立式组合机床液压系统设计 精品
- 格式:doc
- 大小:507.69 KB
- 文档页数:29
机械设备控制技术课程设计说明书(论文)设计题目:液压传动课程设计所属学院:机械工程学院专业:数控技术姓名:陈延文学号: 5班级:10数控技术起讫时间:指导教师:李闯黑龙江工商职业技术学院目录1.课程设计任务书……………………………………………………第3页2.第一章设计任务书………………………………………………第4页3.第二章液压系统设计计算………………………………………第5页课程设计任务书第一章:设计任务书第一节:设计题目设计一台组合机床动力滑台液压系统。
第二节:设计参数工作台要求完成快进——铣削进给——快退——停止等自动循环,工作台采用平导轨第三节:设计要求1.机床自动化要求:要求系统采用电液结合,实现自动循环,速度换接无冲击,且速度要稳定,能经受必然量的反向负荷。
2.完成如下工作:①按机床要求设计液压系统,绘出液压系统图。
②肯定滑台液压缸的结构参数。
③计算系统各参数,列出电磁铁动作顺序表。
第二章:液压系统设计计算第一节:负载及运动分析1工作负载 负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。
因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:切削力、导轨的摩擦力和惯性力。
导轨的正压力大小等于动力部件的重力.启动时只受静摩擦力,加速时受动摩擦力和惯性力,快进时只受动摩擦力,工进时受切削力和动摩擦力,其中切削力为F fw =10500N,快退时也只受动摩擦力.2摩擦负载因为卧式放置,所以正压力即为重力.由静止开始运动的时候受静摩擦力,运动的时候受动摩擦力.设导轨的静摩擦力为fs F 、动摩擦力为fd F 则: 摩擦负载即为导轨的摩擦阻力:静摩擦阻力 N F f F N s fs 110055002.0=⨯=⨯= 动摩擦阻力 N F f F N d fd 55055001.0=⨯=⨯= 3惯性负载在系统加速的时候受惯性负载N N t m F m 46.2102.080.9605.45500=⨯⨯=∆∆=υ4各工况负载若是忽略切削力引发的颠覆力矩对导轨摩擦力的影响,而且设液压缸的机械效率η=,则液压缸在各工作阶段的总机械负载可以算出,见表1表1 液压缸各运动阶段负载表5快进、工进和快退时间和速度快进时的行程为l=100mm,整个快进进程可看做速度为v1=4.5m/min的匀速运动,所以快进时间为t=l/v1=100/1000⨯60=1S工进时的行程为l=100mm,此进程的速度为v2=60~1000mm/min,所以此进程的工进时间t=l/ v2=100/(60~1000) ⨯60=(6~100)s快退时的行程为l=200mm, 整个快退进程可看做速度为v3=4.5m/min的匀速运动,所以快退时间为t=l/v3=400/1000⨯60=第二节:肯定液压缸参数1.初选液压缸的工作压力参考同类组合机床见表2,初定液压缸的工作压力表 2 各类机械常常利用的系统工作压力2.肯定液压缸的主要结构尺寸本题要求动力滑台的快进快退速度相等,现采用活塞杆固定的单杆式液压缸。
设计总说明任务来源:本课题来源于已有解决问题的设计。
设计标准:按照本工厂实际生产的标准,尽量向国家标准靠拢。
所有图纸应正确、规范、设计结构、工艺合理可行,力求达到产品的标准化、系列化、通用化。
设计原则:在设计过程中严格遵守学校毕业设计的设计原则,根据设计要求完成动力滑台的液压系统设计,在满足生产工艺和加工精度要求的前提下进一步提高精度。
使其在使用较少零部件的情况下更精、更好的完成加工要求,使操作方便、灵活、快捷易于实现自动化。
按照毕业设计任务书要求完成液压系统原理图、液压缸装配图、集成块图、液压控制装置装配图、泵站装配图并编写设计说明书。
本次毕业设计,巩固以前所学的专业知识,以及对其他专业知识的结合。
最后达到自己能够独立查阅相关资料,设计出一整套液压系统的能力和设计类似系统的设计思路。
本文通过对“立式组合机床动力滑台”的工况和工作要求的分析,应用液压技术实现组合机床动力滑台的工作要求。
液压动力滑台的设计要求:在满足基本生产的前提下,应克服原先机械动力滑台的速度换接不平稳、进给速度不稳定、功率利用不合理、精度低且在整个加工过程中不能长期保证、效率低、噪声大、发热量大。
设计应根据各个部分的设计要求详细完成“立式组合机床动力滑台液压系统的设计”。
根据要求主要完成了:液压系统原理图、液压缸、液压控制装置装配图、液压控制集成块、液压泵站装配图的设计。
在设计过程中对所设计液压系统中各组成元件的压力损失、调定压力、系统效率、发热和温升进行了估算。
