人教版七年级数学上册专训2 整式加减在实际生活中的应用
- 格式:pptx
- 大小:36.97 KB
- 文档页数:3
初中数学整式的加减法运算的解题实际应用有哪些初中数学中,整式的加减法运算是一个基础且重要的内容。
除了在课堂上进行练习和应用外,整式的加减法运算还可以应用于各种实际问题中。
以下是关于整式的加减法运算的解题实际应用的一些例子,供参考:一、应用于几何问题:1. 计算图形的面积和周长:在几何问题中,可以运用整式的加减法运算来计算图形的面积和周长。
例如,计算矩形、三角形、圆形等图形的面积和周长时,可以将边长或半径用变量表示,利用整式的加减法运算来进行计算。
2. 求解图形的未知量:在几何问题中,可以利用整式的加减法运算来求解图形的未知量。
例如,已知一个图形的面积或周长,通过整式的加减法运算可以求解出图形的边长或半径等未知量。
二、应用于代数方程的求解:1. 解线性方程组:在代数方程的求解过程中,可以运用整式的加减法运算来解决线性方程组。
通过整式的加减法运算,可以将线性方程组转化为更简单的形式,从而更容易求解。
2. 求解一元二次方程:在一元二次方程的求解过程中,可以运用整式的加减法运算来解决。
通过整式的加减法运算和配方法,可以将一元二次方程化简为更简单的形式,从而求解方程的根。
三、应用于实际问题:1. 速度、距离、时间问题:在解决与速度、距离和时间相关的实际问题时,可以运用整式的加减法运算来计算。
通过建立代数模型,将速度、距离和时间用整式表示,然后进行加减法运算,从而求解出未知量。
2. 商品打折、优惠问题:在解决与商品打折、优惠相关的实际问题时,可以运用整式的加减法运算来计算。
例如,根据商品的原价和折扣率,可以通过整式的加减法运算来计算出折后价。
3. 财务问题:在解决与财务相关的实际问题时,可以运用整式的加减法运算来计算。
例如,计算收入、支出、利润等方面的变化,通过整式的加减法运算来进行计算和分析。
四、应用于方程的建立:1. 建立方程模型:在解决实际问题时,可以运用整式的加减法运算来建立方程模型。
通过将问题转化为代数方程,然后运用整式的加减法运算来求解方程,从而得到问题的解答。
精 品 试 卷2.2.4整式的加减----实际应用一、学习目标目标A :进一步熟悉去括号、合并同类项法则。
目标B :掌握整式的加减运算并能解决简单的实际问题. 目标C :进一步熟练整式的化简求值。
二、问题引领问题A :化简下列各式:(1) (2x -3y )+(5x +4y ) (2) (8a-7b )-(4a-5b)(3) x-3(-2x +3x 2)+2(3x +x 2)【思考】第(1)题是计算多项式2x -3y 和 5x +4y 的 第(2)题是计算多项式8a-7b 和 4a-5b 的【归纳】1.整式在进行减法运算时要给 上括号,即把 看作是一个整体,以免化简时符号出现错误2.整式的加减的运算法则:(1)如果有括号,那么先(2)如果有同类项,要 训练A :1、求整式34x y +与221x y --的和。
2、求整式34x y +与221x y --的差。
问题B :笔记本的单价是x (元),圆珠笔的单价是y (元),小红买3本笔记本,2支圆珠笔;小明买4本笔记本,3支买圆珠笔。
小红和小明共花多少钱? 小明比小红多花多少钱?训练B :某农场有耕地1000亩,种粮食、棉花和蔬菜三种农作物,其中蔬菜用地(a+b )亩,粮食用地比蔬菜用地的6倍还多b 亩,求棉花用地多少亩。
问题C: 求12x-2(x-13y 2)+(-32x+13y 2)的值,其中x=-2,y=23.训练C :化简求值:(2x 3―xyz)―2(x 3―y 3+xyz)+(xyz ―2y 3),其中x=1,y=2,z=―3。
