(最新配套)江苏省九年级数学上学期期末调研试卷
- 格式:doc
- 大小:246.00 KB
- 文档页数:5
最新苏科版九年级上学期期末调研测试数学试卷本试卷由填空题、选择题和解答题三大题组成,共29题,满分130分°考试用时120分钟。
注意事项:1.在回答问题之前,考生必须在答题纸的相应位置填写学校、姓名、考场号、座位号和考试号2、答题必须用0.5mm黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生必须回答答题纸上的问题,试卷和初稿上的答案无效一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑°)1.已知以下功能:① y=x2② y=-x2③ y=(x-1)2+2。
其中,函数y=x2+2-3的图像可以通过图像转换得到:a。
①, ② B①, ③ C②, ③ D①, ②, ③ 2.已知x2+16x+k是一个完整的平方公式,那么常数k等于a.64b。
48c。
32d。
163.关于函数y=x2+2x,以下陈述是不正确的:a.该图是轴对称图B.该图通过一个点(-1,1)C.该图有一个最低点D.当x>1时,y随x的增加而增加。
4。
圆锥的母线长度为9,底圆半径为6,则圆锥的侧面面积为a.81πb.54πc.27πd.18π5.若关于x的一元二次方程(k-1)x2+x-k2=0的一个根为1,则k的值为a.-1b.0或1c.1d.06.如图所示,AB和⊙ o与点B相切,且Ao的延长线相交⊙ o在C点连接BC。
如果∠ ABC=120°,OC=3,下弧BC的长度为a.πB.2πC.3πd.5π7。
已知锐角a满足关系2sin2a-7sina+3=0,那么sina的值是a12b.3c.1或32天。
4.8.如图,ab是⊙o的直径,弦cd交ab于点e,∠bac=若tan∠bod=a.b.1.∠ BOD,24岁,然后是Tan∠ BAC=3113242c.d.339.如图所示△ 美国广播公司,∠ a=70°,⊙ o切下……的三面△ ABC,弦长相等,那么△ BOC为a.160°b.135°c.125°d.110°10.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y =3倍的交点的横坐标x0的取值范围是a、 011年。
第一学期期末教学质量调研测试初 三 数 学(试卷满分130分,考试时间120分)注意事项:1.答题前,考生务必将学校、姓名、考试号填写在答题卷相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;画图题用2B 铅笔画图,并且描黑;答非选择题(除画图题)必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一.选择题.(本大题共10小题,每小题3分,共30分)1.下列点中,一定在二次函数图象上的是21y x =-A .(0,0) B .(1,1) C .(1,0)D .(0,1)2.如图,△ABC 中,∠B=90°,AB=1,BC=2,则sinA=A. B. C. D. 123.函数的对称轴是直线 ( )2(1)(3)y x x =+-A .x=1 B .x= —1 C .x=—3 D .x=34.一个扇形的圆心角是120°,面积3πcm 2,那么这个扇形的半径是 ( )A .1cmB .3cmC .6cmD .9cm5.如图,已知AB 是圆O 的直径,∠CAB=30°,则cosD 的值为()A .BCD 126.已知二次函数的图像上有一点P (1,1).若将该抛物线平移后所得的二次函数表达2y x =式,则点P 经过该次平移后的坐标为( )221y x x =--A. (2,1) B. (2,-1) C. (1,-2) D. (0,5)7.某市2015年国内生产总值(GDP )比2014年增长了12%,预计2016年比2015年增长7%,若这两年GDP 年平均增长率为%,则%满足的关系是 ( )x xA .12%+7%=%B . (1+12%)(1+7%)=2(1+%)x xC . 12%+7%=2%D .(1+12%)(1+7%)=(1+%)2x x 8.在△ABC 中,∠C=90°,、b 分别是∠A 、∠B 的对边,,则tanA=( )a 220a ab b --=A. B. C. D.19. 如图,在平面直角坐标系xOy 中,⊙P 的圆心是(),半径是2,与y 轴相(2,)a 0a >切于点C ,直线被⊙P 截得的弦AB 的长为,则a 的值是( )y x =A .B .C .D .2+2+第9题图第10题图10. 如图,已知二次函数的图象与x 轴交于点, 顶点坐标2(0)y ax bx c a =++≠(1,0)A -为,点与轴的交点在和之间(不包括端点).有下列结论:①当(1,)n (0,2)-(0,1)-3x >时,;②;③;④.其中正确的结论有 0y <n c a =-30a b +>2-1-3a <<( )A . 1 个B .2 个C .3 个D .4 个二.填空题.( 本大题共8小题,每小题3分,共24分)11.计算:cos30°=___________.12.方程的解为__________.230x -=13.函数的顶点坐标是________.231y x x =++14. 如图,PA 、PB 切⊙O 于A 、B 两点,若∠APB=60°,⊙O 的半径为3,则阴影部分的面积为 __________ .第14题图第16题图15.已知二次函数的图象与轴有交点,则的取值范围是__________.223y x x k =++-x k16.如图,在Rt △AOB 中,OA =OB =,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ(点P 为切点).则切线长PQ 的最小值为 ▲ .17.已知实数满足:,且,则,,a b c 222a b c ab bc ca ++=++2342a b a +-=a b c ++=___________.18.当时,二次函数有最大值4,则实数的值为__________.1x ≤22()1y x m m =--++m 三.简答题.( 本大题共10小题,共76分)19. (本题满分6分)计算:201sin 452016)6tan 302︒-+︒20. (本题满分6分)解方程:12123x x +=-21. (本题满分6分)如图,已知圆O ,弦AB 、CD 相交于点M.(1)求证:AM MB CM MD⋅=⋅(2)若M 为CD 中点,且圆O 的半径为3,OM=2,求的值.AM MB ⋅22. (本题满分6分)如图,二次函数,图像过△ABC 三个顶点,其中A (-1,m ),B (n,n )22133y x x =-求:①求A,B 坐标;②求△AOB 的面积.23. (本题满分6分)如图,在平面直角坐标系中,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO=5,sin ∠BOA=,求:(1)点B 的坐标; (2)cos ∠BAO 的值.3524. (本题满分8分)已知关于的方程x 2(3)(23)0x m x m m +---=(1)证明:无论为何值方程都有两个实数根;m (2)是否存在正数,使方程的两个实数根的平方和等于26?若存在,求出满足条件的m 正数的值;若不存在,请说明理由.m 25. (本题满分8分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,∠ACD=∠B ,AD ⊥CD .(1)求证:CD 是⊙O 的切线;(2)若AD=1,OA=2,求CD 的值.26.(本题满分8分)如图,△ABC为一个直角三角形的空地,∠C为直角,AC边长为3百米,BC边长为4百米,现决定在空地内筑一条笔直的路EF(宽度不计),E为BC的中点,F为三角形ABC边上的一点,且EF将该空地分成一个四边形和一个三角形,若分成的四边形和三角形周长相等,求此时小路EF的长度.27.(本题满分10分)如图,半圆O的直径DE=6cm ,在△ABC中,∠ACB = 90°,∠ABC=30°,BC=6cm ,半圆O以1cm/s的速度从左向右运动,在运动过程中,点D、E 始终在直线BC上,设运动的时间为t(s),当t=0时,半圆O在△ABC的左侧,OC=4cm 。