液压缸的结构及安装形式应进行详细的设计,根据立式组合机床动力滑台的工作要求,本设计采用轴线摆动类安装方式。
液压缸的结构形式采用单耳环式。
在活塞杆的端部设置单耳环,将活塞杆固定,活塞缸带动工作台作往复直线运动。
采用这种安装方式主要考虑到组合机床在加工过程中可能会出现振动和冲击,从而将引起液压缸的挠曲,如果此弯曲变形得不到补偿,将促使活塞杆发生弯曲变形,这一弯曲变形将使活塞发生偏斜破坏液压缸体和密封性,导致液压缸的损坏。
组合机床动力滑台液压系统设计(1) 组合机床动力滑台液压系统设计液压系统是组合机床的重要组成部分,它为机床提供动力和润滑。
本文将介绍一种组合机床动力滑台液压系统的设计。
一、概述液压系统是一种利用液体压力能为主要驱动力的传动方式。
在组合机床中,液压系统主要用于驱动动力滑台,实现工件的加工操作。
本次设计的液压系统主要包括液压泵、油缸、油路和电气控制系统等部分。
二、液压泵液压泵是液压系统的核心部件,它把机械能转化为液压能,为液压系统提供压力油。
本设计选用变量叶片泵作为液压泵,其主要特点包括负载能力强、运行稳定、寿命长、效率高等。
三、油缸油缸是液压系统的执行元件,它将液压能转化为机械能,驱动动力滑台进行运动。
根据本次设计要求,选用双作用活塞式油缸。
这种油缸具有较大的推力和较高的速度,能够满足动力滑台在加工过程中对驱动力和速度的需求。
四、油路油路是液压系统中压力油流动的通道。
本设计采用较为简单的并联油路,即液压泵输出的压力油通过两个分油路分别进入两个油缸,推动活塞运动,实现动力滑台的往复运动。
在油路中设置溢流阀和节流阀,分别用于调节系统的压力和流量。
五、电气控制系统电气控制系统是液压系统的控制中心,它控制液压泵的运行和电磁阀的通断,从而实现液压系统的自动化控制。
本设计选用可编程控制器(PLC)作为控制系统的主要元件,根据加工工艺的要求,PLC控制液压泵和电磁阀的动作,保证动力滑台按要求的程序进行加工操作。
同时,PLC还可以实时检测系统的运行状态,保证系统的稳定性和安全性。
六、系统调试与优化完成液压系统的设计后,需要对系统进行调试和优化,以保证其性能和可靠性。
首先进行空载调试,检查系统是否存在泄漏或异常噪声等问题;然后进行负载调试,在一定的负载条件下测试系统的性能;最后进行加工试验,以检验液压系统在真实加工条件下的性能。
根据试验结果对系统进行优化调整,以使液压系统的性能达到最佳状态。
七、结论本文对组合机床动力滑台液压系统进行了设计。
组合机床液压系统设计1 方案的确定1.1整体性分析要求此液压系统实现的工作循环是:工件夹紧工作台快进工作台1工进工作台2工进工作台快退工件松开。
运动部件重5800N,工作台快进、快退的速度 4.8m/min,工进的速度60—960mm/min,最大行程640mm,工进行程240mm。
最大切削力8000N。
夹紧缸行程30mm,夹紧力35000N。
对于铣削专用机床的液压系统而言,加工的零件需要精度高,定位准确。
所以整个系统的设计要求定位精度高,换向速度快。
在设计阀的时候,考虑这些方面变的尤其重要,要考虑到工作在最低速度时调速阀的最小调节流量能否满足要求。
在行程方面,应该比要求的工作行程大点,包括工作行程、最大行程和夹紧缸行程,主要是考虑到在安全方面和实际运用中。
在压力方面也要考虑到满足最大负载要求。
而且在液压系统能满足要求的前提下,使液压系统的成本较低。
1.2 拟定方案由上述分析可得以下两种方案:方案一液压系统中工作台的执行元件为伸缩缸,工件的夹紧用单杆活塞缸;工作台采用节流阀实现出油口节流调速,用行程阀实现工作台从快进到工进的转换,压力继电器控制一工进与二工进的转换,在工进回路上串接个背压阀;为了防止工件在加工过程中松动,在夹紧进油路上串接个单向阀;工作台的进、退采用电磁换向阀;夹紧缸的夹紧与放松用电磁阀控制。
方案二液压系统中工作台的执行元件为单杆活塞缸,工件的夹紧也采用单杆活塞缸;工作台采用调速阀实现进油口节流调速,也采用行程阀实现工作台从快进到工进的转换,压力继电器控制一工进与二工进的转换,工进时,为了避免前冲现象,在回路上串接个背压阀;夹紧缸上串接个蓄能器和单向阀,避免工件在加工过程中松动;工作台的进、退换向采用电液换向阀,工作台快进时,采用差动连接;夹紧缸的夹紧与放松用电磁阀控制。
方案比较:单杆活塞缸比伸缩缸结构简单,价格便宜,易维护,而且也能满足要求;调速阀的性能比节流阀稳定,调速较好,用于负载变化大而运动要求稳定的系统中;采用出油口调速回路中油液通过节流阀产生的热量直接排回油箱散热;夹紧缸进油口处串接蓄能器,更好的保证工件的夹紧力,使工件在加工过程中始终在夹紧状态。
组合机床液压系统设计摘要:机床的发展由来已久,伴随着科技的创新和进步,机床在现在社会的发展已经处于一个相当高的水平。