三.专题训练 1.化简下列各式(1) (x+y)-(2x -3y) (2) 2 222223(2)a b a b --+精 品 试 卷(3) -2y 3+(3xy 2-x 2y)-2(xy 2-y 3) (4) -31ab -41 a 2+31 a 2-(-32ab)(5)(3 a 2- a b +7)-(-4 a 2+2ab +7) (6) 3b-2c-[-4a +(c+3b)]+c2.化简后再求值:5(3a 2b-ab 2)- (ab 2+3a 2b),其中a=-21,b=31四.课堂小结:谈收获与困惑 五.课时作业(预计时间:20分钟)1. x+y 减去x-y 结果为 .2.长方形的周长是4a+3b ,长是2a+b-3,则宽是 。
初中数学整式的加减法运算的解题实际应用有哪些整式的加减法运算是初中数学中的重要内容,具有广泛的实际应用,下面将介绍几个常见的实际应用场景。
1. 代数式化简在数学、物理、化学等学科中,经常需要进行代数式的化简。
例如,在物理学中,代数式的化简可以简化物理公式,使其更加简洁明了;在化学中,代数式的化简可以简化化学式,方便进行计算和比较;在数学中,代数式的化简可以简化计算过程,提高计算效率。
2. 复杂问题求解在一些复杂的问题中,需要利用整式的加减法运算来简化问题。
例如,在解决一些工程问题时,需要将复杂的物理量进行简化,以便进行计算和比较;在解决一些经济问题时,需要将复杂的财务数据进行简化,以便进行分析和决策。
3. 物理学中的运动问题在物理学中,整式的加减法运算可以用于解决运动问题。
例如,当一个物体做匀加速直线运动时,它的位移可以表示为S=Vt+1/2at²,其中S 表示位移,V 表示初速度,t 表示时间,a 表示加速度。
通过整式的加减法运算,可以求出物体的位移、速度、加速度等物理量。
4. 经济学中的成本问题在经济学中,整式的加减法运算可以用于解决成本问题。
例如,在生产过程中,成本可以表示为C=FC+VC,其中 C 表示总成本,FC 表示固定成本,VC 表示可变成本。
通过整式的加减法运算,可以计算出生产成本的各个部分,帮助企业控制成本、提高效益。
5. 化学中的化学式问题在化学中,整式的加减法运算可以用于解决化学式问题。
例如,在化学反应中,需要求出反应物的摩尔比、化学计量数等物理量。
通过整式的加减法运算,可以将化学式进行化简,计算出反应物的各个物理量,并帮助化学家进行实验设计和数据分析。
综上所述,整式的加减法运算在数学、物理、化学、经济学等领域中都有广泛的应用,通过掌握整式的加减法运算,可以更好地理解和解决实际问题。
在实际应用中,需要根据具体的问题特点选择合适的方法和技巧,不断提高解决问题的能力和水平。
初中数学整式的加减法运算的解题实际应用有哪些初中数学中,整式的加减法运算在实际生活中有许多应用。
下面将介绍一些整式加减法运算的实际应用。
一、代数表达式的简化整式的加减法可以用于代数表达式的简化。
在实际问题中,经常会遇到复杂的代数表达式,通过整式的加减法运算,可以将表达式简化为更简单的形式,便于进一步的分析和计算。
二、面积和周长的计算在几何学中,面积和周长的计算常常涉及整式的加减法运算。
例如,计算长方形的面积和周长,可以利用整式的加减法运算求解。
面积为长乘以宽,周长为两倍长加两倍宽。
三、物品价格的计算在商业交易中,经常需要进行物品价格的计算。
整式的加减法运算可以用于计算物品的总价格。
例如,某商店有两件商品,价格分别为2x和3y,可以通过整式的加法运算求得这两件商品的总价格。
四、时间和速度的计算在物理学中,时间和速度的计算经常需要使用整式的加减法运算。
例如,通过已知的速度和时间计算距离,可以利用整式的加减法运算求解。
距离等于速度乘以时间。
五、财务预算和账目的计算在个人和企业的财务管理中,整式的加减法运算被广泛应用于财务预算和账目的计算。
通过整式的加减法运算,可以计算收入和支出的总额,进行预算和核算。
六、代数方程的求解代数方程的求解是数学中重要的内容之一。
整式的加减法运算可以用于代数方程的求解过程中。
通过整式的加减法运算,可以将方程转化为更简单的形式,便于求解。
