 的中点时,CG //平面M AB 1.……………5分 证明如下:连结1AB ,取1AB 的中点H ,连接GC HM HG ,,, 则HG 为B AB 1∆的中位线 ∴GH ∥1BB ,121BB GH =………6分 ∵由已知条件,11BCC B 为正方形 ∴1CC ∥1BB ,11BB CC = ∵M 为1CC 的中点,∴121CC CM =……7分 ∴MC ∥GH ,且GH MC = ∴四边形HGCM 为平行四边形 ∴GC ∥HM又 ∵M AB HM M AB GC 11,平面平面⊄⊂ ……8分 ∴CG //平面M AB 1 ………9分 解:(III) ∵ 直三棱柱111ABC A B C -且BC AB ⊥依题意,如图:以1B 为原点建立空间直角坐标系1B xyz -,…10分∴1(0,0,0)B ,(0,2,0)B ,)0,1,2(M ,(0,2,2)A ,1(2,0,0)C则1(0,2,2)B A =,)0,1,2(1=B 设平面1B AM 的法向量(,,)n x y z =,则1100n B A n B M ⋅=⋅⎧⎪=⎨⎪⎩,即00222x y z y ⎧⎨+=+=⎩,令1=x ,有)2,2,1(-=n ………12分 又平面1B AB 的法向量为11(2,0,0)BC =,∴11cos ,BC n <>=1111B C n B C n⋅⋅=31, ……13分设二面角1M AB B --的平面角为θ,且θ为锐角∴111cos cos ,3B C n θ=-=. ……14分16.(2012年密云一模理16)如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,PA 、NC 都垂直于平面ABCD ,且4PA AB ==,2NC =,M 是线段PA 上一动点.(Ⅰ)求证:平面PAC ⊥平面NEF ;(Ⅱ)若//PC 平面MEF ,试求:PM MA 的值;(Ⅲ)当M 是PA 中点时,求二面角M EF N --的余弦值.证明:(Ⅰ)连结BD ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥, 又∵BD AC ⊥,AC PA A =,∴BD ⊥平面PAC ,又∵E ,F 分别是BC 、CD 的中点,∴//EF BD , ∴EF ⊥平面PAC ,又EF ⊂平面NEF , ∴平面PAC ⊥平面NEF ; ……4分 解:(Ⅱ)建立如图所示的直角坐标系,则(0,0,4)P ,(4,4,0)C ,(4,2,0)E ,(2,4,0)F ,∴(4,4,4)PC =-,(2,2,0)EF =-,设点M 的坐标为(0,0,)m ,平面MEF 的法向量为(,,)n x y z =,则(4,2,)ME m =-,所以00n ME n EF ⎧⋅=⎪⎨⋅=⎪⎩,即420220x y mz x y +-=⎧⎨-+=⎩,令1x =,则1y =,6z m =,故6(1,1,)n m=,第16题图第16题图用心 爱心 专心∵//PC 平面MEF ,∴0PC n ⋅=,即24440m+-=,解得3m =, 故3AM =,即点M 为线段PA 上靠近P 的四等分点;故:1:3PM MA = ----8分(Ⅲ)(4,4,2)N ,则(0,2,2)EN =,设平面NEF 的法向量为(,,)m x y z =,则00m EN m EF ⎧⋅=⎪⎨⋅=⎪⎩,即220220y z x y +=⎧⎨-+=⎩,令1x =,则1y =,1z =-,即(1,1,1)m =-, 当M 是PA 中点时,2m =,则(1,1,3)n =,∴cos ,m n <>== ∴二面角M EF N --的余弦值为.----14分16.(2012年门头沟一模理16)如图,在多面体ABCD EF -中,四边形ABCD 为正方形,//EF AB ,EF EA ⊥,2AB EF =,090AED ∠=,AE ED =,H 为AD 的中点.(Ⅰ)求证://EH 平面FAC ;(Ⅱ)求证:EH ⊥平面ABCD ;(Ⅲ)求二面角A FC B --的大小.证明:(Ⅰ)ACBD O =,连结HO ,FO因为ABCD 为正方形,所以O 是AC 中点,EDABCFH用心 爱心 专心 22又H 是AD 中点, 所以1//,2OH CD OH CD =,1//,2EF AB EF AB =, 所以//EF OH 且EF OH =, 所以四边形EHOF 为平行四边形, 所以//EH FO ,又因为FO ⊂平面FAC ,EH ⊄平面FAC . 所以//EH 平面FAC .……………4分 证明:(Ⅱ)因为AE ED =,H 是AD 的中点, 所以EH AD ⊥……………6分又因为//AB EF ,EF EA ⊥,所以AB EA ⊥ 又因为AB AD ⊥ 所以AB ⊥平面AED , 因为EH ⊂平面AED , 所以AB EH ⊥,……………8分 所以EH ⊥平面ABCD .……………9分解:(Ⅲ)AC ,BD ,OF 两两垂直,建立如图所示的坐标系,设1EF =, 则2AB =,B,(C ,(0,0,1)F …………10分设平面BCF 的法向量为1(,,)n x y z =, (2,2,0),(2,0,1)BC CF =--=,110,0n BC n CF ⋅=⋅=所以 1(1,1n =- …………11分 平面AFC 的法向量为2(0,1,0)n = ………12分1212121cos ,2n n n n n n ⋅<>==⋅. ………13分二面角A FC B --为锐角,所以二面角A FC B --等于3π.……………14分。
2012年普通高等学校招生全国统一考试 数学 (理)(北京卷)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = ( )A .(,1)-∞-B .2(1,)3-- C .2(,3)3-D .(3,)+∞ 2.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4π B .22π- C .6πD .44π- 3.设,a b R ∈, “0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件4. 执行如图所示的程序框图,输出的S 值为( ) A . 2 B . 4 C . 8 D . 165.如图,∠ACB=90°,CD ⊥AB 于点D,以BD 为直径的圆与BC 交于点E ,则() A .CE ·CB=AD ·DB B .CE ·CB=AD ·AB C .AD ·AB= 2CD D .CE ·EB= 2CD6.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数, 其中奇数的个数为( )A . 24B . 18C . 12D . 67. 某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A.28+ B.30+ C.56+.60+8. 某棵果树前n 年得总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B . 7C . 