初中数学 江苏省无锡市羊尖中学七年级数学下学期期中考模拟试题考试卷及答案
- 格式:docx
- 大小:78.06 KB
- 文档页数:12
江苏省无锡市202X-202X 学年七年级下学期期中必刷模拟数学试卷一、单项选择题1.在如下图的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A ®B C®>c X D 惭2 .以下运算正确的选项是()A. a 2 cr =</'B.C. 9?♦灯+ 4D. 3. 如图,要得到ABO CD.只需要添加一个条件,这个条件不可以是() • • •C. Z2 = Z4D. ZZ>4-ZZMD=I8O° 4. 以下各式计算正确的选项是()A.(x + 2)(x-5) = .v 2-2.r-3B.(A + 3)(X -1)= X :+A-1 -.v~- D.(3x+ 2)(2x-3) = 6b -5x + 6 6 3 ZABC 、46的三答分级交于点E 、D,假设匕E = 90。
,那么匕收的度数为()A.I2(FB.125。
C.13(FD.135°6. 假设4疽-灿+ 9必是完全平方式.那么常数k 的值为()A.6B.12C.±6D.±127. 如图,[\ABC 中£4 = 3伊,£是AC 边上的点,先将\JABE 沿假设 盹翻折,翻折后Q A BE 的A8边 交AC 于点。
,又将QBCD 沿落/?/)翻折,C 点恰好落在"上,此时ZCDB = 82。
,那么原三角形的 的度数为()•E)=5.如图,UABC 中,8.小淇将(20XXX + 202X):展开后得到+姒+弓;小尧将(202X —20XX)?展开后得到 a 2x 2^b 2x^c 2.假设两人计算过程无误,姻马-马的值为()A.20XXB.2O2OC.4039D.19 .假设D4BC 内有一个点R ,当片、人、B 、C 没有任何三点在同一 •直线上时.如图1.可构成3个互 不亟瓮的小三角形:假设[JABC 内有两个点g 、P,,其它条件不变,如图2,可构成5个互不重叠的 小三角形:……ABC 内有,,个点,其它条件不变.那么构成假设干个互不重登的小三角形.这些10. 为了M 写简便,18世纪数学家欧拉引进了求和符号“£”,例如:£k = 1 + 2 +3 +・・• + (〃-1) +〃.£(》+ &) = ("5)+ (》+ 6) + (式 + 7)・・.+(》+ 〃):Jl-I A-5£[(、+ k)(x - A +1)] = 4.v 2 +4.r + m 那么 m 的值为()A.40B.-68C.-4OD.-KJ4二、填空题11. 石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论归度仅().00000000034米,这个数用科学 记数法表示为 _____ .12. _________________________________________ 2.v + 3y-3 = (),那么 9’ 27,= .13. ________________________________________________________ 如图,ABREF ,设/C = 90°・那么与,广的关系式 ____________________________________________________ .D.82° B.72° C.78。
苏教版七年级下学期数学期中测试卷一、选择题1.12-等于( ) A. 2-B.12C. 1D. 12-2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角3.下列计算正确的是( ) A. a 3.a 2=a 6B. a 2+a 4=2a 2C. (a 3)2=a 6D. 224(3)6a a =4.计算(﹣2a 2)•3a 的结果是( ) A. ﹣6a 2B. ﹣6a 3C. 12a 3D. 6a 35.以下列各组数据为边长,可以构成等腰三角形的是( ) A. 1cm 、2cm 、3cmB. 3cm 、 3cm 、 4cmC. 1cm 、3cm 、1cmD. 2cm 、 2cm 、 4cm6.如图,能判断AB ∥CE 的条件是( )A. ∠A =∠ECDB. ∠A =∠ACEC. ∠B =∠BCAD. ∠B =∠ACE7.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )AB. C. D.8.下列各式从左到右的变形中,是因式分解的是( )A. 2(3)(3)9a a a +-=-B. 2323(2)a a a a a--=-- C. 245(4)5a a a a --=--D. 22()()a b a b a b -=+-二、填空题9.等式01a =成立的条件是________. 10.计算126x x ÷的结果为______.11.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______. 12.多项式2412xy xyz +的公因式是______.13.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m . 14.一个五边形所有内角都相等,它的每一个内角等于_______.15.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.16.计算()()12x x --的结果为_____; 三、解答题17. 如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′; (2)在图中画出△A′B′C′的高C′D′. 18.计算: (1)022019()32020-- (2)4655x x x x ⋅+⋅ 19.计算:(1)22(2).(3)xy xy (2)23(21)ab a b ab -+-(3)(32)(32)x y x y +- (4)()()a b c a b c ++-+ 20.因式分解: (1)16x 2-9y 2 (2)(x 2+y 2)2-4x 2y 221.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?22.观察下列等式,并回答有关问题:3322112234+=⨯⨯;333221123344++=⨯⨯;33332211234454+++=⨯⨯; …(1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ; (2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小.23.已知在△ABC 中,试说明: ∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC .则(填空) ∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180° ∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )24.问题1: 现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1: 如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ; (2)探究2: 如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ;(3)探究3: 如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2: 将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .参考答案一、选择题1.12-等于( ) A. 2- B.12C. 1D. 12-【答案】B 【解析】 【分析】由题意直接根据负指数幂的运算法则进行分析计算即可. 【详解】解: 12-=12. 故选: B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键. 2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角【答案】C 【解析】 【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内 ∴∠1和∠2是同旁内角的关系 故选: C .【点睛】本题考查同旁内角的理解,紧抓定义来判断. 3.下列计算正确的是( ) A. a 3.a 2=a 6 B. a 2+a 4=2a 2C. (a 3)2=a 6D. 224(3)6a a =【答案】C【解析】 【分析】根据同底幂的运算法则依次判断各选项. 