七、科学实验的数据处理在科学实验中,常常需要进行数据处理和分析。
整式的加减法运算可以用于科学实验数据的处理过程中。
例如,计算实验数据的平均值、总和等,可以通过整式的加减法运算求解。
八、经济模型和统计分析在经济学和统计学中,常常需要进行经济模型的构建和统计分析。
整式的加减法运算可以用于经济模型的构建和统计分析过程中。
通过整式的加减法运算,可以进行数据的整合和分析,得出经济模型的结论。
九、编程和算法设计在计算机科学中,整式的加减法运算可以用于编程和算法设计。
2023-2024年人教版七年级上册数学期末复习:第二章整式的加减的应用解答题专题训练1.如图所示,池塘边有一块长为30m,宽为15m的长方形土地,现在将其余三面留出(1)m=_____________,n=_____________(请用含x的代数式表示m和n)(2)求购买100件奖品所需的总费用(需要解题过程,用含x的代数式表示,需要化简);(3)若一等奖奖品购买了10件,求总共需花费的钱数.x的小正方形、两个不同的大正方形和1个长方形(阴影部3.如图,用三个边长为cm(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?7.如图,把五个宽为a 、长为b 的小长方形,按图1和图2两种方式摆放在一个宽为m 的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为1C ,图2中阴影部分的周长为2C ,若大长方形的长比宽大()5a -,请判断1C ,2C 的大小,并说明理由.8.李老师新购买的住房平面结构如图所示(1)李老师打算把卧室铺实木地板,其它房间铺地砖,则他需要买实木地板和地砖各多少平方米?(x 、y 单位:米)(2)若3x =米,2y =米,并且每平方米实木地板的价格是200元,每平方米地砖的价格是60元,则李老师购买实木地板和地砖共需要多少元?9.阳光小区在一块长方形土地上修建两个如图所示的扇形水池,其余面积(阴影部分)进行绿化处理.(结果保留π)(1)用含a ,b 的代数式表示长方形的长:____________;(2)用含a ,b 的代数式表示绿化土地(阴影部分)的面积S ;(3)当4a =米,6b =米时,求绿化土地(阴影部分)的面积S .10.已知一个等腰梯形院墙,上底长为2a b +,腰比上底长a b -,下底比腰长3a b +.(1)求这个等腰梯形的周长(用含有a 、b 的式子表示).(2)求当3a =米,1b =米时,这个梯形的周长是多少米?(3)在(2)的条件下,围成院墙的材料30米以内,每米收费200元,超过的部分每米只收费180元,请问围成这个等腰梯形的院墙至少花费多少钱?11.有一块长48米,宽40米的长方形场地,现规划在场地中间铺设横纵两条道路(图中空白部分),剩余部分修建成花坛,如图1所示,横向道路的宽是纵向道路宽的2倍,设纵向道路的宽是x 米(0x >)(1)求图1中花坛(阴影部分)的面积;(2)若把纵向道路的宽改为原来的2.2倍,横向道路的宽改为原来的一半,如图2所示,设图1与图2的花坛面积分别为1S 、2S .试比较1S 与2S 的大小.12.如图,两叠规格相同的杯子整齐地叠放在桌面上.(1)按如图所示叠放时,相邻两个杯子杯口之间的高度相差______cm ;(2)若x 个杯子按如图所示方式整齐叠放在桌面上.①求这些杯子的顶部距离桌面的高度;(用含x 的代数式表示)①当12x =时,求这些杯子的顶部距离桌面的高度.13.如图,这是依依家的一把椅子的侧面示意图,用含a 的式子表示这把椅子的侧面的面积(图中长度单位:dm )14.某养殖场计划用96米的竹篱笆围成如图所示的①、①、①三个养殖区域,其中区域①是正方形,区域①和①是长方形,且32AG BG =∶∶.设BG 的长为2x 米.(1)用含x 的代数式表示AF = ;(2)用含x 的代数式表示DF ,并求当1x =时,区域①的面积.15.