第一学期期末调研测试卷初三数学注意事项:1.本试卷共8页,全卷共三大题28小题,满分130分,考试时间120分钟,’2.答题前,考生先将自己的学校、班级、姓名、考试号填写在答题卷密封线内相应的位置上;3.选择题、填空题、解答题必须用黑色签字笔答题,答案填在答题卷相应的位里上;4.各题必须答在黑色答题框内,不得超出答题框,在草稿纸、试卷上答题无效. 一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内) 1. 数据1,3,3,4,5的众数为A. 1B. 3C.4D.5 2. 若23x y =,则xy的值为 A.23 B. 32 C. 53 D. 253. 下列关于x 的方程有实数根的是A. 210x x -+= B. 210x x ++=C. 210x x --= D. 2(1)10x -+=4. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是 A.16 B. 15 C. 25 D. 355. 对于二次函数2(1)2y x =--+的图象,下列说法正确的是A.当1x =时,y 有最小值2B.当1x =时,y 有最大值2C.当1x =-时,y 有最小值2D.当1x =-时,y 有最大值26. 如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,»»AB BC=, 60AOB ∠=︒,则BDC ∠的度数是A. 60︒B. 45︒C. 35︒D. 30︒7. 在Rt ABC V 中,90C ∠=︒,若3sin 5A =,则tanB 的值是A.35 B. 45 C. 43 D. 34 8. 如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若30A ∠=︒,3PC =,则⊙O 的半径为A.B. C.32 D. 39. 若点1(1,)M y -,2(1,)N y ,37(,)2P y 都在抛物线2241(0)y mx mx m m =-+++>上,则下列结论正确的是A. 123y y y <<B. 132y y y <<C. 312y y y <<D. 213y y y <<10. 如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,分析下列四个结论:①AEF CAB V :V ;②2CF AF =;③:2:5ABF CDEF S S =V 四边形;④cos CAD ∠=其中正确的结论有 A. 4个 B. 3个 C. 2个 D. 1个二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上) 11. cos 60︒ .12. 如果一组数据1,0,-2,2,x 的极差是6,且0x >,那么x 的值是 . 13. 二次函数225y x x =-+图像的顶点坐标为 .14. 已知m 是方程23620x x --=的一根,则22m m -= . 15.16. 圆锥的母线长为5 cm ,底面半径为3cm ,那么它的侧面展开图的圆心角是 .17. 如图,在四边形ABCD 中, 90ABC ∠=︒,3AB =,4BC =,10CD =,DA =则BD 的长为 .18. 如图,MN 是⊙O 的直径,2MN a =, 40AMN ∠=︒,点B 为弧AN 的中点,点P是直径MN 上的一个动点,则 PA PB +的最小值为 .(用含a 的代数式表示) 三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明) 19. (本题满分5分)解方程:220x x -=.20. (本题满分5分)已知:ABC V 在直角坐标平面内,三个顶点的坐标分别为(0,3)A 、(3,4)B 、(2,2)C (正方形网格中每个小正方形的边长是一个单位长度).(1)以点B 为位似中心,在网格内画出111A B C V ,使111ABC V 与ABC V 位似,且位似比为2:1.(2)点C ,的坐标为( ,).21. (本题满分6分)如图,已知四边形ABCD︒,75DBC ∠=︒(1)求证:BD CD =;(2)若圆O 的半径为3,求»BC的长.22. (本题满分6分)如图,为测量一座山峰CF 的高度,将此山的某侧山坡划分为AB 和BC两段,每一段山坡近似是“直”的,测得坡长800AB =米,200BC =米,坡角30BAF ∠=︒,45CBE ∠=︒.(1)求AB 段山坡的高度EF ; (2)求山峰的高度CF (结果保留根式).23. (本题满分8分)已知二次函数223y x x =-++(1)画出这个函数的图像; (2)根据图像,直接写出:①当函数值y 为正数时,自变量x 的取值范围②当22x -<<时,函数值y 的取值范围.24. (本题满分8分)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字. (1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果; (2)求出两个数字之和能被3整除的概率.25. 25.(本题满分8分)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为x cm ,图案中三条彩条所占面积为2ycm . (1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.26. (本题满分10分)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且CDA CBD ∠=∠.(1)求证: CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E,CD = ①若30C ∠=︒,求图中阴影部分的面积;②若23AD BD =,求BE 的长27. (本题满分10分)如图,在矩形ABCD 中,6AB cm =,8AD cm =,点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4/cm s ,过点P 作PQ BD ⊥交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上.点O 从点D 出发,沿DC 向点C 匀速运动,速度为3/cm s ,以O 为圆心,1cm 半径作⊙O .点P 与点D 同时出发,设它们的运动时间为t (单位:s ) (805t ≤≤). (1)如图1,连接DQ ,若DQ 平分BDC ∠,则t 的值为 s ;(2)如图2,连接CM ,设CMQ V 的面积为S ,求S 关于t 的函数关系式; (3)在运动过程中,当t 为何值时,⊙O 与MN 第一次相切?28. (本题满分10分)如图,已知抛物线213y x bx c =++经过ABC V 的三个顶点,其中点(0,1)A ,点(9,10)B -,//AC x 轴,点P 是直线AC 下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC V 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.。
2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。
2023/2024学年度第一学期期末学业质量检测九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分。
3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程属于一元二次方程的是()A. B. C. D.2.二次函数的顶点坐标是( )A. B. C. D.3.已知的半径为4,点到圆心的距离为4.5,则点与的位置关系是( )A.在圆内B.在圆上C.在圆外D.无法确定4.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数5.已知与分别为方程的两根,则的值等于( )A. B.2C.D.6.如图,点、、在上,,则的度数是( )A. B. C. D.7.如图,下列条件中不能判定的是()A.B. C. D.321x x+=210x x +-=30x -=140x x+-=2(2)3y x =+-(2,3)-(2,3)--(2,3)(2,3)-O P O P O P P P 1x 2x 2230x x +-=12x x +2-32-32A B C O 30ACB ︒∠=AOB ∠30︒40︒60︒65︒ACD ABC △∽△AB ADBC CD=ADC ACB ∠=∠ACD B ∠=∠2AC AD AB=⋅8.设,,是抛物线上的三点,,,的大小关系为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.在比例尺为的扬州旅游地图上,某条道路的长为,则这条道路实际长________.10.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.11.如图,四边形是的内接四边形,的半径为2,,则的长为________.12.如图,在中,中线、相交于点,,则的长为________.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度为________(结果保留根号)。
第一学期期末调研试卷初 三 数 学注意事项:1.答题前,考生务必将学校、姓名、考试号填写在答题卷相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;画图题用2B 铅笔画图,并且描黑;答非选择题(除画图题)必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题.(3*10=30分)1. 方程 x²-2x=0 的解为()A. x=2B. x=0C. x₁=0 或 x₂=2D. x₁=0 或 x₂= -22. 一组数据 1,2,3,0,-2,-3 的极差是( )A. 6 B. 5 C. 4D. 33. 如图,在△ABC 中,∠C=90°,AB=13,BC=5,则 sinA 的值是( )A. B. C. D. 51312135121354. 一元二次方程 x²+x-3=0 的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根B.C. 只有一个实数根D. 没有实数根5. 对于二次函数 y=(x-1)² +2 的图像,下列说法正确的是( )A. 开口向下B. 顶点坐标是(-1,2)C. 对称轴是 x=1D. 与 x 轴有两个交点第3题图 第9题图6. 某商品经过连续两次降价,销售单价由原来 100 元降到 81 元。
设平均每次降价的百分率为 x ,根据题意可列方程为( )A. 81(1-x)²=100B. 100(1+x)²=81C. 81(1+x)²=100D. 100(1-x)²=817.下列命题中,正确的个数是()(1)三点确定一个圆; (2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形。