【详解】A 中,a 3.a 2=a 5,错误; B 中,不是同类项,不能合并,错误; C 中,(a 3)2=a 6,正确; D 中,224(3)9a a ,错误 故选: C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的. 4.计算(﹣2a 2)•3a 的结果是( ) A. ﹣6a 2 B. ﹣6a 3C. 12a 3D. 6a 3【答案】B 【解析】 【分析】用单项式乘单项式的法则进行计算. 【详解】解: (-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选: B .【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键. 5.以下列各组数据为边长,可以构成等腰三角形的是( ) A. 1cm 、2cm 、3cm B. 3cm 、 3cm 、 4cm C. 1cm 、3cm 、1cm D. 2cm 、 2cm 、 4cm【答案】B 【解析】 【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形. 【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确 故选: B .【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.6.如图,能判断AB ∥CE 的条件是( )A. ∠A =∠ECDB. ∠A =∠ACEC. ∠B =∠BCAD. ∠B =∠ACE【答案】B 【解析】 【分析】根据平行线的判定方法: 内错角相等两直线平行,即可判断AB ∥CE . 【详解】解: ∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行). 故选B .【点睛】此题考查了平行线的判定,平行线的判定方法有: 同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键. 7.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A. B. C. D.【答案】A 【解析】 【分析】根据平移的概念判断即可,注意区分图形的平移和旋转. 【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到. 故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移. 8.下列各式从左到右的变形中,是因式分解的是( ) A. 2(3)(3)9a a a +-=- B. 2323(2)a a a a a--=-- C. 245(4)5a a a a --=-- D. 22()()a b a b a b -=+-【答案】D【解析】【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A、C不是几个式子相乘的形式,错误;B中,32a a--不是整式,错误;D是正确的故选: D.【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.二、填空题9.等式01a=成立的条件是________.a≠.【答案】0【解析】【分析】根据零指数幂有意义的条件作答即可.a≠.【详解】由题意得: 0a≠.故答案为: 0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.10.计算126÷的结果为______.x x【答案】6x【解析】【分析】根据同底数幂的除法公式即可求解.【详解】126÷=6xx x故答案为: 6x.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的除法公式.11.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可. 【详解】设较小的锐角是x ,则另一个锐角是2x , 由题意得,x +2x =90°, 解得x =30°,即此三角形中最小的角是30°. 故答案为30°. 【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键. 12.多项式2412xy xyz +的公因式是______. 【答案】4xy 【解析】 【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为: 4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.13.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m . 【答案】89.110-⨯. 【解析】 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000091m 用科学记数法表示为89.110m -⨯. 故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键. 14.一个五边形所有内角都相等,它的每一个内角等于_______. 【答案】108︒ 【解析】【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数. 【详解】每一个外角的度数是: 360°÷5=72°, 每一个内角度数是: 180°−72°=108°. 故答案为: 108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.15.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.【答案】115°. 【解析】 【分析】根据三角形的内角和定理得出∠ABC +∠ACB =130°,然后根据角平分线的概念得出∠OBC +∠OCB ,再根据三角形的内角和定理即可得出∠BOC 的度数. 【详解】解;∵∠A =50°,∴∠ABC +∠ACB =180°﹣50°=130°, ∵∠B 和∠C 的平分线交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12×(∠ABC +∠ACB )=12×130°=65°,∴∠BOC =180°﹣(∠OBC +∠OCB )=115°, 故答案为: 115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数. 16.计算()()12x x --的结果为_____; 【答案】2-32x x + 【解析】 【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x ²−2x−x +2=x ²−3x +2,故答案为: x ²−3x +2.【点睛】点评: 此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.三、解答题17. 如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.【答案】(1)图见解析;(2)图见解析.【解析】【详解】解: (1)△A′B′C′如下图;(2)高C′D′如下图.18.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅【答案】(1)89;(2)102x ; 【解析】【分析】(1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法. 19.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab -+-(3)(32)(32)x y x y +-(4)()()a b c a b c ++-+【答案】(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++ 【解析】【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解: (1)原式2443x y xy =⋅ 3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+- 2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.20.