下图是某居民小区的一块长为a 米,宽为2b 米的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径为b 米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花的费用为每平方米120元,种草的费用为每平方米60元.(1)求美化这块空地共需多少元.(用含有a ,b ,π的式子表示)(2)当5a =,2b =,π取3时,美化这块空地共需多少元?16.为改善居民居住条件,让人民群众生活更方便更美好,国家出台了改造提升城镇老旧小区政策.在我县“老城换新颜”小区改造中,某小区规划修建一个广场(平面图形如图所示):(1)用含m ,n 的代数式表示广场(阴影部分)的面积S ;(2)若50m =米,40n =米,求出该广场的面积.17.如图所示,有一块长为()3m n +米和宽()2m n +,现准备在这块土地上修建一个长为()2m n +米,宽为m n 的游泳池,剩余部分修建成休息区域.(1)请用含m 和n 的代数式表示休息区域的面积;(2)若10m =,5n =,求休息区域的面积.20.探究活动:(1)将图①中阴影部分裁剪下来,重新拼成图①一个长方形,则图①长方形的长表示为______,宽为______.(2)则图①中阴影部分周长表示为______知识应用:运用(2)题你得到的代数式解决以下问题(3)计算:已知53,35a m n b n m =+=-,则阴影部分周长是多少?参考答案:(2)整个施工所需的造价为660元19.(1)大纸盒用料为()2301220cm a b ab ++;小纸盒用料为()25820cm ab b a ++ (2)做1个大纸盒比做2个小纸盒多用料()210410cm a b ab --+ (3)222cm20.(1)()a b +,()a b -(2)4a(3)2012m n +。
初中数学整式的加减法运算的解题实际应用有哪些整式的加减法运算在实际生活中有广泛的应用。
以下是一些与整式加减法运算相关的实际应用。
1. 购物计算在购物过程中,我们经常需要计算商品的总价和找零金额。
整式的加减法运算可以帮助我们计算购物总额并确定需要支付的金额。
例如,如果购买了一件衣服,原价为$50,打折后的价格为原价的80%,还有一张$10的优惠券可以使用,那么我们可以用整式的加减法运算计算出实际需要支付的金额。
2. 借贷计算在借贷交易中,整式的加减法运算可以帮助我们计算本金和利息的总额,以及还款金额和剩余债务。
例如,当我们借款$1000,年利率为5%,借款期为一年,利息按年计算,那么整式的加减法运算可以帮助我们计算出一年后需要还款的总额,并确定每月需要偿还的金额。
3. 计量单位换算在计量单位换算过程中,整式的加减法运算可以帮助我们将不同单位的数值进行换算。
例如,如果需要将5千克转换为克,我们可以使用整式的加减法运算将千克转换为克,即5千克= 5 * 1000克。
4. 面积和周长计算在解决面积和周长问题时,整式的加减法运算可以帮助我们计算图形的面积和周长。
例如,如果我们需要计算一个长方形的面积和周长,已知长方形的长为5厘米,宽为3厘米,那么我们可以使用整式的加减法运算计算出长方形的面积和周长。
5. 速度和时间计算在速度和时间计算中,整式的加减法运算可以帮助我们计算出行程的时间和速度。
例如,如果我们知道某车辆以每小时60公里的速度行驶,行程为120公里,那么我们可以使用整式的加减法运算计算出行驶的时间。
6. 经济运算整式的加减法运算在经济运算中也有应用。
例如,企业的成本和收入计算、税收计算、利润计算等都涉及整式的加减法运算。
整式的加减法运算可以帮助我们计算出企业的总成本、总收入、净利润等。
7. 科学实验数据处理在科学实验中,整式的加减法运算可以帮助我们处理实验数据。
例如,当我们需要计算实验样本的平均值、标准差、方差等统计指标时,整式的加减法运算可以帮助我们计算出这些统计指标。