A. 1 个B. 2 个C. 3 个D. 4 个8. 二次函数 y=ax²+bx+2(a≠0)的图像经过点(-1,1)则代数 1-a+b 的值为( )A. -3 B. -1 C. 2D. 59. 如图,AB 为⊙O 的切线,切点为 B ,连接 AO 与⊙O 交与点 C ,BD 为⊙O 的直径,连接 CD,若∠A=30°,OA=2,则图中阴影部分的面积为( )A. B. C. D. 3π-43π-π-43π-10.如图,在扇形铁皮 AOB 中,OA=20,∠AOB=36∘ ,OB 在直线 l 上。
第7题九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分)1.对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:x 甲=x 乙,S 2甲=0.025,S 2乙=0.029,下列说法正确的是( ▲ )A .甲短跑成绩比乙好B .乙短跑成绩比甲好C .甲比乙短跑成绩稳定D .乙比甲短跑成绩稳定 2.计算(3+2)(3-2)的值是( ▲ ) A .1 B .2 C .3 D .43.已知函数322--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ▲ ) A .x <1B .x >1C .x >-1D .-1<x <34.若点(2,5)、(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( ▲ ) A .abx -= B .x =1 C .x =2 D .x =35.已知关于x 的方程220x x k -+=有实数根,则k 的取值范围是( ▲ ) A .1k < B .1k ≤ C .1k ≤- D .1k ≥6.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( ▲ )A .1-B .1C .1-或1D .127.如图,两个等圆⊙O 和⊙O '外切,OA 、OB 是⊙O '的两条 切线,A 、B 是切点,则∠AOB 等于( ▲ )A .︒30B .︒45C .︒60D .︒90 8.如图,AB 是⊙O 的直径,∠C =︒30,则∠ABD =( ▲ ) A .︒30 B .︒40 C .︒50 D .︒60二、填空题(本大题共10小题,每小题3分,共30分)C第18题9.数据:1、3、4、7、2的极差是 ▲ . 10.若242x x =,则x 的取值范围是 ▲ .11.一个扇形的圆心角为︒120,半径为2,那么这个扇形的面积为 ▲ . 12.方程()()032=+-x x 的解是 ▲ .13.已知m 是方程012=--x x 的一个根,则代数式m m -2的值等于 ▲ . 14.当13x ≤<时,()213x x -+-= ▲ .15.抛物线y=9x 2-tx +4与x 轴只有一个公共点,则t 的值是 ▲ .16.如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10厘米,AP ∶PB =1∶5,那么⊙O的半径是 ▲ 厘米.17.二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c = ▲ . 18.如图,直线AB 与⊙O 相交于A 、B 两点,点O 在AB 上,点C 在⊙O 上, 且∠AOC= 40°,点E 是直线AB 上—个动点(与点O 不重合),直线EC 交⊙O 于另一点D ,则使DE=DO 的点E 共有 ▲ 个.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤) 19.(本题8分)计算:(1)232⨯ (2)212121335÷⨯20.(本题8分)解方程:(1)x 2-4x +1=0 (2)3(x -5)2=2(5-x )21.(本题8分)大润发超市服装柜在销售中发现:一品牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8第16题件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?22.(本题8分)一座隧道的截面由抛物线和长方形构成,长方形的长为8 m,高为2 m,隧道最高点P位于AB的正中间且距地面6 m,建立如下图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4 m,宽3 m,能否从该隧道内通过,为什么?23.(本题10分)按要求解决下列问题: (1)化简下列各式: 1= ▲ ,2= ▲ ,3= ▲ ,5= ▲ ,… (2)通过观察,归纳写出能反映这个规律的一般结论,并证明.24.(本题10分)如图,直线AB 经过圆O 上的点C ,并且OA OB =,CA CB =,圆O交直线OB 于E 、D ,连接CE 、CD . (1)求证:直线AB 是圆O 的切线; (2)证明:BCD E ∠=∠; (3)证明:2BC BD BE =⋅.25.(本题10分)一次期中考试中,A 、B 、C 、D 、E 五位同学的数学、英语成绩有如下信息:A B C D E 平均分 标准差 数学 71 72 69 68 70 ▲ 2英语888294857685▲(公式:方差222212[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-,其中x 是平均数.) (1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问A 同学在本次考试中,数学与英语哪个学科考得更好?26.(本题10分)如图,圆O 是Rt△ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是圆O的切线,ED ⊥AB 于F ,(1)判断△DCE 的形状,并给出合适的说明; (2)设圆O 的半径为2,且OF =13-,求CE 、DE 的长.27.(本题12分)已知抛物线y =ax 2+bx +c 经过点A (-1,0),且经过直线y =x -2与x 轴的交点B 及与y 轴的交点C .(1)求抛物线的解析式; (2)求抛物线的顶点坐标;(3)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,求点M 的坐标及四边形OBMC 的面积.28.(本题12分)(1)如图,从一个直径是42的圆形铁皮中剪下一个圆心角为90︒的扇形.①求这个扇形的面积(结果保留).②在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(2)请您仿照(1)的形式设计一个剪裁方案:从一个直径是42的圆形铁皮中剪下一个圆心角为n 的扇形,并在剩下的第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥.请指出方案中所剪扇形的圆心角n 的值,并指出相应圆锥的母线长和底面圆的π AB DEOF C半径.①②O③-学年度第一学期期末学情调研九年级数学试卷答案1.答案:C 2.答案:A 3.答案:A 4.答案:D 5.答案:B 6.答案:A 7.答案:C 8.答案:D 9.答案:6 10.答案:0x ≥ 11.答案:43π12.答案:-3,213.答案:114.答案:215.答案:-12,或12 16.答案:5317.答案:5,1318.答案:319.解:(1)6 ―――――4分 (2)1 ―――――4分20.解:(1) 32,3221-=+=x x ――――――4分 (2) 313,521==x x ――――――――4分21.解:设每件童装应降价x 元,则12004820)40(=⎪⎭⎫⎝⎛⨯+-x x , 解得10,2021==x x . ―――――5分 因为要尽快减少库存,所以x=20. 答:每件童装应降价20元.――――3分22.解:(1))y=-41x 2+2x+2 ――――――4分 (2)令y=4,得|x 2-x 1|=42>3,所以货车可以通过.――――――4分23.解:(1)2,,分(2)由(122=分22===分24.解:(1)证明:如图,连接OC .OA OB =,CA CB =,OC AB ∴⊥.AB ∴是圆O 的切线. ―――――4分(2)ED 是直径,90ECD ∴∠=︒.90E EDC ∴∠+∠=︒.又90BCD OCD ∠+∠=︒,OCD ODC ∠=∠,BCD E ∴∠=∠. ―――――3分(3)由(2),又CBD EBC ∠=∠,BCD BEC ∴△∽△.BC BDBE BC∴=.2BC BD BE ∴=⋅.―――――3分25.解:(1)数学成绩的平均分为70. ―――――2分英语成绩的标准差为6. ―――――2分(2)A 同学数学标准分为2, ―――――2分 A 同学英语标准分为12. ―――――2分 所以,A 同学在本次考试中,数学学科考得更好.―――――2分26.解:(1)∵∠ABC =30°,∴∠BAC =60°.又∵OA =OC , ∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD =90°, ∴∠DCE =180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED =90°-∠BAC =30°. 故△CDE 为等腰三角形. ―――――――3分(2)证明:在△ABC 中,∵AB =4,AC =AO =2,∴BC =2224-=32. ∵OF =13-,∴AF =AO +OF =13+.又∵∠AEF =30°,∴AE =2AF =232+. ∴CE =AE -AC =32.―――――4分 而∠OCB =∠ACB -∠ACO =90°-60°=30°=∠ABC , 故△CDE ≌△COB .