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 2【答案】(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【解析】【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可;(2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =- (43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+ 2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.21.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?【答案】见解析.【解析】【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键. 22.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3()()f x g x ==与25055的大小. 【答案】(1)221(1)4n n + (2)< 【解析】【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解: (1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为: 14n 2(n+1)2. (2)13+23+33+…+1003=2211001014⨯⨯ =21(100101)2⨯⨯ =25050<25055所以13+23+33+…+1003=<25055.【点睛】此题考查规律型: 数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键. 23.已知在△ABC 中,试说明: ∠A +∠B +∠C =180°方法一: 过点A作DE∥BC. 则(填空)∠B=∠,∠C=∠∵ ∠DAB+∠BAC+ ∠CAE=180°∴∠A+∠B+∠C=180°方法二: 过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F(补全说理过程)【答案】DAB,CAE ;见解析【解析】【分析】方法一: 根据平行线的性质: 两直线平行,内错角相等解答;方法二: 根据平行线的性质: 两直线平行、同位角相等解答.【详解】方法一: ∵DE∥BC,∴∠B=∠DAB,∠C=∠CAE,故答案为: DAB,CAE;方法二: ∵DE∥AC,∴∠A=∠BED,∠C=∠BDE,∵DF∥AB,∴∠EDF=∠BED,∠B=∠CDF,∵∠CDF+∠EDF+∠BDE=180°,∴∠A+∠B+∠C=180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.24.问题1: 现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.(1)探究1: 如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是;(2)探究2: 如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是;(3)探究3: 如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2: 将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .【答案】(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【解析】【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式;(4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系: 212A ∠-∠=∠理由: 如下图,连接AA '由(1)可知: ∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知: ∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得: 123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.。
七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D. 2.若A是五次多项式,B是三次多项式,则A+B一定是()A. 五次整式B. 八次多项式C. 三次多项式D. 次数不能确定3.下列计算正确的是()A. B. C. D. 4.9x2-mxy+16y2是一个完全平方式,那么m的值是()A. 12B. C. D. 5.下列各式从左到右的变形,是因式分解的是()A. B. C. D. 6.根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x场输了y场,得20分,则可以列出方程组()A. B. C. D. 7.已知三角形的周长小于13,各边长均为整数且三边各不相等,那么这样的三角形个数共有()A. 2B. 3C. 4D. 58.关于x、y的方程组的解是方程3x+2y=17的一个解,那么m的值是()A. 2B. C. 1D. 9.如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于()A. B. C. D. 10.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为()A. B. C. D. 二、填空题(本大题共8小题,共16.0分)第1页,共19页11. 计算: = ______ .12. 遗传物质脱氧核糖核酸(DNA )的分子直径为0.000 0002cm ,用科学记数法表示为______cm . 13. 已知一个五边形的4个内角都是100°,则第5个内角的度数是______ 度.度.14. 已知2n =a ,3n =b ,则6n= ______ .15. 已知s +t =4,则s 2-t 2+8t =______.16. 如图,小明从点A 向北偏东75°方向走到B 点,又从B点向南偏西30°方向走到点C ,则∠ABC 的度数为______ .17. 若关于x 、y 的二元一次方程组的二元一次方程组 的解是的解是 ,则关于x 、y 的二元一次方程组次方程组 的解是______ .18. 将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式 中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是______. 三、计算题(本大题共1小题,共6.0分)19. 先化简,再求值 (x -2)2+2(x +2)(x -4)-(x -3)(x +3),其中x =-1.四、解答题(本大题共8小题,共58.0分) 20. 计算:计算:(1)(-3)2-2-3+30; (2).21. 把下列各式分解因式:把下列各式分解因式:(1)2x 2-8xy +8y 2 (2)4x 3-4x 2y -(x -y )22. 解方程组:解方程组:(1) ; (2) .23. 如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格):,按要求进行下列作图(只能借助于网格):(1)画出△ABC 中BC 边上的高(需写出结论);边上的高(需写出结论);(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF ;(3)画一个锐角△MNP (要求各顶点在格点上),使其面积等于△ABC 的面积.的面积.24. 利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?如图,一个边长为1的正方形,依次取正方形的,,,,根据图示我们可以知道:第一次取走后还剩,即=1-;前两次取走 +后还剩,即 +=1-;前三次取走 + +后还剩,即 + +=1-;…前n 次取走后,还剩______ ,即______ = ______ . 利用上述计算:利用上述计算:(1) = ______ .(2) = ______ .(3)2-22-23-24-25-26-…-22011+22012(本题写出解题过程)(本题写出解题过程)25.