9D .11(第4题图)B第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分. 9. 直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y =α⎧⎨=α⎩(α为参数)的交点个数为 .10.已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = . 11.在△ABC 中,若2a =,7bc +=,1cos 4B =-,则b = . 12.在直角坐标系xoy 中,直线l 过抛物线24y x =的焦点F,且与该抛物线相较于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为 .13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 ;DE DC ⋅的最大值为 .14.已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4)x ∃∈-∞- ,()()0f x g x <. 则m 的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分) 已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.16. (本小题14分)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC ,AB 上的点, 且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2. (1)求证:A 1C ⊥平面BCDE;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由.17.(本小题13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2S 的值. (注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,n x x x 的平均数)18.(本小题13分)已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.19.(本小题14分)已知曲线C: 22(5)(2)8()m x m y m R -+-=∈ (1)若曲线C 是焦点在x 轴的椭圆,求m 的范围;(2)设4m =,曲线C 与y 轴的交点为A,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M,N,直线1y =与直线BM 交于点G 求证:A,G,N 三点共线.20.(本小题13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和1i m ≤≤,()j c A 为A 的第j 列各数之和1j n ≤≤;记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A 中的最小值. (1)对如下数表A,求()k A 的值;(2)设数表A=(2,3)S 形如求()k A 的最大值;(3)给定正整数t ,对于所有的A ∈S(2,21t +),求()k A 的最大值。
2012北京市西城区高三(一模)物理一、选择题1.(6分)下列实验或者事实,揭示了原子具有核式结构的是()A.电子的发现B.光电效应实验C.α粒子散射实验D.天然放射现象2.(6分)不同的物理量可以有相同的单位.下列各组物理量中有相同单位的是()A.速度和角速度 B.电压和电动势C.电势和电势能 D.磁通量和磁感应强度3.(6分)如图所示,理想变压器原、副线圈的匝数比为2:1,电阻R=55Ω,原线圈两端接一正弦式交变电流,该交变电流电压的有效值为220V.电路中交流电压表和电流表的示数分别为()A.110V、2.0A B.440V、8.0A C.156V、1.4A D.55V、0.5A4.(6分)如图所示,一个物体放在粗糙的水平地面上.在t=0时刻,物体在水平力F作用下由静止开始做直线运动.在0到t0时间内物体的加速度a随时间t的变化规律如图2所示.已知物体与地面间的动摩擦因数处处相等.则()A.t0时刻,力F等于0B.在0到t0时间内,力F大小恒定C.在0到t0时间内,物体的速度逐渐变大D.在0到t0时间内,物体的速度逐渐变小5.(6分)如图所示为一列沿着x轴正方向传播的简谐横波在t=0时刻的波形图.已知这列波的波速v=5.0m/s.则()A.这列波的频率f=1.0Hz﹣0.2B.经过一个周期,x=0.5m处的质点沿着x轴正向运动的距离为1.0mC.x=0.5m和x=1m处的质点可以同时到达波峰位置D.在t=0.5s时刻,x=0.5m处的质点正在沿着y轴负方向运动6.(6分)如图所示,两物体A、B分别与一竖直放置的轻质弹簧的两端相连接,B物体在水平地面上,A、B均处于静止状态.从A物体正上方与A相距H处由静止释放一小物体C.C与A相碰后立即粘在一起向下运动,以后不再分开.弹簧始终处于弹性限度内.用△E表示C与A碰撞过程中损失的机械能,用F表示C与A一起下落过程中地面对B的最大支持力.若减小C物体释放时与A物体间的距离H,其他条件不变,则()A.△E变小,F变小B.△E不变,F变小C.△E变大,F变大D.△E不变,F不变7.(6分)已知一颗质量为m的行星绕太阳做匀速圆周运动,运动周期为T1,该行星的自转周期为T2,万有引力常量为G.根据这些已知量可以求出()A.该行星到太阳的距离B.卫星绕该行星运行的第一宇宙速度C.该行星绕太阳运动的向心加速度D.该行星的同步卫星的运动轨道半径8.(6分)有一种飞行器是利用电场加速带电粒子,形成向外发射的高速粒子流,对飞行器自身产生反冲力,从而对飞行器的飞行状态进行调整的.已知飞行器发射的高速粒子流是由二价氧离子构成的.当单位时间内发射的离子个数为n,加速电压为U时,飞行器获得的反冲力为F.为了使加速器获得的反冲力变为2F,只需要()A.将加速电压变为2UB.将加速电压变为4UC.将单位时间内发射的离子个数变为nD.将单位时间内发射的离子个数变为4n二、实验探究题(18分)9.(18分)(1)如图1所示,某同学在“测定玻璃的折射率”的实验中,先将白纸平铺在木板上并用图钉固定,玻璃砖平放在白纸上,然后在白纸上确定玻璃砖的界面aa′和bb′.O为直线AO与aa′的交点.在直线OA上竖直地插上P1、P2两枚大头针.①该同学接下来要完成的必要步骤有A.插上大头针P3,使P3仅挡住P2的像B.插上大头针P3,使P3挡住P1的像和P2的像C.插上大头针P4,使P4仅挡住P3D.插上大头针P4,使P4挡住P3和P1、P2的像②过P3、P4作直线交bb′于O′,过O′作垂直于bb′的直线NN′,连接OO′.测量图1中角α和β的大小.则玻璃砖的折射率n= .③如图2所示,该同学在实验中将玻璃砖界面aa′和bb′的间距画得过宽.若其他操作正确,则折射率的测量值准确值(选填“大于”、“小于”或“等于”).