∴ DE =OB =2. ―――――――3分27.解:(1)直线y =x -3与坐标轴的交点坐标分别为B (2,0),C (0,-2),以A 、B 、C三点的坐标分别代入抛物线y =ax 2+bx +c 中,得⎪⎩⎪⎨⎧-==++=+-,2,024,0c c b a c b a解得⎪⎩⎪⎨⎧-=-==.2,1,1c b a∴所求抛物线的解析式是y =x 2-x -2.――――4分 (2)y =x 2-x -2=(x-12)2-94, ∴抛物线的顶点坐标为(12,-94). ―――――3分(3)经过原点且与直线y =x -2垂直的直线OM 的方程为y =-x ,设M (x ,-x ),因为点M 在抛物线上,∴x 2-x -2=-x . 解得2x =-,或2. 因点M 在第四象限,取2x =,).2,2(-∴M ―――――3分得OM =2,BC =22,四边形OBMC 的面积为1222OM BC ⋅=.―――2分 28.解:(1)①连接,由勾股定理求得:AB =AC =4,扇形面积为24360n R S ππ==.――――――4分②连接并延长,与弧和圆O 分别交于E 、F , EF =AF -AE =424-,弧的长:2180n Rl ππ==, 22r ππ=,圆锥的底面直径为:22r =.得EF<2r ,不能在余料③中剪出一个圆作为底面与此扇形围成圆锥. ――――4分(2)方案有多种,如圆心角n =120︒时,圆锥的母线长为22,底面圆的半径为223.―――――4分 BC AO BC BC ∴∴① ② ③第- 11 -页共11页。
~第一学期期末调研测试卷初 三 数 学.1注意事项:1.本试卷共8页,全卷共三大题28小题,满分130分.考试用时120分钟.2.答题前,考生先将自己的学校、班级、姓名、考试号填写在答题卷密封线内相应的位置上.3.选择题、填空题、解答题必须用黑色签字笔答题,答案填在答题卷相应的位置上.4.各题必须答在黑色答题框内,不得超出答题框,在草稿纸、试卷上答题无效.一、选择题:(本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内.) 1.在Rt ABC ∆中,90C ∠=︒,1sin 2A =,则A ∠等于 A.30︒ B.45︒ C.60︒ D.不能确定 2.数据-1,0,1,1,2,2,3,2,3的众数是A.0B.1C.2D.3 3.一元二次方程220x x -=的解是A.2x =B.122,0x x ==C.0x =D.122,1x x == 4.一只不透明的袋子中装有1个黑球3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为 A.14 B.13 C.12 D.345.已知在Rt ABC ∆中,90C ∠=︒,1BC =,2AC =,则tan A 的值为A.2B. 12C. 5D. 56.将二次函数212y x =的图象向左移1个单位,再向下移2个单位后所得函数的关系式为 A.()21122y x =+- B.()21122y x =--C .()21122y x =++ D.()21122y x =-+7.如图,在平等四边形ABCD 中,点E 是边AD 上一点,且2AE ED =,EC 交对角线BD于点F ,则EFFC等于 A.13 B.12 C.23 D.328.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若25B ∠=︒,则C ∠的大小等于A.20︒B.25︒C.40︒D. 50︒ 9.如图,在ABC ∆中,点E 、F 分别在边AB 、AC 上,并且满足EF ∥BC ,12AF FC =.CEF ∆ 的面积为2,则EBC ∆的面积为A.4B.6C.8D.1210.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P D Q →→运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,AEF ∆的面积为y ,能大致刻画y 与x 的函数关系的图象是二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上)11.已知23a b =,则2a b a += . 12.在某一时刻,测得一根高为lm 的竹竿的影长为2m ,同时测得一根旗杆的影长为30m.那么这根旗杆的高度为 m.13.抛物线()213y x =-+顶点坐标是 .14.如图,为了测量楼的高度,自楼的顶部A 看地面上的一点B ,俯角为30︒,已知地面上的这点与楼的水平距离BC 为30m ,那么楼的高度AC 为 m(结果保留根号).15.已知圆锥的底面半径为2cm ,母线长为9cm ,则圆锥的侧面展开图的圆心角是 ︒ . 16.如图,⊙O 的半径为2,过点()4,0A 的直线与⊙O 相切于点B ,则点B 的坐标为 .17.如图是以ABC ∆的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .已知3cos ,55ACD BC ∠==,则AC 的长为 .18.如图,矩形EFGH 内接于ABC ∆,且边FG 落在BC 上.若23,2,3BC AD EF EH ===,那么EH 的长为 . 三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明) 19.(本题满分5分)计算: )1112cos602-⎛⎫-+︒ ⎪⎝⎭20.(本题满分5分)解不等式组:21.(本题满分6分)已知二次函数2123y x x =--的图象与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A 、B 的坐标,并在下面直角坐标系中画出该二次函数的大致图象; (2)设一次函数2(0)y kx b k =+≠的图象经过B 、D 两点,请直接写出满足12y y ≤的x 的取值范围;22.(本题满分6分)如图,在ABC ∆中,120ABC ∠=︒, ⊙O 是ABC ∆的外接圆,点P 是AmC 上的一个动点.(1)求AOC ∠的度数;(2)若⊙O 的半径为2,设点P 到直线AC 的距离为x ,图中阴影部 分的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值 范围.23.(本题满分8分)如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧. (1)直接写出该圆弧所在圆的圆心D 的坐标; (2)求弧AC 的长(结果保留π);(3)连接AC 、BC ,则sin C = .231x -≥24.(本题满分8分)如图,船A 、B 在东西方向的海岸线MN 上,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东60︒方向上,在船B 的北偏西37︒方向上,30AP =海里. (l)求船P 到海岸线MN 的距离; (2)若船A 、船B 分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处. (参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)25.(本题满分8分)为了节省材料,某农户利用一段足够长的墙体为一边,用总长为40m 的篱笆围成如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等. (1)求:AE EB 的值;(2)设BC 的长为x m ,矩形区域的面积为y m 2.求y 与x 之间的函数关系式,并注明自变量x 的取值范围;(3)在(2)的条件下,当x 为何值时,y 有最大值?最大值是多少?26.(本题满分10分)如图,已知直线l 与⊙O 相离.OA l ⊥于点A ,交⊙O 于点P ,5,OA AB =与⊙O 相切于点B ,BP 的延长线交直线l 于点C . (1)求证:AB AC =;(2)若PC =O 的半径及线段PB 的长.27.(本题满分10分)如图,在平面直角坐标系中,矩形OABC 的三个顶点分别是A (4,0),B (4,3),C (0,3).动点P 从原点O 出发,沿对角线OB 以每秒1个单位长的速度向点B 匀速运动,同时另一动点Q 从点A 出发,沿线段AO 以每秒45个单位长的速度向点O 匀速运动,过P 作PH OA ⊥于点H ,连接PQ 、QB .当动点P 到达终点B 时,动点Q 也随之停止运动。
