3.4.3实际问题与一元一次方程(3)篮球积分表问题
- 格式:ppt
- 大小:1.69 MB
- 文档页数:14
3.4.3 实际问题与一元一次方程(三)球赛积分问题导学案一、学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:列一元一次方程解决球赛积分问题.难点:将实际问题抽象为方程的过程中,如何找等量关系.二、学习过程:合作探究问题1:你能从表格中了解到哪些信息?问题2:你能从表格中看出负一场积多少分吗?问题3:你能进一步算出胜一场积多少分吗?问题4:用式子表示总积分与胜、负场数之间的数量关系.解:如果一个队胜m场,则负_______场,胜场积分为_____,负场积分为_______. 总积分为:____________________.问题5:某队的胜场总积分能等于它的负场总积分吗?思考:x表示什么量?它可以是分数吗?问题6:某队的胜场总积分能等于它的负场总积分的2倍吗?问题7:如果删去积分榜的最后一行,你还能求出胜一场和负一场的得分吗?解:设胜一场得x分,则东方队负场总积分为______分,由此可知负一场得_____分.光明队负场总积分为_____分,由此可知负一场得_____分.总结提升球赛积分问题的解题要点:1.解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2.用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.考点解析考点1:积分问题★★★例1.某市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得1分,负一场不得分.某校中学生足球代表队的平场数是负场数的2倍,共得17分,该队胜了多少场?【迁移应用】1.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队比赛14场得到23分,则该队胜了_____场.2.一张试卷共有25道选择题,做对一道题得4分,不做或做错一道题倒扣1分.某同学做了全部的试题,共得了70分,则他做对的题数为______.3.在一次有12个队参加的足球循环赛(每队需要赛11场)中,规定胜一场记3分,平一场记1分,负一场记0分.某队在这次循环赛中,所胜场数比所负场数多2场,结果共积18分,该队胜、负、平各几场?考点2:积分问题中可能性的探究★★★★★ 例 2.学校组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录的是5名参赛者的得分情况:(1)由表格知,答对一题得____分,答错一题得____分.(2)参赛者F 得了82分,他答对了几道题? (3)参赛者G 说他得了90分,你认为可能吗?为什么?【迁移应用】爷爷和小明下了12盘棋,未出现和棋,两人得分相同,爷爷赢一盘得1分,小明赢一盘得3分.(1)爷爷赢了多少盘?(2)会出现爷爷的得分是小明得分的2倍的情况吗?(3)会出现爷爷的得分比小明多4分的情况吗?请说明理由.。
34实际问题与一元一次方程3——球赛积分表问题教学案问题背景在球赛中,各个参赛队伍的胜负情况需要通过积分表来记录和排名。
积分表通常包含每个队伍的积分和得失球情况,而这些数据之间存在着一定的关系。
通过一元一次方程,我们可以解决球赛积分表问题,帮助学生理解和解决实际问题。
学习目标•理解一元一次方程的基本概念和解法;•掌握利用一元一次方程解决球赛积分表问题的方法;•培养学生运用数学知识分析和解决实际问题的能力。
学习内容和步骤1. 一元一次方程复习•复习一元一次方程的定义和基本形式;•复习一元一次方程的解法,包括一元一次方程的两边加减同一个数、乘除同一个非零的数的性质等。
2. 球赛积分表问题介绍•通过实例引入球赛积分表问题,并指导学生理解问题;•引导学生通过观察和分析球赛积分表,总结出球队胜负关系及得失球之间的关系。
3. 建立一元一次方程模型•引导学生将球队胜负关系及得失球之间的关系转化为一元一次方程;•指导学生根据球队胜负情况和得失球情况建立相应的一元一次方程。
4. 解决球赛积分表问题•引导学生解一元一次方程,求得各个队伍的得分和得失球数;•引导学生根据得到的解,分析和比较各队伍的排名。
5. 练习与应用•给学生一些练习题,让他们巩固和应用所学知识;•引导学生将一元一次方程应用到其他实际问题中,培养他们的问题解决能力。
教学评估知识检测•出一些相关的选择题、填空题或解答题,测试学生对一元一次方程和球赛积分表问题的理解和掌握程度。
实际问题解决能力评估•给学生一个球赛积分表问题或其他实际问题,要求他们使用一元一次方程解决并给出解答,评估他们的实际问题解决能力。
扩展学习•引导学生进一步探讨一元一次方程的应用领域,并自主查找相关实例进行学习;•鼓励学生合作学习和交流,分享自己解决实际问题的过程和方法。
总结通过本次教学,学生能够理解一元一次方程的基本概念和解法,并且能够应用一元一次方程解决实际问题,如球赛积分表问题。