(2)在“测定金属的电阻率”的实验中,某同学进行了如下操作:①用毫米刻度尺测量接入电路中的金属丝的有效长度l.再用螺旋测微器测量金属丝的直径D,某次测量结果如图3所示,则这次测量的读数D= mm.②为了合理选择实验方案和器材,首先使用欧姆表(×1挡)粗测拟接入电路的金属丝的阻值R.欧姆调零后,将表笔分别与金属丝两端连接,某次测量结果如图4所示,则这次测量的读数R= Ω.③使用电流表和电压表准确测量金属丝的阻值.为了安全、准确、方便地完成实验,除电源(电动势为4V,内阻很小)、待测电阻丝、导线、开关外,电压表应选用,电流表应选用,滑动变阻器应选用(选填器材前的字母).A.电压表V2(量程3V,内阻约3kΩ)B.电压表V1(量程15V,内阻约15kΩ)C.电流表A1(量程600mA,内阻约1Ω)D.电流表A2(量程3A,内阻约0.02Ω)E.滑动变阻器R1(总阻值10Ω,额定电流2A)F.滑动变阻器R2(总阻值100Ω,额定电流2A)④若采用图5所示的电路测量金属丝的电阻,电压表的左端应与电路中的点相连(选填“a”或“b”).若某次测量中,电压表和电流表读数分别为U和I,请用上述直接测量的物理量(D、l、U、I)写出电阻率ρ的计算式:ρ= .⑤铜 1.710﹣8Ω•m钨 5.310﹣8Ω•m康铜 5.010﹣7Ω•m锰铜 4.410﹣7Ω•m镍铬合金1.110﹣6Ω•m所列的是一些材料在20°C时的电阻率.实验中使用的金属丝是方框中列出的某一种材料.某次实验中,测得金属丝的长度为52.80cm,直径为0.495mm,阻值为2.9Ω.则金属丝的材料为(选填金属名称).10.(16分)如图所示,一质量M=2.0kg的长木板AB静止在水平面上,木板的左侧固定一半径R=0.60m的四分之一圆弧形轨道,轨道末端的切线水平,轨道与木板靠在一起,且末端高度与木板高度相同.现在将质量m=1.0kg的小铁块(可视为质点)从弧形轨道顶端由静止释放,小铁块到达轨道底端时的速度v0=3.0m/s,最终小铁块和长木板达到共同速度.忽略长木板与地面间的摩擦.取重力加速度g=10m/s2.求(1)小铁块在弧形轨道末端时所受支持力的大小F;(2)小铁块在弧形轨道上下滑过程中克服摩擦力所做的功W f;(3)小铁块和长木板达到的共同速度v.11.(18分)飞行时间质谱仪可以根据带电粒子的飞行时间对气体分子进行分析.如图所示,在真空状态下,自脉冲阀P喷出微量气体,经激光照射产生不同正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的方形区域,然后到达紧靠在其右侧的探测器.已知极板a、b间的电压为U0,间距为d,极板M、N的长度和间距均为L.不计离子重力及经过a板时的初速度.(1)若M、N板间无电场和磁场,请推导出离子从a板到探测器的飞行时间t与比荷k(,q和m分别为离子的电荷量和质量)的关系式;(2)若在M、N间只加上偏转电压U1,请论证说明不同正离子的轨迹是否重合;(3)若在M、N间只加上垂直于纸面的匀强磁场.已知进入a、b间的正离子有一价和二价的两种,质量均为m,元电荷为e.要使所有正离子均能通过方形区域从右侧飞出,求所加磁场的磁感应强度的最大值B m.12.(20分)如图1所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上.以弧形导轨的末端点O为坐标原点,水平向右为x 轴正方向,建立Ox坐标轴.圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上.在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端.已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置.物理试题答案一、选择题1.【解答】A、电子的发现揭示了原子有复杂结构.故A错误.B、光电效应证明光具有粒子性.故B错误.C、α粒子散射实验中少数α粒子能发生大角度偏转,说明原子中绝大部分质量和全部正电荷都集中在原子核上,卢瑟福就此提出了原子具有核式结构学说.故C正确.D、天然放射现象揭示了原子核有复杂的结构.故D错误.故选C2.【解答】A、速度单位是m/s,角速度单位是rad/s,故A错误;B、电压和电动势均是伏特(V),故B正确;C、电势单位是V,电势能单位是J,故C错误;D、磁通量单位是Wb,磁感应强度单位是T,故D错误;故选B.3.【解答】根据得:U1=110V,所以电压表的示数为110V,根据欧姆定律得:,即电流表的示数为2A故选A4.【解答】A、t0时刻,加速度a=0,根据牛顿第二定律知:F=μmg≠0.故A错误.B、根据F﹣f=ma,可知,a减小,f不变,所以F减小,故B错误.C、D、由图2可知,加速度随时间逐渐减小,方向不变,所以加速度方向始终与速度方向相同,物体做加速运动,t0时刻,加速度减为零时,速度最大,所以t0时刻,物体速度增加到最大值,故C正确,D错误;故选C5.【解答】A、由图知:波长λ=1m,则波速v=,可求出周期T=,频率为5Hz.故A错误.B、在t=0时,x=0.5m处的质点位于平衡位置,该质点不随着波迁移.故B错误.C、x=0.5m和x=1m处的质点相距半个波长,则不可能同时到达波峰位置.故C错误.D、t=0.5s= T,图示时刻x=0.5m处的质点正向上运动,故t=0.5s时,x=0.5m处的质点的运动方向为y轴负方向.故D正确.故选D6.【解答】(1)设小物体C从静止开始运动到A点时的速度为v,由机械能守恒定律有:m C gH=m C v2设C与A碰撞粘在一起的速度为v′,由动量守恒定律得,m C v=(m A+m C)v′,C与A碰撞过程中损失的机械能△E=﹣联立解得△E=则知H减小,△E变小.减小C物体释放时与A物体间的距离H,C与A一起下落过程中弹簧的最大压缩量减小,最大的弹力减小,则地面对B的最大支持力F减小.故A正确.故选A7.【解答】A、研究行星绕太阳做匀速圆周运动,根据万有引力提供向心力,列出等式即=只知道运动周期为T1,所以无法求解行星到太阳的距离,故A错误B、卫星绕该行星运行的第一宇宙速度v=,由于不知道行星的半径,所以无法求解卫星绕该行星运行的第一宇宙速度,故B错误C、该行星绕太阳运动的向心加速度a=,由于不知道行星到太阳的距离,所以无法求解该行星绕太阳运动的向心加速度,故C错误D、根据同步卫星的特点,由万有引力提供向心力=,所以能求出该行星的同步卫星的运动轨道半径,故D正确故选D.8.【解答】对离子,根据动能定理得:qU=①根据牛顿第三定律得知:飞行器对离子的作用力大小也为F.对离子,由动量定理得:Ft=nmv ②由①②得:F=对于单位时间,t=1s,则F=n则得:为了使加速器获得的反冲力变为2F,只需要将加速电压变为4U或将单位时间内发射的离子个数变为2n.故选B二、实验探究题(18分)9.【解答】(1)①确定P3大头针的位置的方法是大头针P3能挡住P1、P2的像,则P3必定在出射光线方向上.所以确定P3大头针的位置的方法是大头针P3能挡住P1、P2的像.确定P4大头针的位置的方法是大头针P4能挡住P1、P2P3的像,故选BD.