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )A .极差是6B .众数是7C .中位数是5D .方差是82.关于x 的一元二次方程x 2﹣mx ﹣3=0的一个解为x =﹣1,则m 的值为( )A .﹣2B .2C .5D .﹣43.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结论错误的是( )A .AD AE BD EC =B .AF DF AE BE =C .AE AF EC FE =D .DE AF BC FE= 4.下面的图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .5.一件商品的原价是100元,经过两次降价后价格为81元,设每次降价的百分比都是x ,根据题意,下面列出的方程正确的是( )A .()21001x 81? +=B .()21001x 81? -=C .()1001x 81?+=D .()1001x 81-=6.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是( )A .(2,-6)B .(-2,6)C .(-6,2)D .(-6,2)7.下列四个三角形,与左图中的三角形相似的是( ).A .B .C .D .8.在ABC ∆中,90C ∠=︒,点D ,E 分别是边AC ,BC 的中点,点F 在ABC ∆内,连接DE ,EF ,FD .以下图形符合上述描述的是( )A .B .C .D .9.下列函数,当0x >时,y 随着x 的增大而减小的是( )A .21y x =+B .6y x =-C .23y x =+D .22y x x =--10.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( ) A .B .C .D .二、填空题(每小题3分,共24分)11.抛物线y =12(x ﹣2)2的顶点坐标是_____. 12.方程(x ﹣1)2=4的解为_____.13.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出______个小分支.14.如图,在Rt ABC ∆中,90BAC ∠=︒,且3BA =,4AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为________.15.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是___________个.16.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t (秒),满足关系:h=20t-5t 2,当小球达到最高点时,小球的运动时间为第_________秒时.17.如图,二次函数()(202)y x x x =-≤≤的图象记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;……如此进行下去,得到一条“波浪线”.若(2020,)P m 在这条“波浪线”上,则m =____.18.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.三、解答题(共66分)19.(10分)为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等(1)若从中只录用一人,恰好选到思政专业毕业生的概率是 :(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.20.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y (℃)和通电时间x (min )成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x ≤8和8<x ≤a 时,y 和x 之间的关系式;(2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.21.(6分)解方程:(1)2410x x -=+(2)2(2)3(2)0x x x ---=22.(8分)如图,四边形ABCE 内接于O ,AB 是O 的直径,点D 在AB 的延长线上,延长AE 交BC 的延长线于点F ,点C 是BF 的中点,BCD CAE ∠=∠.(1)求证:CD 是O 的切线;(2)求证:CEF ∆是等腰三角形;(3)若1BD =,2CD =,求cos CBA ∠的值及EF 的长.23.(8分)已知,如图,点E 在平行四边形ABCD 的边CD 上,且12DECE =,设AB a =,AD b =.(1)用a 、b 表示AE ;(直接写出答案)(2)设AE c =,在答题卷中所给的图上画出3a c -的结果.24.(8分)如图,一次函数y kx b =+的图象与反比例函数m y x=图象交于A (-2,1),B (1,n )两点. (1)求m ,n 的值; (2)当一次函数的值大于反比例函数的值时,请写出自变量x 的取值范围.25.(10分)(1)计算:1032sin 302020-+-;(2)解方程:x 2+3x —4=0.26.(10分)如图,二次函数y =x 2+bx+c 的图象与x 轴相交于点A 、B 两点,与y 轴相交于点C(0,﹣3),抛物线的对称轴为直线x =1.(1)求此二次函数的解析式;(2)若抛物线的顶点为D ,点E 在抛物线上,且与点C 关于抛物线的对称轴对称,直线AE 交对称轴于点F ,试判断四边形CDEF 的形状,并证明你的结论.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A .极差1138=-=,结论错误,故A 不符合题意;B .众数为5,7,11,3,1,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C 不符合题意;D .平均数是()57113957++++÷=,方差()()()()()2222221577711737975S ⎡⎤=-+-+-+-+-⎣⎦8=.结论正确,故D 符合题意.故选D .【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键. 2、B【分析】把x =﹣1代入方程x 1﹣mx ﹣3=0得1+m ﹣3=0,然后解关于m 的方程即可.【详解】解:把x =﹣1代入方程x 1﹣mx ﹣3=0得1+m ﹣3=0,解得m =1.故选:B .【点睛】本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握3、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE //BC ,∴AD AE BD EC= ,故A 正确; ∵DF //BE ,∴△ADF ∽△ABF , ∴AF DF AE BE=,故B 正确; ∵DF //BE ,∴ AD AF BD FE =,∵AD AE BD EC= ,∴AE AF EC FE =,故C 正确; ∵DE //BC ,∴△ADE ∽△ABC ,∴DE AD BC AB =,∵DF //BE ,∴AF AD AE AB =,∴DE AF BC AE =,故D 错误. 故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.4、D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A. 不是轴对称图形,是中心对称图形,故此选项错误;B. 不是轴对称图形,是中心对称图形,故此选项错误;C. 是轴对称图形,也是中心对称图形,故此选项错误;D. 是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.5、B【分析】原价为100,第一次降价后的价格是100×(1-x),第二次降价是在第一次降价后的价格的基础上降价的,第二次降价后的价格为:100×(1-x)×(1-x)=100(1-x)2,则可列出方程.【详解】设平均每次降价的百分比为x,根据题意可得:100(1-x)2=81故选:B.【点睛】本题主要考查了一元二次方程的增长率问题,需注意第二次降价是在第一次降价后的价格的基础上降价的.6、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:A.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.7、B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,.A、三角形三边分别是2,,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,B选项正确;C、三角形三边2,3C选项错误;D4,与给出的三角形的各边不成正比例,故D选项错误.故选:B.【点睛】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.8、C【解析】依次在各图形上查看三点的位置来判断;或用排除法来排除错的,选择正确也可以.【详解】根据点F 在ABC ∆内,则A 、B 都不符合描述,排除A 、B ;又因为点D ,E 分别是边AC ,BC 的中点,选项D 中点D 在BC 上不符合描述,排除D 选项,只有选项C 符合描述.故选:C【点睛】本题考查了根据数学语言描述来判断图形.9、D【分析】根据各个选项中的函数解析式,可以判断出当x >0时,y 随x 的增大如何变化,从而可以解答本题.【详解】在y =2x +1中,当x >0时,y 随x 的增大而增大,故选项A 不符合题意; 在6y x=-中,当x >0时,y 随x 的增大而增大,故选项B 不符合题意; 在23y x =+中,当x >0时,y 随x 的增大而增大,故选项C 不符合题意;在y =−x 2−2x =−(x +1)2+1中,当x >0时,y 随x 的增大而减小,故选项D 符合题意;故选:D .【点睛】本题考查一次函数的性质、反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,可以判断出当x >0时,y 随x 的增大如何变化.10、A【解析】解:将矩形木框立起与地面垂直放置时,形成B 选项的影子;将矩形木框与地面平行放置时,形成C 选项影子;将木框倾斜放置形成D 选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A 选项中的梯形,因为梯形两底不相等. 故选A .二、填空题(每小题3分,共24分)11、(2,0).【分析】已知条件的解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:∵抛物线解析式为y =12(x ﹣2)2, ∴二次函数图象的顶点坐标是(2,0).