初中数学整式的加减法运算的实际应用有哪些初中数学整式的加减法运算的实际应用整式的加减法运算在解决实际问题中有着广泛的应用。
它能够帮助我们处理各种数学和实际问题,并提供了一种有效的数学工具来进行计算和分析。
以下是整式的加减法运算在实际应用中的几个常见示例:1. 面积和体积计算整式的加减法运算可以用于计算各种形状的物体的面积和体积。
例如,计算矩形的面积、圆的面积、三角形的面积等。
通过将长度、宽度和高度代入相应的公式,可以使用整式的加减法运算计算出物体的面积和体积。
2. 财务管理整式的加减法运算在财务管理中起着重要的作用。
例如,在预算编制中,可以使用整式的加减法运算计算出各项支出的总和以及总收入和支出的差额。
此外,在利润计算和税务申报中,也可以使用整式的加减法运算进行计算和分析。
3. 比例和比率问题整式的加减法运算可以用于解决比例和比率问题。
例如,计算两个数的比例、求解两个数之间的比率等。
通过将已知条件用整式表示,并进行相应的加减法运算,可以求解出未知数的值。
4. 科学实验和数据分析整式的加减法运算在科学实验和数据分析中也有广泛的应用。
例如,在物理实验中,可以使用整式的加减法运算计算出测量结果的平均值和误差。
在统计学中,可以使用整式的加减法运算计算出数据的总和、平均值、标准差等。
5. 工程设计和建模整式的加减法运算在工程设计和建模中也起到了重要的作用。
例如,在建筑设计中,可以使用整式的加减法运算计算出建筑物的总面积、总体积等。
在电路设计中,可以使用整式的加减法运算计算电阻、电容和电感的等效值。
6. 几何图形的计算整式的加减法运算在几何图形的计算中也有重要的应用。
例如,计算三角形的周长和面积、计算圆的周长和面积等。
通过将已知条件用整式表示,并进行相应的加减法运算,可以求解出未知数的值。
7. 经济学和商业问题整式的加减法运算在经济学和商业问题中也有重要的应用。
例如,在经济学中,可以使用整式的加减法运算计算出总支出、总收入和净收入等。
第二章第7课整式的加减在实际问题中的应用-七年级上册初一数学整式的加减是初中数学中一个非常重要的知识点,它在实际问题中的应用也非常广泛。
本文将以七年级上册初一数学(人教版)第二章第七课的内容为基础,讨论整式的加减在实际问题中的应用。
一、整式的加减概述整式是由一些数、变量和运算符(+、-、×、÷)组成的代数表达式。
整式的加减就是将两个或多个整式相加或相减的运算。
整式的加法遵循交换律和结合律:1.交换律:整式的加法满足交换律,即a + b = b + a。
2.结合律:多个整式相加时,可以按照任意顺序进行加法运算。
整式的减法是加法的逆运算,即a - b = a + (-b)。
二、整式的加减的实际问题整式的加减在实际问题中的应用非常广泛,下面将介绍几个具体的实例。
实例1:购物账单小明去超市购买了一些商品,其中有3本书,每本书的价格是10元,还买了2个手机壳,每个手机壳的价格是15元。
请计算小明购物的总费用。
解析:设表示购物总费用的整式为T,每本书的价格为a,手机壳的价格为b。
根据题意,可以写出下面的整式表示:T = 3a + 2b其中,a = 10,b = 15,将其代入整式中,可求得小明购物的总费用。
T = 3 * 10 + 2 * 15 = 30 + 30 = 60所以,小明购物的总费用是60元。
实例2:人数统计某班级有个数学兴趣小组,有a个学生喜欢打篮球,b个学生喜欢踢足球。
请问,该班级中喜欢运动的学生一共有多少人?解析:设表示喜欢运动的学生总人数的整式为N。
根据题意,可以写出下面的整式表示:N = a + b将已知的a、b的值代入整式中,即可求得喜欢运动的学生总人数。
例如,a = 20,b = 15,代入整式中计算得:N = 20 + 15 = 35所以,该班级中喜欢运动的学生一共有35人。