某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?年需节约多少立方米才能实现目标?26.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=______;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.关系,并说明理由.27.某次初中数学竞赛试题中,有16道5分题和10道7分题,满分为150分.批改时分,没有其它分值.每道题若答对得满分,答错得0分,没有其它分值.(1)如果晓敏同学答对了m道7分题和n道5分题,恰好得分为70分,列出关于m、n的方程,并写出这个方程符合实际意义的所有的解.的方程,并写出这个方程符合实际意义的所有的解.(2)假设某同学这份竞赛试卷的得分为k(0≤k≤150),那么k的值有多少种不同大小?请直接写出答案.大小?请直接写出答案.答案和解析1.【答案】D【解析】解:A 、能通过其中一个四边形平移得到,错误;B 、能通过其中一个四边形平移得到,错误;C 、能通过其中一个四边形平移得到,错误;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确. 故选:D .根据平移与旋转的性质得出.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选. 2.【答案】A【解析】解:若A 是五次多项式,B 是三次多项式,则A+B 一定是五次整式; 故选:A .利用合并同类项法则判断即可得到结果.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 3.【答案】C【解析】解:A 、a 2•a 3=a 5,错误; B 、a 6÷a 3=a 3,错误; C 、(a 2)3=a 6,正确; D 、(2a )3=8a 3,错误; 故选:C .根据同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方计算判断即可.此题考查同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方,关键是根据法则进行计算. 4.【答案】D【解析】解:∵(3x±3x±4y 4y )2=9x 2±24xy+16y 2, ∴在9x 2-mxy+16y 2中,m=±m=±2424. 故答案为D .根据(3x±3x±4y4y )2=9x 2±24xy+16y 2可以求出m 的值. 本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 5.【答案】B【解析】解:A 、右边不是积的形式,故本选项错误;B 、是运用完全平方公式,x 2-8x+16=(x-4)2,故本选项正确; C 、是多项式乘法,不是因式分解,故本选项错误; D 、6ab 不是多项式,故本选项错误. 故选:B .根据因式分解就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.本题考查了因式分解的定义,牢记定义是解题的关键. 6.【答案】C【解析】解:设赢了x 场输了y 场,可得:,故选:C .根据此题的等量关系:①共12场;②赢了x 场输了y 场,得20分列出方程组解答即可.此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.【答案】B【解析】解:根据三角形的两边之和大于第三边以及三角形的周长小于13,则其中的任何一边不能超过6.5;再根据两边之差小于第三边,则这样的三角形共有3,4,2;4,5,2;3,4,5三个.故选B.首先根据三角形的两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于6.5;再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.本题考查三角形的三边关系,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.8.【答案】C【解析】解:解方程组,得:,∵方程组的解是方程3x+2y=17的一个解,∴21m-4m=17,解得:m=1,故选:C.将m看做已知数求出方程组的解得到x与y,代入已知方程计算即可求出m 的值.此题考查二元方程组的解及其解法,其最基本的方法是先消元,然后再代入求解,能得出关于m的方程是解此题的关键.9.【答案】B【解析】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180-72=108°;∵EG平分∠BEF,∴∠BEG=54°;∵AB∥CD,∴∠EGF=∠BEG=54°.根据平行线及角平分线的性质解答.平行线有三个性质,其基本图形都是两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用其性质和已知条件计算.10.【答案】C【解析】解:∵∠ABC、∠ACB的三等分线交于点E、D,∴∠CBG=∠EBG=∠ABE=∠ABC,∠BCF=∠ECF=∠ACE=∠ACB,在△BCG中,∠BGC=118°,∴∠CBG+∠BCE=180°BCE=180°--∠BGC,∴∠CBG+∠2∠BCF=62°①在△BCF中,∠BFC=132°,∴∠BCF+∠CBF=180°CBF=180°--∠BFC,∴∠BCF+2∠CBG=48°②,①+②得,3∠BCF+3∠CBG=110°,∴∠A=180°A=180°--(∠BCF+∠CBG)=70°,故选C.先根据三等份角得出结论,再利用三角形的内角和列出方程,两方程相加即可求出∠ABC+∠ACB即可.本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.用方程的思想解几何问题.11.【答案】【解析】解:=(-)2004×32003×3 =(-)2003×32003×(-)=(-×3)2003×(-)=(-1)2003×(-)=. 故答案为:.先算幂的乘方,再根据积的乘方逆运算求解即可.考查了幂的乘方与积的乘方,关键是根据幂的乘方,积的乘方逆运算得到原式=(-×3)2003×(-).12.【答案】2×2×1010-7 【解析】解:0.0000002=2×0.0000002=2×1010-7. 故答案为:2×2×1010-7. 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×a×1010-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,小数点移动的位数的相反数即是n 的值.此题主要考查用科学记数法表示较小的数,一般形式为a×a×1010-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 13.【答案】140 【解析】解:因为五边形的内角和是(5-2)×180°180°=540°=540°,4个内角都是100°, 所以第5个内角的度数是540°540°-100°-100°-100°××4=140°, 故答案为:140.利用多边形的内角和定理即可求出答案.本题主要考查了多边形的内角和公式,是一个比较简单的问题. 14.【答案】ab【解析】解:∵2n =a ,3n=b ,∴6n=2n•3n=ab .故答案为:ab .利用幂的乘方与积的乘方的法则求解即可.本题主要考查了幂的乘方与积的乘方,解题的关键是熟记幂的乘方与积的乘方法则. 15.【答案】16 【解析】解:∵s+t=4, ∴s 2-t 2+8t =(s+t )(s-t )+8t =4(s-t )+8t =4(s+t ) =16. 故答案为:16.根据平方差公式可得s 2-t 2+8t=(s+t )(s-t )+8t ,把s+t=4代入可得原式=4(s-t )+8t=4(s+t ),再代入即可求解.考查了平方差公式,以及整体思想的运用. 16.【答案】45°【解析】解:如图,∠1=75°, ∵N 1A ∥N 2B ,∴∠1=∠2+∠3=75°, ∵∠3=30°, ∴∠2=75°2=75°--∠3=75°3=75°-30°-30°-30°=45°=45°, 即∠ABC=45°.根据题意画出方位角,利用平行线的性质解答.解答此类题需要从运动的角度,正确画出方位角,根据平行线的性质解答即可.17.【答案】 【解析】解:把代入二元一次方程组,解得:,把代入二元一次方程组,解得:,故答案为:.本题先代入解求出得,再将其代入二元一次方程组,解出即可.本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.18.