故答案为(2,0).【点睛】本题的考点是二次函数的性质.方法是根据顶点式的坐标特点写出答案.12、x 1=3,x 2=﹣1【解析】试题解析:(x ﹣1)2=4,即x ﹣1=±2, 所以x 1=3,x 2=﹣1.故答案为x 1=3,x 2=﹣1.13、6【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设这种植物每个支干长出x 个小分支,依题意,得:2143x x ++=,解得:17x =-(不合题意,舍去),26x =.故选:C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14、125. 【分析】由勾股定理求出BC 的长,再证明四边形DMAN 是矩形,可得MN AD =,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵90BAC ∠=︒,且3BA =,4AC =,∴225BC BA AC =+=,∵DM AB ⊥,DN AC ⊥,∴90DMA DNA BAC ∠=∠=∠=︒,∴四边形DMAN 是矩形.如图,连接AD ,则MN AD =,∴当AD BC ⊥时,AD 的值最小,此时,ABC ∆的面积1122AB AC BC AD =⨯=⨯, ∴125AB AC AD BC ⨯==,∴MN 的最小值为125; 故答案为:125. 【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,本题属于中考常考题型.15、4【分析】根据几何体的三视图分析即可得出答案.【详解】通过主视图和左视图可知几何体有两层,由俯视图可知最底层有3个小正方体,结合主视图和左视图知第2层有1个小正方体,所以共4个小正方体.故答案为4【点睛】本题主要考查根据三视图判断组成几何体的小正方体的个数,掌握三视图的知识是解题的关键.16、1【解析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函数有最大值,则当t=1时,球的高度最高.故答案为1.17、1【分析】根据抛物线与x轴的交点问题,得到图象C1与x轴交点坐标为:(1,1),(2,1),再利用旋转的性质得到图象C2与x轴交点坐标为:(2,1),(4,1),则抛物线C2:y=(x-2)(x-4)(2≤x≤4),于是可推出横坐标x为偶数时,纵坐标为1,横坐标是奇数时,纵坐标为1或-1,由此即可解决问题.【详解】解:∵一段抛物线C1:y=-x(x-2)(1≤x≤2),∴图象C1与x轴交点坐标为:(1,1),(2,1),∵将C1绕点A1旋转181°得C2,交x轴于点A2;,∴抛物线C2:y=(x-2)(x-4)(2≤x≤4),将C2绕点A2旋转181°得C3,交x轴于点A3;…∴P(2121,m)在抛物线C1111上,∵2121是偶数,∴m=1,故答案为1.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18、()2561x -=31.1【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解. 【详解】根据题意,得:()2561x -=31.1故答案为:()2561x -=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.三、解答题(共66分)19、(1)12;(2)恰好选到的是一名思政研究生和一名历史本科生的概率为16. 【解析】(1)由概率公式即可得出结果;(2)设思政专业的一名研究生为A 、一名本科生为B ,历史专业的一名研究生为C 、一名本科生为D ,画树状图可知:共有12个等可能的结果,恰好选到的是一名思政研究生和一名历史本科生的结果有2个,即可得出结果.【详解】(1)若从中只录用一人,恰好选到思政专业毕业生的概率是2142=; 故答案为:12; (2)设思政专业的一名研究生为A 、一名本科生为B ,历史专业的一名研究生为C 、一名本科生为D ,画树状图如图:共有12个等可能的结果,恰好选到的是一名思政研究生和一名历史本科生的结果有2个,∴恰好选到的是一名思政研究生和一名历史本科生的概率为21126=. 故答案为:16 【点睛】本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.20、(1)当0≤x≤8时,y=10x+20;当8<x≤a 时,y=800x;(2)40;(3)要在7:50~8:10时间段内接水. 【分析】(1)当0≤x ≤8时,设y =k 1x +b ,将(0,20),(8,100)的坐标分别代入y =k 1x +b ,即可求得k 1、b 的值,从而得一次函数的解析式;当8<x ≤a 时,设y =2k x ,将(8,100)的坐标代入y =2k x,求得k 2的值,即可得反比例函数的解析式;(2)把y =20代入反比例函数的解析式,即可求得a 值;(3)把y =40代入反比例函数的解析式,求得对应x 的值,根据想喝到不低于40 ℃的开水,结合函数图象求得x 的取值范围,从而求得李老师接水的时间范围.【详解】解: (1)当0≤x ≤8时,设y =k 1x +b ,将(0,20),(8,100)的坐标分别代入y =k 1x +b ,可求得k 1=10,b =20∴当0≤x ≤8时,y =10x +20.当8<x ≤a 时,设y =2k x, 将(8,100)的坐标代入y =2k x , 得k 2=800∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20;当8<x ≤a 时,y =800x(2)将y =20代入y =800x , 解得x =40,即a =40.(3)当y =40时,x =80040=20 ∴要想喝到不低于40 ℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.21、(1)12x =-,22x =-(2)x 1=2,x 2=-1.【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)提取公因式化为积的形式,然后利用两因式相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程来求解.【详解】解:(1)方程整理得:241x x +=,配方得:2445x x ++=,即2(2)5x +=,开方得:2x +=解得:12x =-22x =-(2)方程变形得:(2)[(2)3]0x x x ---=,即(2)(22)0x x ---=,即20x -=或220x --=,解得122,1x x ==-.【点睛】本题考查解一元二次方程.熟练掌握解一元二次方程的方法,并能结合实际情况选择合适的方法是解决此题的关键.22、(1)见解析;(2)见解析;(3)5cos 5CBA ∠=,65=EF 【分析】(1)根据圆的切线的定义来证明,证∠OCD=90°即可;(2)根据全等三角形的性质和四边形的内接圆的外角性质来证;(3)根据已知条件先证△CDB ∽△ADC ,由相似三角形的对应边成比例,求CB 的值,然后求求cos CBA ∠的值;连结BE,在Rt △FEB 和Rt △AEB 中,利用勾股定理来求EF 即可.【详解】解:(1)如图1,连结OC ,AB 是O 的直径,AC BF ∴⊥,又点C 是BF 的中点,AC AC =ACB ACF ∴∆≅∆.CAB CAE ∴∠=∠OC OA =,CAB OCA ∴∠=∠又BCD CAE ∠=∠BCD OCA ∴∠=∠OCD OCB BCD OCB OCA ∴∠=∠+∠=∠+∠90ACB =∠=︒CD ∴是O 的切线图1(2)四边形ABCE 内接于O ,FEC CBA ∴∠=∠ACB ACF ∆≅∆.∴F FBA =∠∠F FEC ∴∠=∠,FC EC ∴=即CEF ∆是等腰三角形(3)如图2,连结BE ,设OC x =,EF y =,在Rt OCD ∆中,222OC CD OD +=2222(1)x x ∴+=+1.5x ∴=,3AB ∴=由(1)可知BCD CAB ∠=∠,又D D ∠=∠DCB DAC ∴∆∆, 12BC BD AC CD ∴== 在Rt ACB ∆中,222AC CB AB +=355BC EC FC ∴===, 5cos 5BC CBA AB ∴∠==, AB 是O 的直径,BE AF ∴⊥,2222AB AE BF EF ∴-=-即222263(3)55y y ⎛⎫--=- ⎪⎝⎭解得65EF y == 图2【点睛】本题考查了圆的切线、相似三角形的性质、勾股定理的应用,解本题关键是找对应的线段长.23、(1)13a b +;(2)见解析 【分析】(1)先表示出DE ,继而可表示出AE ;(2)延长AE 、BC 交与G 即可.【详解】解:(1)四边形ABCD 是平行四边形,∴CD AB a ==, ∵12DECE =,∴1331DE BC a ==, ∴1133AE AD DE b a a b =+=+=+; (2)如图,延长AE 、BC 交与G ,则GB 即为所求.四边形ABCD 是平行四边形,∴AD ∥BC ,∴12DECE AE EG ==, ∴3AG AE =,又∵AE c =,∴3AG c =∴3GB AB AG a c -=-=.【点睛】本题考查了平面向量及平行四边形的性质,解答本题注意利用平行线分线段成比例的知识,难度一般.24、(1)m=-2,n=-2;(2)2x <-或01x <<.【解析】(1)把A (-2,1)代入反比例函数y=m x,求出m 的值即可;把B (1,n )代入反比例函数的解析式可求出n ;(2)观察函数图象得到当x <-2或0<x <1时,一次函数的图象都在反比例函数的图象的上方,即一次函数的值大于反比例函数的值.