实例3:汽车行驶某辆汽车以每小时60公里的速度从A地到B地,然后以每小时45公里的速度从B地返回A地,整个行驶过程总共用了t小时,求A地到B地的距离。
整式加减在实际问题中的应用(含答案)学完了整式的加减运算, 希望同学们不仅会做一些计算题, 更要善于用数学知识解决生活中的实际问题, 养成“用数学”的习惯, 现举例说明.例1 某大商场, 10月份营业额为x 万元, 11月份营业额比10月份的2倍还多17万元, 12月份的营业额比10月份的3倍少2万元, 试求第四季度的总营业额.分析: 解体的关键是读懂题意, 能用所给的字母正确的表示出相关的量.可分别确定11月份, 12月份的营业额, 从而确定第四季度的总营业额.解: 因为10月份的营业额为x 万元,所以11月份的营业额为(2x+17)万元, 12月份营业额为(3x-2)万元.所以第四季度的总营业额为x+(2x+17)+(3x-2)=(6x+15)(万元).例 2 前不久, 共青团中央等部门发起了“保护母亲河”的行动, 某校八年级两个班的115名学生积极参与, 踊跃捐款, 已知甲班有 的学生每人捐了10元, 乙班有 的学生每人捐了10元, 两个班其余学生每人捐了5元, 设甲班有学生x 人, 试用式子表示两个班捐款的总额, 并进行化简.分析:先确定各数量之间的关系:两班捐款总额=甲班捐款总额+乙班捐款总额, 又因为甲班有x 人, 则乙班有(115-x)人, 再列出式子并化简. 解: 两班捐款总额为(31x ⨯10+32x ⨯5)+[52(115-x)⨯10+53(115-x)⨯5] =(310x+310x)+(460-4x+345-3x) =x 320+805-7x =-31x+805.所以两班捐款总额为(-31x+805)元.例3 某工厂有工人200人, 每人每天可织布30m 或制衣6件, 每件衣服用去布2m, 把不直接出售, 每米利润2元;若把衣服出售, 每件利润为25元, 现安排x 名工人制衣, 其余支部, 试求利润. 分析: 利润有两部分: 售衣和售布.售衣的利润为25 6x, 而售布的利润为(200-x)名工人所织的布减去制衣用的布乘以2.解: 因为售衣的利润为25 6x (元), 售布的利润为2[30(200-x)-2 6x](元), 所以利润为25⨯6x+2[30(200-x)-2⨯6x]=(66x+12000)(元). 练习:1、某商场4月份营业额为x 万元, 5月份营业额比4月份多10万元.如果该市场第二季度的营业额为4x 万元, 试求6月份的营业额.2.A 和B 两家公司都准备向社会招聘人才, 两家公司招聘的条件基本相同, 只有工资待遇有如下诧异: A 公司年薪10000元, 每年加工龄工资200元;B 公司办年薪5000元, 每半年加工龄工资50元, 从经济收入的角度考虑的话, 选择哪家公司有利?, 并进行化简 (2)假设所购进手机恰好用去61000元且全部售出, 综合考虑各种因素, 该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.请用含x 、y 的代数式表示预估利润, 并进行化简(注:预估利润P =预售总额-购机款-各种费用)4. 一种商品每件成本a 元, 按成本增加22%定出价 格, 每件售价多少元? 后来因库存积压减价, 按原价85%出售, 现售价多少元?每件还能盈利多少元?千克? (2)若甲种产品每件成本为70元, 乙种产品每件成本为90元, 用含x 的代数式表示两种产品的成本总额是多少元?6.研究所对某种新型产品的产销情况进行了研究, 为投资商在甲、乙两地生产并销售该产品提供了如下成果: 第一年的年产量为x (吨)时, 所需的全部费用y (万元)与x 满足关系式y= x2+5x+90, 投入市场后当年能全部售出, 且在甲、乙两地每吨的售价为p 甲, p 乙(万元). (注: 年利润=年销售额-全部费用)成果表明, 在甲地生产并销售 吨时, p 甲= – x+14, 请你用含x 的代数式表示甲地当年的年销售额及年利润。