②测定玻璃砖折射率的原理是折射定律n=.③作图时,玻璃砖应与所画的边界相齐.该同学的做法中,出射光线的侧向偏移距离小于理论的侧向偏移距离,所以测量出的折射角要小于真实的折射角,导致测量值偏小.(2)①螺旋测微器在读数时,要先读主尺刻度,再读可动刻度,即:0.5mm+1.6×0.01=0.516mm②欧姆表的读数:3×1=3Ω③电流表和电压表在使用的过程中,要使指针尽量偏转到~之间;电源的电动势4v,所以电压表选择量程为3V的电压表A;待测电阻的数值约3Ω,所以流过电流表的最大电流:,所以要选择0.6A的电流表C;分压式接法中,滑动变阻器要选择小电阻,所以滑动变阻器选择较小的E.④由于待测电阻的电阻值比较小,所以要使用电流表外接法,即要连在b端;根据欧姆定律:和电阻定律:,所以:⑤代人数据计算得:所以金属丝的材料为镍铬合金.故答案为:(1)①B D;②;③小于(2)①0.516 (0.515~0.519);②3Ω;③A C E;④b ;⑤镍铬合金10.【解答】(1)小木块在弧形轨道末端时,由牛顿第二定律得解得:F=mg+m=1×10+1×=25N(2)铁块在弧形轨道上滑行过程,根据动能定理得解得:克服摩擦力所做的功W f=mgR﹣=1×10×0.6﹣1×32=1.5J(3)铁块在木板上滑动过程,系统的动量守恒,则有 mv0=(m+M)v解得:共同速度v===1.0m/s答:(1)小铁块在弧形轨道末端时所受支持力的大小F是25N;(2)小铁块在弧形轨道上下滑过程中克服摩擦力所做的功W f是1.5J.(3)小铁块和长木板达到的共同速度v是1m/s.11.【解答】解:(1)带电离子在平行板a、b之间运动时,由动能定理,qU0=mv2解得:v=,即:v=…①带电离子在平行板a、b之间的加速度:a1=,即:a1=.所以带电离子在平行板a、b之间的运动时间:t1==.带电离子在平行板M、N之间的运动时间:t2==.,所以带电离子从a板到探测器的飞行时间为:t=t1+t2=.(2)带电离子在平行板M、N之间水平位移为x时,在竖直方向位移为y,水平方向满足:x=vt,竖直方向满足:y=a2t2,a2=联立解得:y=…②②式是正离子的轨迹方程,与正离子的质量和电荷量均无关系,所以不同正离子的轨迹是重合的.(3)当MN间的磁感应强度大小为B时,离子做圆周运动,满足qvB=…③由①③两式解得带电离子的轨道半径R=…④上式表明:在离子质量一定的情况下,离子的电荷量越大,在磁场中做圆周运动的半径越小,也就越不容易穿过方形区从右侧飞出.所以,要使所有的一价和二价正离子均能通过方形区从右侧飞出,只要二价正离子能从方形区飞出即可.当二价正离子刚好能从方形区刚好能从方形区域飞出时的磁感应强度为满足题目条件的磁感应强度的最大值.设当离子刚好通过方形区从右侧飞出时的轨道半径为R,由几何关系得:R2=L2+(R﹣)2解得:R=L…⑤将二价正离子的电荷量2e代人④得,R=…⑥由⑤⑥式得:B=.此值即为所求的所加磁场的磁感应强度的最大值B m.答:(1)离子从a板到探测器的飞行时间t是,(2)若在M、N间只加上偏转电压U1,正离子的轨迹方程,与正离子的质量和电荷量均无关系,所以不同正离子的轨迹是重合的.;(3)要使所有正离子均能通过方形区域从右侧飞出,所加磁场的磁感应强度的最大值是.12.【解答】解:(1)由图2可知,根据法拉第电磁感应定律,感应电动势①(2)金属棒在弧形轨道上滑行过程中,产生的焦耳热金属棒在弧形轨道上滑行过程中,根据机械能守恒定律②金属棒在水平轨道上滑行的过程中,产生的焦耳热为Q2,根据能量守恒定律所以,金属棒在全部运动过程中产生的焦耳热(3)a.根据图3,x=x1(x1<x0)处磁场的磁感应强度.设金属棒在水平轨道上滑行时间为△t.由于磁场B(x)沿x方向均匀变化,根据法拉第电磁感应定律△t 时间内的平均感应电动势所以,通过金属棒电荷量b .金属棒在弧形轨道上滑行过程中,根据①式,金属棒在水平轨道上滑行过程中,由于滑行速度和磁场的磁感应强度都在减小,所以,此过程中,金属棒刚进入磁场时,感应电流最大.根据②式,刚进入水平轨道时,金属棒的速度所以,水平轨道上滑行过程中的最大电流若金属棒自由下落高度,经历时间,显然t0>t所以,综上所述,金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大.答:(1)金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E 是;(2)金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q 为+mg ﹣;(3)a.金属棒在水平轨道上滑动过程中通过导体棒的电荷量q 为;b.金属棒在全部运动过程中金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大.11 / 11。
北京市西城区2012年高三一模试卷物理试题参考答案 2012.413.C 14.B 15.A 16.C 17.D 18.A 19.D 20.B 21.(18分)(1)①B D ②αβsin sin ③小于(2)①0.516 (0.515~0.519) ②3Ω ③A C E ④b IlUD 4π2⑤镍铬合金评分说明:本题共18分。
第(1)问中每空2分,共6分;第(2)问中,第①、③小 问每空1分,其他题目每空2分。
第(1)问中的第①小问,漏选得1分;不选、多选、 错选不得分。
22.(16分)(1)小木块在弧形轨道末端时,满足R m v m g F 2=-解得:25N =F (2)根据动能定理 02120f -=-mv W mgR解得:J 5.1f =W(3)根据动量守恒定律 vM m mv )(0+=解得:m/s0.1=v 评分说明:本题共16分。
第(1)问5分;第(2)问5分;第(3)问6分 23.(18分)(1)带电离子在平行板a 、b 间运动时,根据动能定理 02120-=mv qU① 解得:mqU v 02=,即02kU v = 带电离子在平行板a 、b 间的加速度dm qU a 01=,即dkU a 01= 所以,带电离子在平行板a 、b 间的运动时间0112kU kU d a v t ==带电离子在平行板M 、N 间的运动时间022kU L v L t ==所以,带电离子的全部飞行时间02122kU Ld t t t +=+=(2)正离子在平行板M 、N 间水平方向运动位移为x 时,在竖直方向运动的位移为y 。
水平方向满足 vt x = ②竖直方向满足 2221t a y =③加速度 L kU a 12=④由上述②、③、④式得:0214LU x U y =⑤⑤式是正离子的轨迹方程,与正离子的质量和电荷量均无关。
所以,不同正离子的轨迹是重合的。
(3)当M 、N 间磁感应强度大小为B 时,离子做圆周运动,满足R mv Bvq 2=⑥ 由上述①、⑥两式,解得:带电离子的轨道半径qB m U R 202=⑦ 上式表明:在离子质量一定的情况下,离子的电荷量越大,在磁场中做圆周运动的半径越小,也就越不容易穿过方形区从右侧飞出。
北京市西城区2012届高三4月第一次模拟考试试题理科综合能力测试本试卷分为选择题和非选择题两个部分,选择题非选择题,共300分。