【详解】(1)解:∵点A (-2,1)在反比例函数m y x=的图象上, ∴212m =-⨯=-. ∴反比例函数的表达式为2y x=-. ∵点B (1,n )在反比例函数2y x=-的图象上, ∴221n -==-. (2)观察函数图象可知,自变量取值范围是:2x <-或01x <<.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式;利用待定系数法求函数的解析式.也考查了观察函数图象的能力.25、(1)13;(2)4x =-或1x =. 【分析】(1)利用零负指数幂法则计算以及利用特殊角的三角函数值计算即可;(2)利用因式分解法求出解即可.【详解】(1)1032sin 302020-+-=11121323+⨯-=; 2)解:x 2+3x —4=0 (4)(1)0x x +-=解得4x =-或1x =.【点睛】本题考查实数的运算,以及解一元二次方程-因式分解法,熟练掌握运算法则是解本题的关键.26、(1)y =x 2﹣2x ﹣3;(2)四边形EFCD 是正方形,见解析【分析】(1)抛物线与y 轴相交于点C (0,﹣3),对称轴为直线x =1知c =﹣3,12b -=,据此可得答案; (2)结论四边形EFCD 是正方形.如图1中,连接CE 与DF 交于点K .求出E 、F 、D 、C 四点坐标,只要证明DF ⊥CE ,DF =CE ,KC =KE ,KF =KD 即可证明.【详解】(1)∵抛物线与y 轴相交于点C (0,﹣3),对称轴为直线x =1∴c =﹣3,122b b a -=-=,即b =﹣2, ∴二次函数解析式为223y x x =﹣﹣; (2)四边形EFCD 是正方形.理由如下:如图,连接CE 与DF 交于点K .∵2223(1)4y x x x ==﹣﹣﹣﹣, ∴顶点D (1,4),∵C 、E 关于对称轴对称,C (0,﹣3),∴E (2,﹣3),∵A (﹣1,0),设直线AE 的解析式为y kx b =+, 则023k b k b -+=⎧⎨+=-⎩, 解得:21k b =-⎧⎨=-⎩, ∴直线AE 的解析式为y =﹣x ﹣1.∴F (1,﹣2),∴CK =EK =1,FK =DK =1,∴四边形EFCD 是平行四边形,又∵CE ⊥DF ,CE =DF ,∴四边形EFCD 是正方形.【点睛】本题是二次函数综合题,主要考查了待定系数法、一次函数的应用、正方形的判定和性质等知识,解题的关键是灵活运用待定系数法确定函数解析式.。
江苏省苏州市九年级上学期期末调研监测数学试题一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数 B .方差C .中位数D .极差2.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76° 5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A .9︰16 B .3︰4 C .9︰4 D .3︰16 6.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)7.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④8.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°9.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-10.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1 B .0 C .1 D .2 11.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .412.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8913.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个14.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似 D .所有矩形都相似 15.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题16.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.17.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 18.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.19.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 20.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .21.抛物线2(-1)3y x =+的顶点坐标是______.22.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.23.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.24.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.25.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.26.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.27.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 29.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.30.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题31.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.32.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0.33.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标; (2)求抛物线的函数解析式; (3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.34.解方程:2670x x --=35.如图,在直角三角形ABC 中,∠C =90°,点D 是AC 边上一点,过点D 作DE ⊥BD ,交AB 于点E ,若BD =10,tan ∠ABD =12,cos ∠DBC =45,求DC 和AB 的长.四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.38.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由. 39.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B 【解析】 【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】 解:由34a b,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.3.D解析:D 【解析】 【分析】由DE ∥BC 知△ADE ∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D.本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.5.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方6.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ), ∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1). 故选:C . 【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.7.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩,所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=, 解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =, 5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C.【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.8.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.9.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122ba,故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 10.