机床技术已经趋于成熟和完善,机床的种类也日益增多,许多先进的技术手段也与机床生产相结合。
组合机床是一种专门为了某些专业构件而研究的,它在机床通用部分的基础上,加入专用的设备或者工艺的专用机床[1]。
液压技术在组合机床中逐渐应用,使组合机床的效率更高,较以前更为先进。
文章对组合机床及组合机床的液压系统进行分析,提出组合机床液压系统的优化设计。
关键字:机床;组合机床;液压系统;生产;发展中图分类号:tg502.120 前言机床有着悠久的发展历史,随着时代的变迁,资源的开发和利用,机床也不断的在改进和晚上。
机床被誉为是“生产机器的机器”,它的出现和发展方便了生产和生活,使许多构件和细小零件能够被大量的生产,并且质量较好,符合生产和生活的使用要求[2]。
到现在机床技术已经发展相对成熟,各种各样的机床被发明如,组合机床、数控机床等。
而且机床技术也和许多的先进技术相互结合如,计算机技术、液压技术、编程技术、电磁技术、艺术加工等。
有了这些技术的促进,机床发展更加成熟和完善,在精度和加工速度上都有显著的提高,使机床生产逐渐渗透到各个领域中,是人们必不可少的生产设备。
文章对组合机床中的液压系统设计进行研究和探讨,并且对其设计的优化措施进行总结[3]。
1 组合机床及组合机床液压系统组合机床是在机床通用构件的基础之上,加入制作指定零件和加工技术的其他专用构件和模具的专用机床。
组合机床有两种即为半自动机床和自动机床,这种机床的生产对象比较单一,是专门为某种特殊零件而产生的,但是这种机床往往是采用更加专业的刀具、转轴,多种工序同时进行加工制作,效率极高,产品的生产质量也非常好[4]。
液压技术是近代在组合机床中的一项重要技术,组合机床的液压系统能够通过液压来增强机床工作时的作用力,让机床的工作效率和质量都有进一步的提高。
组合机床动力滑台液压系统的设计目录1 液压传动的发展概况和应用31.1液压传动的发展概况31.2液压传动在机械行业中的应用32 液压传动的工作原理和组成32.1工作原理42.2液压系统的基本组成43 液压传动的优缺点43.1液压传动的优点43.2液压传动的缺点54 设计的技术要求和设计参数 (6)5液压系统工况分析64.1运动分析64.2负载分析64.2.1 负载计算64.2.2 液压缸各阶段工作负载计算:74.2.3 绘制动力滑台负载循环图,速度循环图(见图1)74.2.4 确定液压缸的工作压力错误!未定义书签。
4.2.5 确定缸筒内径D,活塞杆直径d104.2.6 液压缸实际有效面积计算104.2.7 最低稳定速度验算。
104.2.7 计算液压缸在工作循环中各阶段所需的压力、流量、功率列于表(1)错误!未定义书签。
5拟定液压系统图105.1液压泵型式的选择105.2选择液压回路115.3组成液压系统126 液压元件选择146.1选择液压泵和电机146.1.1 确定液压泵的工作压力146.1.2 液压泵的流量146.1.3 选择电机146.2辅件元件的选择176.3确定管道尺寸187 液压系统的性能验算197.1管路系统压力损失验算197.1.1 判断油流类型19197.1.2 沿程压力损失∑△P17.1.3 局部压力损失∑△P1927.2液压系统的发热与温升验算227.2.1 液压泵的输入功率227.2.2 有效功率22227.2.3 系统发热功率Ph7.2.4 散热面积227.2.5 油液温升△t228注意事项23结束语24谢辞25文献261 液压传动的发展概况和应用1.1 液压传动的发展概况液压传动和气压传动称为流体传动,是根据1650年帕斯卡提出的液体静压力传动规律---帕斯卡原理,18世纪建立的两个原理---连续方程和伯努力方程奠定基础,而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
组合机床液压系统原理图
2009-09-16 11:06 目前许多机床动力滑台采用了液压回路,其控制部分大多数是电气控制,硬件接线多,系统可靠性差、工作效率低,有的液压回路只有一个工进速度,有的液压回路虽有两工进速度,但一工进和二工进速度换接时,二工进可调节的速度最大不能超过一工进的最小速度,机床调速范围窄,不能根据工艺要求调节速度。
基于以上原因,我们应某机械修理厂的要求,帮助他们将一台双面单工位组合机床的动力滑台液压回路设计为一种能实现此功能的二次进给液压新回路,并以PM作为液压系统的控制系统,提高机床的智能化控制程度。
1 双面单工位组合机床动力滑台原液压回路
双面单工位组合机床有2个HY型液压动力滑台,动力滑台是组合机床上用来实现进给运动的一种通用部件,液压动力滑台的运动是靠液压系统驱动的。
图1a为双面单工位组合机床原只有一工进速度的动力滑台液压系统图,由于左、右液压滑台工作油路相同,只画出一个液压滑台的油路。