考试时长150分钟。
考生务必将答案填写在答题卡上和答题纸的相应区域内,在试卷上作答无效。
考试结束后,将本试卷及答题卡和答题纸一并交回。
可能用到的相对原子质量:Hl C 12 O 16 Na 23 Cl 35.5选择题(共20题每小题6分共120分)在每小题列出的四个选项中,选出符合题目要求的一项。
1.下图为某种植物根尖细胞分裂过程中染色质与染色体规律性变化的模式图。
下列相关判断正确的是A.①→②过程是有丝分裂间期,此时细胞内核膜解体、核仁消失B.低温处理导致④→⑤过程中染色单体不分开使染色体数目加倍C.⑤→⑥过程处于有丝分裂后期,细胞中的染色体组数增加一倍D.⑥→⑦过程中DNA解旋酶可使染色体解旋变为细丝状的染色质2.人被狗咬伤后,需要立即到医院处理伤口,注射狂犬疫苗并在伤口周围注射抗血清。
下列有关叙述不正确的是A.注射抗血清可使体内迅速产生抗原一抗体反应B.注射疫苗的作用是刺激体内记忆细胞增殖分化C.病毒的清除需非特异性免疫与特异性免疫配合D.免疫记忆的形成依赖抗原刺激和淋巴因子作用3.基因转录出的初始RNA,经不同方式的剪切可被加工成翻译不同蛋白质的mRNA。
某些剪切过程不需要蛋白质性质的酶参与。
大多数真核细胞mRNA只在个体发育的某一阶段合成,不同的mRNA合成后以不同的速度被降解。
下列判断不正确的是A.某些初始RNA的剪切加工可由RNA催化完成B.一个基因可能参与控制生物体的多种性状C.mRNA的产生与降解与个体发育阶段有关D.初始RNA的剪切、加工在核糖体内完成4.组氨酸缺陷型沙门氏菌是由野生菌种突变形成的,自身不能合成组氨酸。
将其接种在缺乏组氨酸的平板培养基上进行培养,有极少量菌落形成。
2-氨基芴是一种致突变剂,将沾有2-氨基芴的滤纸片放到上述平板培养基中,再接种组氨酸缺陷型沙门氏菌进行培养,会有较多菌落出现。
2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、 选择题共8小题。
每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A∩B=A. (﹣∞,﹣1)B. (﹣1,﹣23)C.(﹣23,3) D. (3,+∞) 【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。
在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
2.设不等式组0202x y ≤≤⎧⎨≤≤⎩,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A . 4πB . 22π- C. 6π D. 44π- 【考点】概率【难度】容易【点评】本题考查几何概率的计算方法。
在高二数学(理)强化提高班,第三章《概率》有详细讲解,在高考精品班数学(理)强化提高班中有对概率相关知识的总结讲解。
3.设a ,b ∈R .“a =O ”是“复数a +b i 是纯虚数”的A .充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D .既不充分也不必要条件【考点】复数的计算【难度】容易【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
4.执行如图所示的程序框图,输出S值为A. 2B. 4C. 8D. 16【考点】算法初步【难度】中等【点评】本题考查几何概率的计算方法。
在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2012年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷共6页,150分.考试时长120分钟.考试生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{320}A x x =∈+>R |,{|(1)(3)0}B x x x =∈+->R ,则A B =( )A . (,1)-∞-B . 2(1,)3-- C . 2(,3)3-D . (3,)+∞2. 设不等式组02,02x y ⎧⎨⎩≤≤≤≤表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π22-C . π6D . 4π4-3. 设,a b ∈R .“0a =”是“复数i a b +是纯虚数”的 ( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D . 既不充分也不必要条件4. 执行如图所示的程序框图,输出的S 值为 ( )A . 2B . 4C . 8D . 165. 如图,90ACB ∠=,CD AB ⊥于点D ,以BD 为直径的圆与BC 交于点E ,则( )A . CE CB AD DB = B . CE CB AD AB =C . 2 AD AB CD =D . 2 CE EB CD =6. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A . 24B . 18C . 12D . 67. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+ B .30+C .56+D .60+8. 某棵果树前n 年的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 值为( )A . 5B . 7C . 9D . 11第Ⅱ卷(选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡相应位置上.9. 直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos ,3sin x y αα=⎧⎨=⎩(α为参数)的交点个数为________.10. 已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a =________; n S =________.11. 在ABC △中,若2a =,7b c +=,1cos 4B =-,则b =________.12. 在直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则OAF △的面积为________.13. 已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则 DE CB 的值为________;DE DC 的最大值为________.14. 已知()(2)(3)f x m x m x m =-++,()22x g x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题共13分) 已知函数(sin cos )sin 2()sin x x xf x x-=.