【答案】3775 【解析】解:①若a≥b,则代数式中绝对值符号可直接去掉,∴代数式等于a,②若b>a则绝对值内符号相反,∴代数式等于b 由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a谁是b 无关)既然是求和,那就要把这五十个数加起来还要最大,我们可以枚举几组数,找找规律,如果100和99一组,那么99就被浪费了,因为输入100和99这组数字,得到的只是100,如果我们取两组数字100和1一组,99和2一组,则这两组数字代入再求和是199,如果我们这样取100和99 2和1,则这两组数字代入再求和是102,这样,可以很明显的看出,应避免大的数字和大的数字相遇这样就可以使最后的和最大,由此一来,只要100个自然数里面最大的五十个数字从51到100任意俩个数字不同组,这样最终求得五十个数之和最大值就是五十个数字从51到100的和, 51+52+53+…+100=3775. 故答案为:3775.先分别讨论a 和b 的大小关系,分别得出代数式的值,进而举例得出规律,然后以此规律可得出符合题意的组合,求解即可.本题考查了整数问题的综合运用,有一定的难度,解答本题的关键是利用举例法得出组合规律,这在一些竞赛题的解答中经常用到,要注意掌握. 19.【答案】解:原式=x 2-4x +4+2x 2-4x -16-x 2+9=2x 2-8x -3, 当x =-1时,原式=2+8-3=7. 【解析】原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)(-3)2-2-3+30=9- +1= (2)=.【解析】(1)根据零指数幂和负整数指数幂计算即可; (2)根据单项式与多项式的乘方计算即可.此题考查整式的混合计算,关键是根据整式的混合计算顺序解答.21.【答案】解:(1)2x 2-8xy +8y 2=2(x 2-4xy +4y 2)=2(x -2y )2; (2)4x 3-4x 2y -(x -y )=4x 2(x -y )-(x -y )=(x -y )(4x 2-1)=(x -y )(2x +1)(2x -1).).【解析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可. (2)首先把前两项组合提取公因式4x 2,然后再提取公因式(x-y )进行二次分解,最后利用平方差公式进行三次分解即可.此题主要考查了公因式法与公式法的综合运用,解题关键是注意分解因式的步骤:①首先考虑提取公因式,②再考虑公式法,③观察是否分解彻底. 22.【答案】解:(1),①×2-②得,x =-5,把x =-5代入①得,-10-y =0,解得y =-10,故方程组的解为故方程组的解为 ;(2)原方程组可化为,①+②得,6x =18,解得x =3,把x =3代入①得,9-2y =8,解得y =, 故方程组的解为故方程组的解为 .【解析】(1)先用加减消元法求出x 的值,再用代入消元法求出y 的值即可; (2)先把方程组中的方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可.本题考查的是解二元一次方程组,熟知解二元一次方程的加减消元法和代入消元法是解答此题的关键.23.【答案】解:解:如图所示,AG 就是所求的△ABC 中BC 边上的高.边上的高.【解析】(1)过点A 作AG ⊥BC ,交CB 的延长线于点G ,AG 就是所求的△ABC 中BC 边上的高;(2)把△ABC 的三个顶点向右平移6格,再向上平移3格即可得到所求的△DEF ;(3)画一个面积为3的锐角三角形即可.用到的知识点为:一边上的高为这边所对的顶点向这边所引的垂线段;图形的平移要归结为各顶点的平移;各个角都是锐角的三角形叫做锐角三角形.24.【答案】;+++…;1-;1-;1-【解析】解:∵第一次取走后还剩,即=1-;前两次取走+后还剩,即+=1-;前三次取走++后还剩,即++=1-;∴前n次取走后,还剩,即+++…=1-;故答案为:,+++…=1-;(1)如图所示:由图可知,+++…+=1-.故答案为:1-;(2)如图是一个边长为1的正方形,根据图示由图可知,+++…+=1-,故答案为:1-;(3)2-22-23-24-25-26-…-22011+22012=2-22012(2-2010+2-2009+2-2008+…+2-1)+22012=2-22012(1-2-2010)+22012=2-22012+4+22012=6.(1)根据题意画出图形,依次取正方形面积的,,…找出规律即可; (2)根据题意画出图形,依次取正方形面积的,,…找出规律即可;(3)根据同底数幂的乘法进行计算即可.本题考查的是整式的加减,根据题意画出图形,利用数形结合求解是解答此题的关键.25.【答案】解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由题意,得题意,得,解得:解得: 答:年降水量为200万立方米,每人年平均用水量为50立方米.立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得立方米才能实现目标,由题意,得 12000+25×12000+25×200=20×200=20×200=20×2525z , 解得:z =34 则50-34=16(立方米).(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.立方米的水才能实现目标. 【解析】(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z 立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可. 本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.26.【答案】180°【解析】(1)解:∵OM ⊥ON , ∴∠MON=90°,在四边形OBCD 中,∠C=∠BOD=90°, ∴∠OBC+∠ODC=360°ODC=360°-90°-90°-90°-90°-90°-90°=180°=180°; 故答案为180°;(2)证明:延长DE 交BF 于H ,如图1,∵∠OBC+∠ODC=180°, 而∠OBC+∠CBM=180°, ∴∠ODC=∠CBM ,∵DE 平分∠ODC ,BF 平分∠CBM , ∴∠CDE=∠FBE , 而∠DEC=∠BEH , ∴∠BHE=∠C=90°, ∴DE ⊥BF ;(3)解:DG ∥BF .理由如下: 作CQ ∥BF ,如图2, ∵∠OBC+∠ODC=180°, ∴∠CBM+∠NDC=180°,∵BF 、DG 分别平分∠OBC 、∠ODC 的外角, ∴∠GDC+∠FBC=90°, ∵CQ ∥BF ,∴∠FBC=∠BCQ ,而∠BCQ+∠DCQ=90°, ∴∠DCQ=∠GDC , ∴CQ ∥GD , ∴BF ∥DG .(1)先利用垂直定义得到∠MON=90°,然后利用四边形内角和求解;(2)延长DE 交BF 于H ,如图,由于∠OBC+∠ODC=180°,∠OBC+∠CBM=180°,根据等角的补角相等得到∠ODC=∠CBM ,由于DE 平分∠ODC ,BF 平分∠CBM ,则∠CDE=∠FBE ,然后根据三角形内角和可得∠BHE=∠C=90°,于是DE ⊥BF ;(3)作CQ ∥BF ,如图2,由于∠OBC+∠ODC=180°,则∠CBM+∠NDC=180°,再利用BF 、DG 分别平分∠OBC 、∠ODC 的外角,则∠GDC+∠FBC=90°,根据平行线的性质,由CQ ∥BF 得∠FBC=∠BCQ ,加上∠BCQ+∠DCQ=90°,则∠DCQ=∠GDC ,于是可判断CQ ∥GD ,所以BF ∥DG .本题考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.也考查了平行线的判定与性质. 27.【答案】解:(1)根据题意得:7m +5n =70,∴m =10-n .∵m 、n 均为非负整数,均为非负整数,∴n =0时,m =10;n =7时,m =5;n =14时,m =0,∴这个方程符合实际意义的所有的解为:这个方程符合实际意义的所有的解为: , , ;(2)设答对x 道5分题和答对y 道7分题时分数相等,分题时分数相等, 则5x =7y ,当x =7时,y =5;当x =14时,y =10.∴当y =5时,重复的分数有16-7+1=10(种);当x =7时,重复的分数有10-5=5(种);当y =10时,重复的分数有16-7+1+16-14+1=13(种);当x =14时,重复的分数有10-5+10-10=5(种);(种); ∴16×16×10-10-5-13-5=12710-10-5-13-5=127(种).(种). ∴k 的值有127种不同大小.种不同大小. 【解析】(1)根据总分=分值×答对题目数即可得出7m+5n=70,即m=10-n ,再根据m 、n 均为非负整数,即可得出二元一次方程的解;(2)设答对x 道5分题和答对y 道7分题时分数相等,即5x=7y ,解之即可得出x 、y 的值,利用k=16×k=16×10-10-重复种数即可求出结论.本题考查了二元一次方程的应用以及排列与组合问题,解题的关键是:(1)根据m、n的取值范围结合7m+5n=70找出所以可能解;(2)利用排列和组合的知识找出分值相等的重复次数.。