这种液压回路只有一个工进速度,调速范围窄,生产效率低;且液压回路复杂,油路多,集成阀块庞大,液压故障不易查明,安装维修困难。
图1 动力滑台液压系统图
2 双面单工位组合机床动力滑台两工进速度新回路
针对原回路存在的缺陷,设计了一种两工进速度换接新回路。
图1b为双面单工位组合机床改进后的两工进速度换接的动力滑台液压系统图。
图2为双面单工位组合机床工作循环示意图。
立式组合机床液压课程设计重庆大学本科液压传动系统课程设计(说明书)方案的确定1 方案的确定1.1整体性分析要求此液压系统实现的工作循环是:工件夹紧工作快进工作台工进工作台快退工作台原位停止工件松开液压泵卸荷。
滑台的重量为80000N,快进快退的速度0.1m/s,滑台工进速度(1-10) mm/s 快进行程120mm,工进行程80mm ,切削负载为28000N.对于立式组合机床的液压系统而言,加工的零件需要精度高,定位准确。
所以整个系统的设计要求定位精度高,换向速度快。
在设计阀的时候,考虑这些方面变的尤其重要,要考虑到工作在最低速度时调速阀的最小调节流量能否满足要求,且在工作位置换的时候要考虑速度的平稳性,例如在快进至工进的过程中加入减速环节,使速度更加的平稳。
在行程方面,应该比要求的工作行程大点,包括工作行程、最大行程和夹紧缸行程,主要是考虑到在安全方面和实际运用中。
在压力方面也要考虑到满足最大负载要求。
而且在液压系统能满足要求的前提下,使液压系统的成本较低。
1.2 拟定方案方案一液压系统中工作台的执行元件为伸缩缸,工件的夹紧用单杆活塞缸;工作台采用节流阀实现出油口节流调速,用行程阀实现工作台从快进到工进的转换,在工进回路上串接个背压阀;为了防止工件在加工过程中松动,在夹紧进油路上串接个单向阀;工作台的进、退采用电磁换向阀;夹紧缸的夹紧与放松用电磁阀控制。
方案二液压系统中工作台的执行元件为单杆活塞缸,工件的夹紧也采用单杆活塞缸;工作台采用调速阀实现进油口节流调速,也采用行程阀实现工作台从快进到工进的转换,工进时,为了避免前冲现象,在回路上串接个背压阀;夹紧缸上串接个蓄能器和单向阀,避免工件在加工过程中松动;工作台的进、退换向采用电液换向阀,工作台快进时,采用差动连接;夹紧缸的夹紧与放松用电磁阀控制。
重庆大学本科液压传动系统课程设计(说明书)方案的确定1.3比较方案并确定方案单杆活塞缸比伸缩缸结构简单,价格便宜,易维护,而且也能满足要求;调速阀的性能比节流阀稳定,调速较好,用于负载变化大而运动要求稳定的系统中;采用进油口调速回路;夹紧缸进油口处串接蓄能器,更好的保证工件的夹紧力,使工件在加工过程中始终在夹紧状态。
组合机床滑台液压系统设计The design of hydraulic system of modular machine tool slide组合机床滑台液压系统设计摘要作为一种高效率的专用机床,组合机床在大批量机械加工生产中应用广泛。
本次课程设计将以组合机床动力滑台液压系统设计为例,介绍该组合机床液压系统的设计方法和设计步骤,其中包括组合机床动力滑台液压系统的工况分析、主要参数确定、液压系统原理图的拟定、液压元件的选择以及系统性能验算等。
组合机床是以通用部件为基础,配以按工件特定外形和加工工艺设计的专用部件和夹具而组成的半自动或自动专用机床。
组合机床一般采用多轴、多刀、多工序、多面或多工位同时加工的方式,生产效率比通用机床高几倍至几十倍。
组合机床兼有低成本和高效率的优点,在大批量生产中得到广泛应用,并可用以组成自动生产线。
组合机床通常采用多轴、多刀、多面、多工位同时加工的方式,能完成钻、扩、铰、镗孔、攻丝、车、铣、磨削及其他精加工工序。
液压系统由于具有结构简单、动作灵活、操作方便、调速范围大、可无级连续调节等优点,在组合机床中得到了广泛应用。
液压系统在组合机床上主要是用于实现工作台的直线运动和回转运动,本次设计组合机床动力滑台为一台卧式钻、镗组合机床上的动力滑台液压系统要求完成动作为“快进—工进—快退—原位停止”的工作循环:最大切削力为FL=12KN,动力头自重FG=20KN,工作进给要求能在0.02—1.2m/min的范围内无级调速,快进、快退速度为6m/min;工进行程为100mm,快进行程为300mm;采用平导轨,其静、动摩擦系数取fs=0.2、fd=0.1;往复运动的加速、减速时间要求不大于0.5S。