(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递增区间.E BDAC34正(主)视图侧(左)视图俯视图姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)16.(本小题共14分)如图1,在Rt ABC △中,90C ∠=,3BC =,6AC =.D ,E 分别是AC ,AB 上的点,且DE BC ∥,2DE =,将ADE △沿DE 折起到1A DE △的位置,使1AC CD ⊥,如图2.(Ⅰ)求证:1A C ⊥平面BCDE ;(Ⅱ)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;(Ⅲ)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?请说明理由.17.(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中0a >,600a b c ++=.当数据a ,b ,c 的方差2s 最大时,写出a ,b ,c 的值 (结论不要求证明),并求此时2s 的值.(求:2222121[()()()]n s x x x x x x n=-+-++-,其中x 为数据1x ,2x ,,n x 的平均数)18.(本小题共13分)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求a ,b 的值; (Ⅱ)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.19.(本小题共14分)已知曲线C :22(5)(2)8()m x m y m -+-=∈R .(Ⅰ)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M ,N ,直线1y =与直线BM 交于点G .求证:A ,G ,N 三点共线.20.(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和(1)i m ≤≤,()j c A 为A 的第j 列各数之和(1)j n ≤≤;记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A中的最小值.(Ⅰ)对如下数表A ,求()k A 的值;(Ⅱ)设数表(2,3)A S ∈形如求()k A 的最大值;(Ⅲ)给定正整数t ,对于所有的(2,21)A S t ∈+,求()k A 的最大值.ACDEBA 1MCBE D图1图22012年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷{|AB x x =A B .2CE CB CD =90,CD ⊥AD DB ,所以CE CB AD DB =.【提示】由题中三角形和圆的位置关系,通过条件求解即可.【考点】几何证明选讲.第Ⅱ卷【解析】23S a =,所以【提示】由{}n a 是等差数列23S a =,解得60,所以直线的斜率为603=1⎛【解析】根据平面向量的点乘公式cos DE CB DE DA DE DA θ==,可知cos DE DA θ=,所以21DE CB DA ==;||||cos ||cos DE DC DE DC DE αα==,又因为cos DE α就是向量DE 在DC 边上的射影,要想让DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为【提示】直接利用向量转化,求出数量积即可. 【考点】平面向量在平面几何中的运用.)()0g x <,恒成立3)0+>在综上可得①②成立时42m -<<-.)()0g x <,而【考点】指数函数的性质,二次函数的性质.(Ⅰ)证明CD 1CDA D D =,,又A ⊥DE ,又CD DE D =⊥平面BCDE (Ⅱ)如图建立空间直角坐标系C xyz -,则,23),(0B ∴1(0,3,2A B =-,(2,2,A E =-法向量为(,,)n x y z =100A B n A E n ⎧=⎪⎨=⎪⎩∴3223y ⎧⎪⎨---⎪⎩2⎪⎩∴(1,2,3)n =-又∵M ∴(1,0,CM =-cos 2||||1313222CM n CM n θ====++∴CM 与平面1A BE 所成角的大小45(Ⅲ)设线段上存在点P ,设则(0,A P a =,(2,DP a =设平面A DP 法向量为(,n x y =∴1(,,n x y =垂直,则10n n =, DE ,即证明DE ⊥平面1A CD 法向量(1,2,n =-,(1,0,CM =-A DP 法向量为(3n a =-垂直,则10n n =,可求得【考点】平面图形的折叠问题,立体几何.(Ⅰ)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱(Ⅱ)a a∴3AG⎛= ,(AN x=三点共线,只需证AG,AN共线3(6Mxx k+成立,化简得:从而可得3AG⎛= ,(AN x=三点共线,只需证AG,AN共线,利用韦达定理,可以证明.【考点】椭圆的性质,直线与椭圆的位置关系.1(1)(1t t++数学试卷第19页(共21页)数学试卷第20页(共21页)数学试卷第21页(共21页)。
2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。
每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x∈R|3x+2>0﹜·B={x∈R|(x+1)(x-3)>0﹜则A∩B=( )A.(﹣∞,﹣1) B.{﹣1,-⅔} C. ﹙﹣⅔,3﹚ D.(3,+∝)2. 设不等式组表示的平面区域为D.在区域D内随机取一个点.则此点到坐标原点的距离大于2的概率是()A. B. C. D.3.设a,b∈R.“a=O”是‘复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A. 2B .4C.8D. 165.如图. ∠ACB=90º。
CD⊥AB于点D,以BD为直径的圆与BC交于点E.则( )A. CE·CB=AD·DBB. CE·CB=AD·ABC. AD·AB=CD ²D.CE·EB=CD ²6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 67.某三梭锥的三视图如图所示,该三梭锥的表面积是()A. 28+6B. 30+6C. 56+ 12D. 60+128.某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。
m值为()A.5B.7C.9D.11第二部分(非选择题共110分)二.填空题共6小题。
每小题5分。
共30分.9.直线(t为参数)与曲线(“为多α数)的交点个数为10.已知﹛﹜等差数列为其前n项和.若=,=,则=11.在△ABC中,若α=2,b+c=7,=-,则b=12.在直角坐标系xOy中.直线l过抛物线=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。