2019学年江苏省无锡市七年级下学期期中考试数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________、选择题1. 在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A. 1个B . 2个C . 3个D . 4个2. PM 2. 5是指大气压中直径小于或等于0. 0000025m的颗粒物,将0. 0000025用科学计数法表示()A. 0. 25X …米B . 2. 5X |.;b 米C. 2 . 5X _ 米D . 2 . 5X ]严米3. 若一个多边形每一个内角都是1350,则这个多边形的边数是()A. 6 B . 8 C . 10 D . 124. 下列计算:(1);少广■-厂「,(2)3)一. 、,(4)2?+2;=25 6,( 5)G鶴丁工煦"9中正确的个数为()5 下列各式能用平方差公式计算的是()A .:'玄;.-Ji.' ;::•;;「B .…1-C.:'加.: D .…;6 二元一次方程2x + y=5的正整数解有()图,由/A. 3个B . 2个C . 1个D . 0个A. 1个 B . 2个 C . 3个 D . 4个图,由/C . Z DABd BCD D . Z DCAM DAC8. 定义一种运算:® "丄_;T-f ]二丄[-三二I ,其中k是正整数,且k > 2,[x]表示非负实数x的整数部分,例如[2 . 6]=2 , [0 . 8]=0 •若,则,的值为()A. 2015 B . 4 C . 2014 D . 5二、填空题9. 计算:;.:-= ; ':'= .f OX.H" fel-' —4 耳=210. 已知方程组T ' _的解是 -,则a+ b的值为m' = 5 1-111. 若多项式.1. 一是一个完全平方式,则k = ;若」., .则一:的值是12. 已知'、、、二'■ / 〔;,则①.= :②^ '=13. 在(x+ 1)(2x2 + ax+ 1)的运算结果中x2的系数是一1,那么a的值是14. 如果一个多边形的内角和是1800 °,那么这个多边形的边数是________________ .15. 三角形两边长分别为2和8,若该三角形第三边长为奇数,则该三角形的第三边为16. 如图,将四边形纸片ABCD勺右下角向内折出厶PC' R,其中二创 ,【日0恰使C P// AB RC II AD 贝y {二.17.如图,在锐角三角形 ABC 中,CD 和BE 分别是AB 和AC 边上的高, 且CD 和BE 交于点P ,若/ A=40o 则/ BPC 的度数是则代数式_:.■-的值是三、解答题19•计算(每小题3分,共9 分)①• -- -:'-[厂② [ I 1 *③!i];:: - : 「叭 118. 已知卄二------ +2012 2013w+201420.因式分解(每题3分,共9分) ① 2x2 - 822.(本题6分)有一道题:“化简求值:,其中一 小明在解题时错错误地把“ —”抄成了 “:—”,但显示计算的结果 是正确的,你能解释一下,这是怎么回事吗?23.(本题5分)如下图,在每个小正方形边长为 1的方格纸中, △ ABC 勺顶点都在方格纸格点上.(ABC 的面积为 ;(2) 将厶ABC 经过平移后得到厶A B C ,图中标出了点 B 的对应点B',补全△ A B C ; (3) 若连接■ , <■',则这两条线段之间的关系是;(4) 在图中画出△ ABC 的高CD(5) 能使SAABC= SAQBC 的格点Q 共有个.24. (本题6分)基本事实:"若 ab = 0,则a = 0或b = 0”.一元二次方程x2 — x — 2= 0 可通过因式分解化为(x — 2)(x + 1 )= 0,由基本事实得x — 2 = 0或x + 1 = 0,即方程的 解为x = 2或x =— 1.(1)试利用上述基本事实,解方程: 2x2 — x = 0:(2) 若(x2 + y2)( x2 + y2 — 1)— 2= 0,求 x2 + y2 的值. 25.(本题7分)在厶 AB 中 , Z C=90 °启是厶ABC 勺角平分线,P 是射线AC 上任意一点 (不与A,D,C 三点重合),过P 作PQLAB,垂足为 Q,交直线BD 于E. (1)如图①,当点P 在线段AC 上时,说明Z PDEZ PED(2)作Z CPQ 的角平分线交直线 AB 于点F,则PF 与BD 有怎样的位置关系?21.解下列方程组(每小题 (1)f ,v = 2r-l3.v + 2v = 54分,共8分)(2);十 = 32v - S T = -7s. ■■四、填空题26. (本题8分)如图①,△ABC, AD平分/ BA交BC于点D, AE丄BC,垂足为E,CF// AD朗①團②(1)____________________________________________________ 如图①,/ B=30°,Z ACB=70,则/ CFE= _____________________________________________(2)____________________________________________________ 若(1)中的/ B=^,/ ACB詐,则/ CFE= _____________________________________________ (用茯、0表示)(3)如图②,(2)中的结论还成立么?请说明理由。
江苏省无锡市七年级下学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、选择题(共10题;共30分) (共10题;共30分)1. (3分) (2019七下·港南期末) 下列是二元一次方程的是()A . x+8y=0B . 2x2=yC . y+ =0D . 3x=102. (3分) (2019七下·龙岗期末) 大肠杆菌的大小为0.0005 0.003毫米,能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其中0.0005毫米用科学记数法表示为()A . 毫米B . 毫米C . 毫米D . 毫米3. (3分)(2017·禹州模拟) 已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A 对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A . (3,0)B . (3,﹣3)C . (3,﹣1)D . (﹣1,3)4. (3分) (2019八上·武威月考) 下列运算正确的是()A .B .C .D .5. (3分)如图,以下条件能判定EG∥HC的是()A . ∠FEB=∠ECDB . ∠AEG=∠DCHC . ∠GEC=∠HCFD . ∠HCF=∠AEG6. (3分) (2015高二上·太和期末) 如图,与∠α构成同旁内角的角有()A . 1个B . 2个C . 5个D . 4个7. (3分)若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A . ﹣4B . ﹣2C . 0D . 48. (3分)学习了“平行线”后,张明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的(如图①~④):从图中可知,张明画平行线的依据有()(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行.A . (1)(2)B . (2)(3)C . (1)(4)D . (3)(4)9. (3分)已知一个四位数的十位数字加1等于它的个位数字,个位数字加1等于它的百位数字,把这个四位数倒序排列所成的数与原数的和等于10769,则该四位数的数字之和为()。