关键词:液压系统修正节流阀分流集流阀液压锁The design of hydraulic system of modular machine tool slideAbstract as a special machine for high efficiency, the combination of machine tools are widely used in large batch machining production. The curriculum designto combination machine tool hydraulic pressure system design as an example,introduces the design method of the hydraulic system of modular machine tooland the design procedure, including combination machinetool hydraulic system of power slipway condition analysis, the main parameters, hydraulic system principle diagram of the quasi fixed, the choice of hydraulic components and systemperformance checking.Combination machine is based on common components, with special componentsdesigned according to workpiece specific shape and process and fixture andconsisting of semi-automaticor automatic machine tool. Combination machinegenerally adopts the multi axis, multi knife, multi process, multi or multistage and processing, production efficiency several times to several times higher than the general machine tool. The combination machine has the advantages of high efficiency and low cost, widely used in mass production, and can be used tocompose the automatic production line. Combination machine tools usually adopts the multi axis, multiknife, multi-faceted, multi station and processing, can complete thedrilling, boring, tapping, reaming, expansion, cars, milling, grindingand other finishing processes.The hydraulic system has the advantages of simple structure, flexible action,convenient operation, wide speed range, the advantages of continuous stepless regulation, has been widely applied in the modular machine tool. Hydraulicsystem in modular machine is mainly used to achieve the worktable linearmovement and rotary movement, the design of combined machine tool power sliding table is a horizontal drilling, hydraulic system of power slipway boring modular machine to complete the requirements of action as "fast forward -feeding - rewind in-situ stop" work cycle: the maximum cutting force for FL=12KN,a power head weight FG=20KN, feed requirements canbe stepless in the range of 0.02 - 1.2m/min in speed, fast forward, rewind speed