北京市西城区2012年高三一模试卷理科综合能力测试(化学)2012年4月可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Cl 35.56.下列说法不正确...的是A.二氧化硅可制玻璃、单质硅、光导纤维B.食盐、糖、醋可作调味剂,不可作食品防腐剂C.金属腐蚀的本质是金属原子失电子被氧化的过程D.大量服用阿司匹林会出现水杨酸中毒症,可静脉滴注NaHCO3溶液7.雷雨天闪电时空气中有臭氧(O3)生成。
下列说法正确的是A.O2和O3互为同位素B.O2转化为O3为化学变化C.相同物质的量的O2和O3的体积相同D.相同质量的O2和O3含有相同的分子数8.下列说法正确的是A.蔗糖水解只生成葡萄糖B.含有碳碳双键的有机物均存在顺反异构现象C.向混有苯酚的苯中加入金属Na有无色气体生成D.CH2=CHCOONa在一定条件下缩聚可得到高分子化合物9.现有5种短周期元素X、Y、Z、Q、W,原子序数依次增大,在周期表中X原子半径最小;X和W同主族;Y元素原子核外电子总数是其次外层电子数的3倍;Q元素是地壳中含量最高的元素。
下列说法不.正确..的是A.原子半径:Y<Q<W B.ZX3可使紫色石蕊溶液变蓝C.X、Z、Q 3种元素可组成离子化合物或共价化合物D.X2Q2、Y2X6 2种分子中含有的电子数、化学键种类都相同10.下列离子方程式书写正确的是A.将Na2O2加入H2O中:Na2O2+H2O=2Na++2OH-+O2↑B.向Al2(SO4)3溶液中加入过量的氨水:Al3++4NH3·H2O=AlO2-+4NH4++2H2OC.向Ba(OH)2溶液中滴加NaHSO4溶液至中性:Ba2++OH-+H++SO42-=BaSO4↓+H2OD.向海带灰浸出液中加入硫酸、双氧水:2I-+2H++H2O2=I2+2H2O11.下列实验“操作和现象”与“结论”对应关系正确的是12.用CO合成甲醇(CH3OH)的化学方程式为CO(g)+2H2(g)CH3OH(g) ΔH<0,按照相同的物质的量投料,测得CO在不同温度下的平衡转化率与压强的关系如右下图所示。
绝密★启用前2012年普通高等学校招生全国统一考试(北京卷)理科综合能力测试本试卷共32题,共300分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
生物部分一、选择题:本题共5个小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞中不能合成ATP的部位是A.线粒体的内膜B.叶绿体中进行光反应的膜结构C.内质网的膜D.蓝藻(蓝细菌)中进行光反应的膜结构2.从生命活动的角度理解,人体的结构层次为A.原子、分子、细胞器、细胞B.细胞、组织、器官、系统C.元素、无机物、有机物、细胞D.个体、种群、群落、生态系统3.金合欢蚁生活在金合欢树上,以金合欢树的花蜜等为食,同时也保护金合欢树免受其他植食动物的伤害。
如果去除金合欢蚁,则金合欢树的生长减缓且存活率降低。
由此不能得出的推论是A.金合欢蚁从金合欢树获得能量B.金合欢蚁为自己驱逐竞争者C.金合欢蚁为金合欢树驱逐竞争者D.金合欢蚁和金合欢树共同(协同)进化4.下图所示实验能够说明A.病毒抗原诱导B细胞分化的作用B.浆细胞产生抗体的作用C.病毒刺激淋巴细胞增殖的作用D.效应T淋巴细胞的作用5.高中生物学实验中,在接种时不进行严格无菌操作对实验结果影响最大的一项是A.将少许干酵母加入到新鲜的葡萄汁中B.将毛霉菌液接种在切成小块的鲜豆腐上C.将转基因植物叶片接种到无菌培养基上D.将土壤浸出液涂布在无菌的选择培养基上二、非选择题:6.为研究细胞分裂素的生理作用,研究者将菜豆幼苗制成的插条插入蒸馏水中(图1)。
北京市西城区2011-2012学年度第二学期一模高三语文试卷2012.4注意事项:1.本试卷分两部分,共150分,考试时间为150分钟;2.将学校、班级、姓名填在弥封线内;3.将答案全部写在答题纸上;4.考试结束,将试卷与答题纸一并交回。
第一部分(选择题,共27分)一、本大题共5小题,每小题3分,共15分。
1.下列词语中,字形和加点的字的读音全都正确的一项是A.化妆品寥若辰星标识.(shí)心广体胖.(pán)B.孰不知相辅相成着.(zhāo)急发生口角.(jué)C.荧光屏贸然行事揩.(kāi)油犯罪未遂.(suì)D.流水账鞭辟入理结束.(shù)量.体裁衣(liáng)2.下列句子中,加点的成语使用正确的一项是A.李实哲是个胸无城府....的天才棋手,围棋下得出神入化,在出席新闻发布会时却常常出言无忌,因为自己的直率他付出过不少代价。
B. 足坛反赌扫黑接近尾声,对于涉嫌行贿的俱乐部是否会受处罚,足协一位官员的表态似是而非....:“一切要等审判结束后才有结果。
”C. 上海的婚宴普遍在晚上举行,一般选择在吉时6:08开宴,可是总有些接到请柬的不速之客....姗姗来迟,这让婚宴主办者颇为尴尬。
D. 部分司机认为高速公路宽阔,只要车少就可天马行空....地自由驰骋,其实这种想法十分危险,因为人在大意时反应速度会大大降低。
3.下列句子中,没有..语病的一句是A. 近日,美国宇航局的探测器有史以来第一次直接探测到的来自太阳系之外的粒子,这一发现首次让我们有机会一窥所谓的“恒星际介质”。
B. 今年,北京将新增20万亩林地,主要种植在受污染物影响较大的地方,如高速路或主干道的路边,对尾气削减和扬尘会有很好的作用。
C. “1·28”中国公民被劫持事件发生后,苏丹政府全力解救,并表态将采取切实措施确保所有在苏中资企业的安全,避免类似事件不再发生。
D. 进城务工人员子女在流入地学习多年后回乡参加高考,很难适应家乡的考试要求,据悉,我国将出台允许这类考生在流入地参加高考的政策。
4.下列有关文学常识的表述,有错误...的一项是A.唐代白居易倡导新乐府运动,主张“文章合为时而著,歌诗合为事而作”,其作品《卖炭翁》《石壕吏》《琵琶行》均体现出现实主义风格。
B.中国古代史书有多种体例,主要有编年体(如《左传》)、国别体(如《战国策》)、纪传体(如《史记》)等,有些史书具有较强的文学性。
C.鲁迅的名作《祝福》,选自他的短篇小说集《彷徨》,小说中祥林嫂、柳妈、鲁四老爷等人物生活的典型环境——鲁镇,是旧中国的缩影。
D.讽刺喜剧《威尼斯商人》是英国著名剧作家莎士比亚的代表作之一,该剧塑造了夏洛克这一唯利是图、冷酷无情的高利贷者的典型形象。
5. 下列依次在①②③处填入的句子或词语,衔接最恰当的一项是莫高窟大门外,有一条河,过河有一溜空地,①。
塔呈圆形,状近葫芦,外敷白色。
从几座坍弛的来看,塔心竖一木桩,②。
历来住持莫高窟的僧侣都不③,从这里也可找见证明。
夕阳西下,朔风凛冽,这个破落的塔群更显得悲凉。
A.①空地上高高低低建着几座僧人圆寂塔②基座垒以青砖,四周以黄泥塑成③富余B.①几座僧人圆寂塔高高低低地建在空地上②基座垒以青砖,四周以黄泥塑成③富裕C.①几座僧人圆寂塔高高低低地建在空地上②四周以黄泥塑成,基座垒以青砖③富余D. ①空地上高高低低建着几座僧人圆寂塔②四周以黄泥塑成,基座垒以青砖③富裕二、本大题共4小题,每小题3分,共12分。