江苏省无锡市各地七年级下学期期中数学试卷精选汇编(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 若一个三角形的两边长分别为5cm和12cm,那么第三边的长度可能是多少?A. 7cmB. 17cmC. 17cmD. 无法确定3. 一个正方形的边长是4cm,那么它的对角线长度是多少?A. 4cmB. 8cmC. 4√2 cmD. 2√2 cm4. 下列哪个式子是整式?A. 3x + 4yB. 2x + 3/xC. √x + 2D. 1/(x+1)5. 若a = 2,b = 3,那么a + b的值是多少?A. 1B. 1C. 5D. 5二、判断题(每题1分,共20分)1. 任何一个偶数都可以表示为2的倍数。
()2. 任何一个奇数都可以表示为2的倍数加1。
()3. 0是最小的自然数。
()4. 任何一个整数都可以表示为分数形式。
()5. 任何一个正整数都可以表示为两个质数的和。
()三、填空题(每空1分,共10分)1. 2的平方根是______。
2. 若一个三角形的三个内角分别为30°、60°和______°,那么这个三角形是______三角形。
3. 下列各数中,______是最小的正整数。
4. 若a = 3,b = 4,那么a² + b²的值是______。
5. 下列各数中,______是最大的负整数。
四、简答题(每题10分,共10分)1. 简述有理数的定义及其分类。
2. 简述平行线的性质及其判定方法。
五、综合题(1和2两题7分,3和4两题8分,共30分)1. 已知一个等差数列的前三项分别为2、5、8,求该数列的通项公式。
2. 已知一个等比数列的前三项分别为3、6、12,求该数列的通项公式。
3. 已知一个直角三角形的两个直角边长分别为3cm和4cm,求斜边长。
4. 已知一个正方形的对角线长度为10cm,求边长。
苏教版七年级下学期数学期中测试卷一、选择题(本大题共有8小题,每小题3分,共24分)1. 下列运算正确的是( )A. 235a b ab +=B. 523a a a -=C. 236a a a ⋅=D. ()222a b a b +=+ 2. 在人体血液中,红细胞直径约为0.00077cm ,数据0.00077用科学记数法表示为( )A. 0.77×10-5B. 7.7×10-5C. 7.7×10-4D. 77×10-7 3. 现有两根木棒,它们的长分别为30cm 和40cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A. 10cm 的木棒B. 60cm 的木棒C. 70cm 的木棒D. 100cm 的木棒 4. 在等式a 2·a 4·( )=a 12,括号里面的代数式应当是( )A. a 5B. a 6C. a 7D. a 3 5. 多项式2ax 3+10ax 2−4ax 各项的公因式是( )A. 2ax 2B. 2ax 3C. axD. 2ax 6. 下列各式不能用平方差公式计算的是( )A . (x +y )(x −y ) B. (x +y )(−x −y )C. (−x +y )(−x −y )D. (a +m )(m −a ) 7. 定义: 若有一条公共边的两个三角形称为一对”共边三角形”,则图中以BC 为公共边的”共边三角形”有( )A. 1对B. 2对C. 3对D. 4对8. 有一条直的等宽纸带,按如图折叠时,纸带重叠部分中的∠α=( )行的,转动刀片时会形成∠1、∠2,则12∠+∠=__________.13. 若代数式x2+ax+16是一个完全平方式,则a=_____.14. 若12xy=⎧⎨=⎩是方程2x-ay=−2的一个解,则a的值是________.15. 如图,已知AB∥CD,BC∥DE.若∠A=30︒,∠C=110°,则∠AED的度数是________.16. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为”杨辉三角”,这个三角形给出了(a+b)n (n=1,2,3,4,…)的展开式的系数规律(按n的次数由大到小的顺序):1 1 (a+b)1=a+b1 2 1 (a+b)2=a2+2ab+b21 3 3 1 (a+b)3=a3+3a2b+3ab2+b31 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4…… ……请依据上述规律,写出(x−1)2019展开式中含x2018项的系数是________.三、解答题(本大题共10小题,共102分。
七年级下学期期中考试数学试题【含答案】一、选择题(本大题15小题,每小题3分,满分45分;在每个小题给出代号为A 、B 、C 、D 四个结论,其中只有一个正确,把你认为正确的结论代号写在该题后的括号内) 1、下列方程中是一元一次方程的是( )A 、B 、C 、D 、2、下列解方程过程中,变形正确的是( ) A 、由5x ﹣1=3,得5x=3﹣1 B 、由+1=+12,得+1=+12C 、由,得D 、由﹣=1,得2x ﹣3x=13、在等式中,当时,;当时,,七年级(下)数学期中考试试题【含答案】一、选择题(本大题12个小题,每小题4分,共48分,在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑) 1.下面的四个图形中,∠1与∠2是对顶角的是2.点P(-2,-5)在A.第一象限B.第二象限C.第三象限D.第四象限 3.估计5的值在A.1到2之间B.2到3之间C.3到4之间D.4到5之间 4.下列方程组不是二元一次方程组的是A.⎩⎨⎧=+=+42634y x y xB.⎩⎨⎧=-=+44y x y x B.⎪⎩⎪⎨⎧=-=+141y x y x D.⎩⎨⎧=+=+25102553y x y x 5在,π,,,,27310414.1- 1.1·4·,3.212212221(每两个1之间多一个2),这些数中无理数的个数为A.3B.2C.5D.4 6.若点P ()13-+m m ,在x 轴上,则点P 的坐标为A.(0,-2)B.(4,0)C.(2,0)D.(0,-4) 7.如图所示,由下列条件不能得到AB ∥CD 的是A.∠B+∠BCD=180°B.∠B=∠5C.∠3=∠4D.∠l=∠28.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是A.(-3,4)B.(4,-3)C.(3,-4)D.(-4,3) 9.下列说法中正确的是A.9的平方根是3B.4平方根是2±C.16的算术平方根是4D.-8的立方根是2±10.已知y x 、是二元一次方程组⎩⎨⎧=+=+83123y x y x 的解,那么y x +的值是A.0B.5C.-1D.1 1l.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为A.50°B.60°C.40°D.30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是A.(5,6)B.(6,0)C.(6,3)D.(3,6)二、填空题(本大题6个小题,每小题4分,共24分,将答案直接填在答卷屮对应的橫线上) 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________. 14.已知y x 、是实数,且(),0322=-+-y x 则xy 的值是_______.15.如果,,477.530732.13≈≈那么≈300_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图所示,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点______.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天. 三、解答题(本大题2个小题,19题10分,20题6分,共16分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上) 19.计算(每题5分,共10分) (1)328323++-(2)已知(),1622=-x 求x 的值.四、解答题(本大题4个小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上)20.(10分)已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2). (1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111C B A △; (3)计算111C B A △的面积。