is6m/min; feedingschedule for 100mm, fast forward stroke is 300mm; using flat guide rail, thestatic,dynamic friction coefficient fs=0.2, fd=0.1; acceleration, the reciprocating motion of the time requirements not more than 0.5S.Key words: Hydraulic system Amendment throttle valve Flow distributing and collecting valve Hydraulic lock目录第一章绪论 (1)1.1 液压传动的发展状况 (1)1.2 液压技术的应用 (2)第二章组合机床滑台设计依据 (2)第三章工况分析 (2)3.1 负载分析 (2)3.2 负载图和速度图 (3)第四章初步拟定液压系统原理图 (4)4.1 选择液压基本回路 (4)4.2 组成液压系统原理图 (5)第五章确定液压系统参数 (6)5.1 初选液压缸工作压力 (6)5.2 计算液压缸的结构尺寸 (7)5.3 绘制工况图 (8)第六章液压元件的计算和选择 (8)6.1 确定液压泵的规格和电机功率 (8)6.2 选择液压阀 (9)6.3 确定管道尺寸 (10)6.4 确定油箱容量 (11)第七章液压系统的性能验算 (11)7.1 液压缸的速度验算 (11)7.2 回路压力损失验算 (11)7.3 液压系统发热与温升验算 (12)第八章液压技术未来的发展 (13)总结 (14)致谢 (14)参考文献 ....................................................................................................错误!未定义书签。
液压传动课程设计--设计一台立式镗孔组合机床液压系统液压系统设计思路:1. 确定液压系统的工作压力和流量要求。
根据立式镗孔组合机床的加工特点和工作要求,确定系统的最大工作压力和流量。
2. 选取液压元件。
根据系统的工作压力和流量要求,选取液压泵、液压马达、液压阀等液压元件。
液压泵的类型可以选择齿轮泵、叶片泵或活塞泵等。
液压马达的类型可以选择齿轮马达或液压马达等。
液压阀的选择要根据系统的控制要求,如选择压力阀、流量阀、方向阀等。
3. 确定液压系统的布局。
根据立式镗孔组合机床的结构和工作要求,确定液压泵、液压马达、液压阀等液压元件的布置位置和互连关系。
4. 设计液压系统的工作流程。
根据立式镗孔组合机床的工作流程和工艺要求,确定液压系统的工作流程。
包括液压元件的工作顺序、开关时间及液压系统的控制方式等。
5. 进行液压系统的参数计算和选型。
根据液压系统的工作压力和流量要求,以及液压元件的选型,进行各液压元件的参数计算和选型。
6. 进行液压系统的零件选配和设计。
根据液压系统的工作压力和流量要求,选配和设计液压系统所需的零件,如管路、接头、密封件等。
7. 进行液压系统的动态分析和优化设计。
通过使用液压系统的动态模拟软件,对液压系统进行动态分析和优化设计,以提高系统的稳定性和性能。
8. 进行液压系统的总体集成和装配调试。
根据液压系统的设计要求,进行液压系统的总体集成和装配调试,以确保液压系统的正常运行。
9. 进行液压系统的系统调试和性能测试。
对液压系统进行系统调试和性能测试,以检查液压系统的正常运行和满足工艺要求。
10. 进行液压系统的运行监测和维护保养。
对液压系统进行运行监测和维护保养,定期检查液压系统的工作状态和性能,及时处理可能出现的故障和异常情况。
液压课程设计立式组合机床液压系统设计XXX学院本科学生课程设计任务书注:任务书由指导教师填写。
目录摘要 (I)ABSTRACT (II)1 方案的确定 (1)1.1整体性分析 (1)1.2拟定方案 (1)1.3比较方案并确定方案 (2)2工况分析 (3)2.1运动参数分析 (3)2.2动力参数分析 (3)2.3负载图和速度图的绘制 (4)3液压缸尺寸和所需流量 (5)3.1液压缸尺寸计算 (5)3.2确定液压缸所需流量 (5)4拟定液压系统图 (7)4.1确定液压传动系统的类型 (7)4.2液压回路的选择 (7)4.3拟定液压系统传动系统原理图 (11)5选择液压元件的确定辅助装置 (12)5.1选择液压泵 (12)5.2电机的选择 (12)5.3选择阀类元件 (12)5.4确定油管尺寸 (13)6油箱的设计 (14)6.1油箱容量的确定 (14)6.2估算油箱的长、宽、高 (14)6.3确定油箱壁厚 (14)6.4确定液位计的安装尺寸 (14)6.5隔板尺寸的计算 (15)6.6油箱结构的设计 (16)6.7辅助元件的选择 (17)6.8油箱其他附件的选择 (18)7液压系统的性能验算 (19)7.1回路中压力损失 (19)7.2油液温升验算 (20)7.3液压系统的效率 (21)7.4液压系统的发热升温验算 (22)结论 (23)参考文献 (24)致谢 (25)组合机床液压系统设计试设计立式组合机床的液压系统,已知切削负载为18258N,滑台工作速度为50mm/min,快进和快退速度为6.3m/min,滑台(包括动力头)的重量为97785N,往复运动的加速(减速)的时间为t =0.05 S,滑台用平面导轨,静摩擦系数fs=0.2,动摩擦系数fd=0.1,快进行程为114mm,工进行程为57mm。
1 方案的确定1.1整体性分析要求此液压系统实现的工作循环是:工作快进工作台工进工作台快退工作台原位停止。
滑台的重量97785N,快进快退的速度6.3m/min,滑台工进速度50 mm/min,快进行程114mm,工进行程57mm ,切削负载为18258N。
对于立式组合机床的液压系统而言,加工的零件需要精度高,定位准确。
所以整个系统的设计要求定位精度高,换向速度快。
在设计阀的时候,考虑这些方面变的尤其重要,要考虑到工作在最低速度时调速阀的最小调节流量能否满足要求。
在行程方面,应该比要求的工作行程大点,包括工作行程、最大行程和夹紧缸行程,主要是考虑到在安全方面和实际运用中。
在压力方面也要考虑到满足最大负载要求。
而且在液压系统能满足要求的前提下,使液压系统的成本较低。
1.2 拟定方案方案一液压系统中工作台的执行元件为伸缩缸;工作台采用节流阀实现出油口节流调速,用行程阀实现工作台从快进到工进的转换,在工进回路上串接个背压阀;为了防止工件在加工过程中松动,在夹紧进油路上串接个单向阀;工作台的进、退采用电磁换向阀。
方案二液压系统中工作台的执行元件为单杆活塞缸;工作台采用调速阀实现进油口节流调速,也采用行程阀实现工作台从快进到工进的转换,工进时,为了避免前冲现象,在回路上串接个背压阀;夹紧缸上串接个蓄能器和单向阀,避免工件在加工过程中松动;工作台的进、退换向采用电液换向阀,工作进时,采用差动连接。
1.3比较方案并确定方案单杆活塞缸比伸缩缸结构简单,价格便宜,易维护,而且也能满足要求;调速阀的性能比节流阀稳定,调速较好,用于负载变化大而运动要求稳定的系统中;采用出油口调速回路中油液通过节流阀产生的热量直接排回油箱散热;夹紧缸进油口处串接蓄能器,更好的保证工件的夹紧力,使工件在加工过程中始终在夹紧状态。
电液换向阀的信号传递快,配合液压动力的输出力大、惯性小、反映快的优点使控制灵活、精度高、快速性好。
综上比较选择方案二较好。
2 工况分析2.1运动参数分析首先根据主机要求画出动作循环图(图一)。
图一2.2动力参数分析计算各阶段的负载工作负载:由已知条件可知切削力t F =18258N 。
惯性负载:m F =t V g G ∆∆⨯=97785 6.39.80.0560⨯⨯=20953.93N (参考机床的工作台加速时间,取t ∆=0.05s )阻力负载:静摩擦阻力0.29778519557fs F N =⨯=动摩擦阻力0.1977859778.5fd F N =⨯=(滑动导轨:铸铁对铸铁—启动低速时0.1~0.20u =,v<0.16m/s )表1 液压缸在各个工作阶段的负载值其中η=0.92.3负载图和速度图的绘制负载图按上面的数值绘制,如图2所示。
速度图按已知数值13 6.3/min v v m ==,工进的速度m in /502mm v =。
3 液压缸尺寸和所需流量3.1液压缸尺寸计算3.1.1工作压力的确定:工作压力可根据负载和主机类型确定,由(书)表11—3得出:4a p MP =3.1.2计算液压缸尺寸:由于立式组合机床工作台快进和快退速度相同,因此选用单杆活塞式液压缸,并使122A A =,快进时采用差动连接,因管路中有压力损失,快进时回油路压力损失取5510p ∆=⨯Pa ,快退时回油路压力损失亦取5510p ∆=⨯Pa 。
工进时,为使运动平稳,在液压缸回路油路上须加背压阀,背压力值一般为a P 510)10~5(⨯,选取背压52610p =⨯Pa 。
根据11220p A p A F =+,可求出液压缸大腔面积1A 为2016512977850.026()0.54100.5610F A m P P ===-⨯-⨯⨯0.183()D m ===(3-2)根据GB2348-80圆整成就近的标准值,得D=220mm,液压缸活塞杆直径141.42d mm ===,根据GB2348-80就近圆整成标准值d=160mm 。