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 11.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.12.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.13.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.15.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形A OB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.18.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.19.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 21.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.22.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.23.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 24.25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案.【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x ,280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此类问题.25.2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.26.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.27.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.28.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.29.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。
2016-2017江苏省九年级数学上学期期末调研试卷本试卷由填空题、选择题和解答题三大题组成,共29小题.满分130分,考试时间120分钟.
注意事项:
1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;
2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;
3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上.
1.抛物线y=2(x-3)2+1的顶点坐标是
A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)
2.若关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,则m的取值范围是
A.m<-1 B.m<1 C.m>-1 D.m>1
3.已知⊙O1的半径为1cm,⊙O2的半径为3cm,圆心距O1O2为1cm,则两圆的位置关系是
A.外离B.外切C.内含D.内切
4.下列说法正确的是
A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角
C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交
5.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点
A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)
6.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是
A.a tanA=b B.bcosB=c C.ctanB=b D.csinA=a
7.一小球被抛出后,距离地面的高度h(m)和飞行时间t(s)满足下列函数关系式:
h=-5(t-1)2+6,则小球距离地面的最大高度是
A.1m B.5m C.6m D.7m
8.将宽为1cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是
A.1cm B.2cm C 3
D
23
9.如图,二次函数y =ax 2+bx +c (a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b 2>4a ,③0<a +b +c<2,④0<b<1,⑤当x>-1时,y>0.其中正确结论的个数是 A .2个
B .3个
C .4个
D .5个
10.如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE =4,CD =6,则AE 的长为 A .4
B .5
C .6
D .7
二、填空题本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上. 11.x 2+6x +12=(x +3)2+ ▲ .
12.若关于x 的方程x 2-mx +2=0有两个相等的实数根,则m 的值是 ▲ . 13.已知在Rt △ABC 中,∠C =90°,sinA =
5
13
,则tanB 的值为 ▲ . 14.如图,在⊙O 中,若∠OAB 22.5°,则∠C 的度数为 ▲ °.
15.抛物线y =3x 2沿x 轴向左平移1个单位长度,则平移后抛物线对应的关系式是 ▲ .
16.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的弧EF 上,若OA =3,∠1=∠2,则扇形OEF 的周长为 ▲ .
17.无论x 26x x m -+m 的取值范围为 ▲ .
18.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m ,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m ,木板顶端向下滑动了0.9m ,则小猫在木板上爬动了 ▲ m .
三、解答题 本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)解方程:x 2+3x -4=0.
20.(本题满分5分)计算:2cos30°-tan45()
2
1tan 60-︒.
21.(本题满分6分)甲、乙两个样本的相关信息如下: 样本甲数据:1,6,2,3; 样本乙方差:S 2乙=3.4.
(1)计算样本甲的方差; (2)试判断哪个样本波动大.
22.(本题满分6分)二次函数y =ax 2+bx +c 的图象与x 轴交于A(1,0)、B 两点,与y 轴交于点C ,其顶点P 的坐标为(-3,2). (1)求这二次函数的关系式; (2)求△PBC 的面积;
(3)当函数值y<0时,则对应的自变量x 取值范围是 ▲ .
23.(本题满分6分)把一根长为2m 的铁丝弯成顶角为120°的等腰三角形,求此三角形的各边长.
24.(本题满分6分)如图,△ABC 是⊙O 的内接三角形,直径AD =8,∠ABC =∠DAC . (1)求AC 的长;(2)求图中阴影部分的面积(结果保留π).
25.(本题满分7分)如图,一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,测得AE =3,木箱端点E 距地面AB 的高度EG 为1.5m.已知木箱高DE 3.
(1)求斜坡AC 坡度i 的值;
(2)求木箱端点D 距地面AB 的高度DF.
26.(本题满分8分)△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E .设此内切圆,的半径为r ,BC 边上的高为h a . (1)求
a
r
h 的值; (2)求DE 的长.
27.(本题满分8分)如图,AB 为⊙O 的直径,C 为圆上一点, AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,过B 作FB ⊥AB 交AD 的延长线于点F. (1)求证:DE 是⊙O 的切线;
(2)若DE =4,⊙O 的半径为5,求AC 和BF 的长.
28.(本题满分9分)已知二次函数y =
12x 2+kx +k -12
. (1)判断该二次函数的图象与x 轴的交点情况;
(2)设k<0,当该二次函数的图象与x 轴的两个交点A 、B 间的距离为6时,求k 的值;
(3)在(2)的条件下,若抛物线的顶点为C ,过y 轴上一点M(0,m ,)作y 轴的垂线l ,当m 为何值时,直线l 与△ABC 的外接圆有公共点?
29.(本题满分10分)如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过A、B、C三点,已知点A(-3,0),B(0,m,),C(1,0).
(1)求m值;
(2)设点P是直线AB上方的抛物线上一动点(不与点A、B重合).
①过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE 的周长最大,求出此时P点的坐标;
②连接AP,并以AP为边作等腰直角△APQ,当顶点Q恰好落在抛物线的对称轴上时,求出对应的点P 坐标.。