江苏省无锡市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图所示,若AO⊥OC,BO⊥DO,那么()A . ∠1=∠3B . ∠1=∠2C . ∠2=∠3D . ∠1=∠3=45°2. (2分) (2017八上·宁化期中) 实数的平方根()A . 3B . ﹣3C . ±3D . ±3. (2分) (2019七下·大通期中) 小手盖住的点的坐标可能为()A .B .C .D .4. (2分)如图所示,能判断AB∥CE的条件是()A . ∠A=∠ACEB . ∠A=∠ECDC . ∠B=∠BCAD . ∠B=∠ACE5. (2分) (2020七上·镇海期末) 下列六个数中:3.14,,,,,0.1212212221……(每两个1之间增加一个2),其中无理数的个数是().A . 2B . 3C . 4D . 56. (2分) (2019八下·商水期末) 如图,在中,,点E在BD上, .如果,那么等于()A . 20°B . 25°C . 30°D . 35°7. (2分) (2017七下·长春期末) 下列四组数中,是方程4x﹣y=10的解的是()A .B .C .D .8. (2分)已知,如果x与y互为相反数,那么()A . k=0B . k=-C . k=-D . k=二、填空题 (共5题;共5分)9. (1分) (2020七下·赤壁期中) 如图所示,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是________.10. (1分)若AB⊥CD,垂足为D,则∠ADC=________.11. (1分) (2020七下·武汉期中) 已知实数x的两个平方根分别为2a+1和3-4a,实数y的立方根为-a,则的值为________.12. (1分) (2020九上·重庆开学考) 现有五张正面分别标有数字,,,,的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为, .则点在第四象限的概率为________.13. (1分)(2017·蜀山模拟) 已知关于x,y的方程组的解为正数,则|k﹣6|+|k+1|=________.三、解答题 (共9题;共82分)14. (10分)(2011·来宾) 计算:|﹣3|﹣﹣()0+32 .15. (10分) (2019八上·东台月考) 已知正数x的两个不同的平方根分别为a+3和2a-15,y的立方根是-2,求x-2y+1的值.16. (5分) (2019九上·长沙期中) 计算: .17. (10分)综合题。
xx学校xx学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx题xx题xx题总分
得分
一、xx题
评卷人得分
(每空xx 分,共xx分)
试题1:
下列计算不正确的
是() A.(a5) 2=a10B.2a2·(-3a3)=-6a5C.b·b5=b6 D.b5·b5=b25
试题2:
已知三角形的两边长分别为5和8,则三角形的第三边不可能
是() A.4 B. 6
C.8 D. 13
试题3:
一个多边形的内角是1980°,则这个多边形的边数
是()A.11 B.13 C.9 D.10
试题4:
能把一个三角形分成面积相等的两部分的是该三角形的 ( )
A.角平分线 B.中线C.高D.一边的垂直平分线
试题5:
如图,下列推理中正确的有()
①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);
②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);
③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).
A.0个 B.1个 C.2个 D.3个
试题6:
下列多项式乘法中不能用平方差公式计算的是( )
A.B.
C.D.
试题7:
下列各式中与相等的是()
A.B.C.D.
试题8:
如图是一个长方形和两个等边三角形,若∠3=50°,则∠1+∠2的值是
()
A.90°B.100° C.130°D.180°
试题9:
最薄的金箔的厚度为0.000000091m,用科学记数法表示为__________m.
计算:=_______;
试题11:
=__________.
试题12:
△ABC中,若已知∠A:∠B:∠C=2:3:4,则△ABC中最大的角为度.
试题13:
若是完全平方式,则的值为.试题14:
分解因式: ;
试题15:
分解因式: = .
试题16:
已知,,则=,=__________.
试题17:
如图,已知CD平分∠ACB,DE∥AC,∠1=40°,则∠2=°.
试题18:
已知正方形的边长为,如果它的边长增加2,那么它的面积增加了.
如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角的个数
是个.
试题20:
如图,是一块从一个边长为20cm的正方形BCDM材料中剪出的垫片,经测得FG=9cm,则这个剪出的图形的周长是 cm.
试题21:
试题22:
试题23:
试题24:
试题25:
因式分解:
试题26:
因式分解:
试题27:
先化简,再求值:
,其中.
试题28:
先化简,再求值:
,其中.
试题29:
如图,在△ABC中,∠BAC是钝角.
(1)画出边BC上的中线AD ;
(2)画出边BC上的高AH ;
(3)在所画图形中,共有个三角形,其中面积一定相等的三角形是.
试题30:
已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74º,
求:∠D的度数.
试题31:
阅读材料:
所以
=,则
==___________.
求(1)
(2).
试题32:
小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.
(1)如图①,M为边AC上一点,则BD、MF的位置关系是;
如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是;
如图③,M为边AC延长线上一点,则BD、MF的位置关系是;
(2)请就图①、图②、或图③中的一种情况,给出证明.
试题1答案:
D;
试题2答案:
D;
试题3答案:
B;
试题4答案:
B;
试题5答案:
C;
试题6答案:
A ;
试题7答案:
D;
试题8答案:
B.
试题9答案:
;
试题10答案:
,
试题11答案:
;
试题12答案:
80;
试题13答案:
12或-8;
试题14答案:
,;
试题16答案:
5, 1 ;
试题17答案:
80°
试题18答案:
;
试题19答案:
5;
试题20答案:
98.
试题21答案:
=
=试题22答案:
= = 2 试题23答案:
=
= =
= =
试题25答案:
=…
试题26答案:
=
=
=
试题27答案:
解:原式=
=
当时,
原式=
=
试题28答案:
解:原式=
=
=
=
=试题29答案:
(1)画对(2)画对(3)6 ,△ABD与△ACD 试题30答案:
解:∵AB∥CD,
∴∠A=∠1,
∵∠A+∠1=74°,
∴∠A=∠1=37°,
∵∠1=∠2,
∴∠1=∠2=37°,
∵DE⊥AE,
∴∠D+∠2=90°,
∴∠D=90°—37°,
=53°
试题31答案:
,,
(1)
(2)=
=
=
试题32答案:
解:(1)平行;垂直;垂直;
(2)选①证明BD∥MF
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠AME=360°﹣90°×2=180°
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠ABC,∠AMF=∠AME,
∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,
又∵∠AFM+∠AMF=90°,
∴∠ABD=∠AFM,
∴BD∥MF.
选②证明BD⊥MF.
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠C=∠AME+∠C=90°,
∴∠ABC=∠AME,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠AMF,
∵∠ABD+∠ADB=90°,
∴∠AMF+∠ADB=90°
∴BD⊥MF.
选③证明BD⊥MF.
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠ACB=∠AME+∠ACB=90°,
∴∠ABC=∠AME,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠AMF,
∵∠AMF+∠F=90°,
∴∠ABD+∠F=90°,
∴BD⊥MF。