3.1.3缸径、杆径取标准值后的有效工作面积:无杆腔有效面积 221200*********4A D mm ππ==⨯⨯≈ 活塞杆面积 2232009616016044mm d A ≈⨯⨯==ππ有杆腔有效面积2213314152009611319A A A mm =-=-=3.2确定液压缸所需流量66313141510 6.319791410/min 197.91/min Q AV m L --==⨯⨯=⨯=快进快66321131910 6.371309.710/m i n 71.3/m i nQ A V m L --==⨯⨯=⨯=快退快663131415100.051570.7510/min 1.6/min Q AV m L --==⨯⨯=⨯=工进工进液压缸回油路上有背压P 2 ,保证速度平稳。
根据《现代机械设备设计手册》中推荐值,取P2=0.8MPa ,快进时液压缸虽做差动连接,但油管中有压降p ,取p =0.5MPa 。
快退市油腔中有被压,这时可取p =0.6MPa根据上述计算数据,可估算液压缸在各个工作段中的压力、流量和功率,如下表所示:min —4 拟定液压系统图液压传动系统的草图是从液压系统的工作原理和结构组成上来具体体现设计任务所提出的各项要求,它包括三项内容:确定液压传动系统的类型、选择液压回路和组成液压系统。
确定液压传动系统的类型就是在根据课题提供的要求下,参照立式组合机床液压系统的具体特点,选择适合的系统类型。
选择液压回路就是在根据课题提供的要求和液压传动系统具体运动特点,选择适合本课题的液压回路。
组成液压系统就是在确定各个液压回路的基础上,将各个液压回路综合在一起,根据课题的实际要求,对液压系统草图进行适当的调整和改进,最终形成一个合理有效、符合课题设计要求的液压传动系统原理图。
4.1 确定液压传动系统的类型液压传动系统的类型究竟采用开式还是采用闭式,主要取决于它的调速方式和散热要求。
一般的设计,凡具备较大空间可以存放油箱且不另设置散热装置的系统,要求尽可能简单的系统,或采用节流调速或容积---节流调速的系统,都宜采用开式。
在开式回路中,液压泵从油箱吸油,把压力油输送给执行元件,执行元件排出的油则直接流回油箱。
开式回路结构简单,油液能得到较好的冷却,但油箱的尺寸大,空气和赃物易进入回路;凡容许采用辅助泵进行补油并通过换油来达到冷却目的的系统,对工作稳定和效率有较高要求的系统,或采用容积调速的系统都宜采用闭式。
在闭式回路中,液压泵的排油管直接与执行元件的进油管相连,执行元件的回油管直接与液压泵的吸油管相连,两者形成封闭的环状回路。
闭式回路的特点是双向液压泵直接控制液压缸的换向,不需要换向阀及其控制回路,液压元件显著减少,液压系统简单,用油不多而且动作迅速,但闭式回路也有其缺点,就是回路的散热条件较差,并且所用的双向液压泵比较复杂而且系统要增设补、排油装置,成本较高,故应用还不普遍。
本课题设计的液压传动系统类型采用开式液压系统,系统的结构简单。
4.2 液压回路的选择液压机械的液压系统虽然越来越复杂,但是一个复杂的液压系统往往是由一些基本回路组成的。
液压基本回路就是由有关液压元件组成,能够完成某一特定功能的基本回路。
在本设计中选择五种回路,分别为调压回路、调速回路、平衡回路、换向回路和卸荷回路。
4.2.1 调压回路调压回路的功用在于调定或限制液压源的最高工作压力,也就是说能够控制系统的工作压力,使它不超过某一预先调定好的数值,或使工作机构在运动过程中的各个阶段具有不同的工作压力。
调压控制回路包括连续调压回路、多级调压回路、恒压控制回路等。
液压源工作压力级的多少,压力在调节、控制或切换方式上的差异,是这种回路出现多种结构方案的原因,也是对它进行评比、选择时要考虑的因素。
该设计选择溢流阀单级调压回路,溢流阀开启压力可通过调压弹簧调定,如果调定溢流阀调压弹簧的顶压缩量,便可设定供油压力的最高值。
系统的实际工作压力有负载决定,当外负载压力小于溢流阀调定压力时,溢流阀处无溢流流量,此时溢流阀起安全阀作用。
图示4-1油路可靠,价格便宜。
图4-1 调压回路4.2.2 调速回路调速阀调速回路由调速阀、溢流阀、液压泵和执行元件等组成。
它通过改变调速阀的通流面积来控制和调节进入或流出执行元件的流量,从而达到调速的目的。
这种调速回路具有结构简单、工作可靠、成本低、使用维护方便、调速范围大等优点。
用流量控制阀实现速度控制的回路有三种基本方式,节流调速回路分为进口节流调速回路、出口节流调速回路、旁通节流调速回路等。
本设计选用单向进油节流调速回路。
用溢流阀和串联在执行元件进油路上的调速阀调节流入执行元件的油液流量,从而控制执行元件的速度。
基本回路如图4-2所示:图4-2 调速回路4.2.3 平衡回路平衡回路的功用在于防止垂直或倾斜放置的液压缸和与之相连的工作部件因自重而自行下落。