阅读下面的文言文,完成6-9题。
尝试观上古记,三王①之佐,其名无不荣者,其实②无不安者,功大也。
《诗》云“雨我公田,遂及我私”,三王之佐,皆能以公及其私矣。
俗主之佐,其欲名实也,与.三王之佐同,而.其名无不辱者,其实无不危者,无公故也。
皆患其身不贵于国也,而不患其主之不贵于天下也;皆患其家之.不富也,而不患其国之不大也。
此所以欲荣而.愈辱,欲安而益危。
民之治乱在于有司,今处官则荒乱,临财则贪得,列近则持谀,将众则疲怯,以此厚望于.主,岂不难哉!今有人于此,修身会计则可耻,临财物资赆.则为己。
若此而富者,非盗则无所取。
故荣富非自至也,缘功伐.也。
今功伐甚薄而所望厚,诬也;无功伐而求荣富,诈也。
诈诬之.道,君子不由。
人之议多曰:“上用我,则国必无患。
”然用己未必是也。
己有患,用己于.国,恶得无患乎?而莫若修身自贤。
己,可制也;释其所制而夺乎其所不制,悖。
则未用其治国治官,宜也。
若夫内事亲,外交友,虽可达也,然事亲未孝,交友未笃.,是所未达,恶能善.之矣?故论人无以其所未达,而用其所已达。
古之事君者,必先用能,然后任;必反情③,然后受。
主虽过与.,臣不徒取。
忠臣之行,近知本矣。
(取材自《吕氏春秋·务本》,有改动)[注] ①三王:指夏﹑商﹑周三代之君。
②实:实利,包括地位、俸禄等。
③反情:内省,省察自己。
6.下列语句中,加点的词解释不正确...的一项是A. 临财物资赆.则为己赆:财物B. 故荣富非自至也,缘功伐.也伐:功劳C. 交友未笃.笃:忠厚D. 恶能善.之矣善:认为好7.下列各组语句中,加点的词意义和用法都相同的一组是A.①其欲名实也,与.三王之佐同②主虽过与.,臣不徒取B.①而.其名无不辱者②此所以欲荣而.愈辱C.①皆患其家之.不富也②诈诬之.道,君子不由D.①以此厚望于.主②己有患,用己于.国,恶得无患乎8. 下列对文中语句的理解,不符合...文意的一项是A. 皆患其身不贵于国也理解:(他们)都忧虑自身不能在国内显贵B. 修身会计则可耻理解:(认为)修养自身、合理地支配钱财是可耻的C. 然用己未必是也理解:但是任用自己的君王不一定会这样做D. 古之事君者,必先用能,然后任理解:古代侍奉君主的人,一定先贡献才能,然后才担任官职9.下列的理解和分析,不符合...文意的一项是A.首段引《诗经》的话来说明“为公”与“顾私”的联系。
B.作者认为百官应替君王治理好百姓,方能获得显贵之位。
C.能侍奉父母、结交朋友的人,作者认为用其治国必无患。
D.最后一段总结全文,指出了事君者应该有的姿态和品行。
第二部分(123分)三、本大题共4小题,共30分。
10.第二大题文言文《吕氏春秋·务本》中最后一句说“忠臣之行,近知本矣”,意思是“忠臣行事,接近于懂得什么是根本”。
这里所说的“根本”在文中具体指什么?请就其中一点,结合自己的积累谈谈对“知本”这一问题的认识。
(不少于200字)(10分)11.用斜线(/)给下面短文断句。
(5分)晏子死景公操玉加于晏子而哭之章子谏曰非礼也公曰昔者吾与夫子游于公邑之上一日而三不听寡人今其孰能然吾失夫子则亡何礼之有哀尽而去。
——《晏子春秋·外篇下》12. 在横线处写出诗文原句(任选其中4道题)。
(8分)(1)三岁为妇,靡室劳矣。
_______,_______。
言既遂矣,至于暴矣。
(《诗经·氓》)(2)当其欣于所遇,暂得于己,____ _,_______;及其所之既倦,情随事迁,感慨系之矣。
(王羲之《兰亭集序》)(3)暧暧远人村,_______。
狗吠深巷中,________。
(陶渊明《归园田居》)(4)______ ,则足以拒秦;使秦复爱六国之人,则递三世可至万世而为君,_______?(杜牧《阿房宫赋》)(5)_______,而不知人之乐;人知从太守游而乐,_______ 。
(欧阳修《醉翁亭记》)(6)_______,最难将息。
_______,怎敌他、晚来风急?(李清照《声声慢》)13、阅读下面这首诗,回答其后问题。
(7分)定风波李珣雁过秋空夜未央①,隔窗烟月锁莲塘。
往事岂堪容易想,惆怅,故人迢递在潇湘。
纵有回文②重叠意,谁寄?解鬟临镜泣残妆。
沉水香消金鸭③冷,愁永。
候虫声接杵声④长。
[注]①央:尽。
②回文:前秦才女苏蕙作回文诗以传情意。
③金鸭:如鸭形的金属香炉。
④杵声:以杵捣物声,此指制作寒衣发出的声音。
(1)下列理解和赏析,不正确...的一项是(3分)A.“雁过秋空夜未央”,开篇写北雁南归、长夜漫漫,点明具体时间。
B.“隔窗烟月锁莲塘”的“锁”字,既写景致特征又含人物观景心情。
C.“沉水香消金鸭冷”写香不觉间已燃尽,以香消炉冷表现时间推移。
D.末句“候虫声接杵声长”写周围环境的喧闹使人物的愁绪得以排遣。
(2)全词抒发了主人公长夜难眠之愁,说说引发主人公愁绪的原因有哪些?(4分)四、本大题共2小题,共8分。
阅读下面的文章,完成14、15题。
许多行业都希望创制出柔软而有弹性的电子产品,但要制造这类产品,首先要有合适的底板。
如果将电子电路附着在柔韧而有弹性的底板上,将会对一些行业产生巨大影响,并使“智能产品”无处不在。
如可以检测食品变质与否的包装,可以抗感染的医用绷带,可以监测物体表面裂缝或结构损坏的涂料,可以像纸一样折叠起来的电子屏等等。
美研究人员已经开发出一种新的可行性技术,能以较低成本大规模生产柔性底板..。
新技术使用一种高弹性的聚酰亚胺聚合物作基底,用激光在其上切割出边长3.3毫米的六边形蜂窝图案,然后将提纯到99%的半导体单壁碳纳米管①溶液均匀地沉积到基底上,形成薄膜晶体管阵列,制出了具有优良导电性的薄膜晶体管网底板。
这项技术再与金属喷墨打印相结合,在未来可制造成本低廉的柔韧而有弹性的电子产品。
此项研究报告的首席作者塔卡哈斯说:“高弹性的聚合物具有卓越的柔韧性。
激光切割的可拉伸的六边形蜂窝图案的基板,可以拉长60%。
在未来,还可通过改变孔的大小或优化网格设计,改进其伸展性。
单壁碳纳米管,之所以成为塑料电子产品的顶级半导体材料,主要是因为它具有流动性高的电子。
然而,以往这种纳米管网开/关电流比率较低,这成为电子应用领域的重大问题。
该项研究将碳纳米管溶液提纯到99%,极大地提高了开/关电流比率。
”改进后的单壁碳纳米管薄膜晶体管底板,被该研究小组用来制作“电子皮肤”。
研究人员研制了一种新传感器,能够对触摸有感觉。
该电子皮肤由96个传感器像素阵列组成,每个像素由一个薄膜晶体管控制,能感知24平方厘米范围内的压力分布,灵敏度大大提高。
塔卡哈斯说:“在未来,我们应该能改进我们的底板技术,通过添加各种传感器或其它功能组件来拓展这种底板的应用,有望研发出多种有弹性的电子新产品。
”注:①单壁碳纳米管:一种碳分子纳米材料。
具有良好的导电性与柔韧性,可拉伸。
14.下列说法不符合...文意的一项是(3分)A.如果将相应的电子电路附着在柔韧的薄膜晶体管网底板上,可制作出能检测食品变质与否的包等“智能产品”。
B. 美国研究人员开发出的新技术需要与金属喷墨打印相结合,才能以较低成本制造出导电性能优良的柔性底板。
C.单壁碳纳米管具有流动性高的电子,提高其溶液的纯度,能有效地解决这种纳米管网开/关电流比率较低的问题。