2018年江苏高三-高考模拟一文科数学
- 格式:doc
- 大小:206.14 KB
- 文档页数:10
江苏省无锡市2018届高三第一次模拟考试数学参考答案及评分标准1. 32. 63. 474.5. 216.50π7. 58.9. 1 02410. 1911. 812. 613. (-2,0)14. (-∞,-1]∪15. (1) 因为DE⊥平面ABCD,(第15题)所以DE⊥AC.(2分) 因为四边形ABCD是菱形,所以AC⊥BD.(4分) 因为DE∩BD=D,所以AC⊥平面BDE.(6分) (2) 如图,设AC∩BD=O,取BE的中点G,连接FG,OG,所以OG∥DE且OG=DE.(8分)因为AF∥DE,DE=2AF,所以AF∥OG且AF=OG,从而四边形AFGO是平行四边形,FG∥AO.(10分) 因为FG⊂平面BEF,AO⊄平面BEF,所以AO∥平面BEF,即AC∥平面BEF.(14分) 16. (1) 因为cos A=,所以cos C=cos2A=2cos2A-1=2×-1=.(3分) 在△ABC中,因为cos A=,所以sin A=.(4分) 因为cos C=,所以sin C=-=, (5分) 所以cos B=-cos(A+B)=sin A sin B-cos A cos B=.(7分) (2) 根据正弦定理=,得=.又ac=24,所以a=4,c=6, (10分) b2=a2+c2-2ac cos B=25, b=5,所以△ABC的周长为15.(14分) 17. (1) 由题意知∠CAP=-θ,所以=-θ,又PQ=AB-AP cosθ=1-cosθ,所以观光专线的总长度为f(θ)=-θ+1-cosθ=-θ-cosθ++1,0<θ<.(3分) 因为当0<θ<时,f'(θ)=-1+sinθ<0, (5分) 所以f(θ)在上单调递减,即观光专线-PQ的总长度随θ的增大而减小.(6分) (2) 设翻新道路的单位成本为a(a>0),则总成本g(θ)=a--=a--,0<θ<, (8分) g'(θ)=a(-1+2sinθ), (9分) 令g'(θ)=0,得sinθ=,因为0<θ<,所以θ=.(10分) 当0<θ<时,g'(θ)<0,当<θ<时,g'(θ)>0.(12分) 所以当θ=时,g(θ)最小.(13分) 答:当θ=时,观光专线-PQ的修建总成本最低.(14分) 18. (1) 因为椭圆E:+=1(a>b>0)的离心率为,所以a2=2c2,b=c, (1分) 所以直线DB的方程为y=-x+b.又O到直线BD的距离为,所以=,所以b=1,a=(3分) 所以椭圆E的方程为+y2=1.(4分) (2) 设P(,t),t>0,直线PA的方程为y=(x+), (5分) 由整理得(4+t2)x2+2t2x+2t2-8=0,解得x C=-,则点C的坐标是-,.(7分)(第18题)因为△ABC的面积等于四边形OBPC的面积,所以△AOC的面积等于△BPC的面积,S△AOC=××=,S△PBC=×t×--=,则=,解得t=.(9分) 所以直线PA的方程为x-2y+=0.(10分) (3) 因为B(,0),P(,t),C-,所以BP的垂直平分线为y=,BC的垂直平分线为y=x-,所以过B,C,P三点的圆的圆心为, (12分) 则过B,C,P三点的圆的方程为+-=+, (14分) 即所求圆的方程为x2-x+y2-ty+=0.(16分) 19. (1) 因为--…-=,n∈N*,所以当n=1时,1-=,a1=2, (1分) 当n≥2时,由--…-=和--…--=-,两式相除可得,1-=-,即a n-a n-1=1(n≥2),所以数列{a n}是首项为2,公差为1的等差数列,于是a n=n+1.(4分) (2) 因为a p,30,S q成等差数列,a p,18,S q成等比数列,所以于是或(7分) 当时,解得当时,无正整数解,所以p=5,q=9.(10分) (3) 假设存在满足条件的正整数k,使得=a m(m∈N*),则=m+1,平方并化简得,(2m+2)2-(2k+3)2=63, (11分) 则(2m+2k+5)(2m-2k-1)=63, (12分) 所以--或--或--(14分) 解得m=15,k=14或m=5,k=3,m=3,k=-1(舍去),综上所述,k=3或14.(16分) 20. (1) 设切点为(x0,y0),f'(x)=e x(3x+1),则切线斜率为(3x0+1),所以切线的方程为y-y0=(3x0+1)(x-x0).因为切线过点(2,0),所以-(3x0-2)=(3x0+1)(2-x0),化简得3-8x0=0,解得x0=0或.(3分) 当x0=0时,切线的方程为y=x-2, (4分)当x0=时,切线的方程为y=9x-18.(5分) (2) 由题意,对任意的x∈R,有e x(3x-2)≥a(x-2)恒成立,①当x∈(-∞,2)时,a≥--⇒a≥--,令F(x)=--,则F'(x)=--,令F'(x)=0得x=0,当x变化时,F(x),F'(x)所以F(x)max=F(0)=1,故此时a≥1.(7分) ②当x=2时,恒成立,故此时a∈R.(8分)③当x∈(2,+∞)时,a≤--⇒a≤--,令F'(x)=0,得x=,当x变化时,F(x),F'(x)所以F(x)min=F=9,故此时a≤9.综上,1≤a≤9.(10分) (3) 因为f(x)<g(x),即e x(3x-2)<a(x-2),由(2)知a∈(-∞,1)∪(9,+∞),令F(x)=--,则当x变化时,F(x),F'(x)(12分) 当x∈(-∞,2),存在唯一的整数x0使得f(x0)<g(x0),等价于a<--存在唯一的整数x0成立.因为F(0)=1最大,F(-1)=,F(1)=-,所以当a<时,有两个整数成立,所以a∈.(14分) 当x∈(2,+∞),存在唯一的整数x0使得f(x0)<g(x0),等价于a>--存在唯一的整数x0成立.因为F=9最小,且F(3)=7e3,F(4)=5e4,所以当a>5e4时,有两个整数成立,所以当a≤7e3时,没有整数成立,所有a∈(7e3,5e4].综上,a∈∪(7e3,5e4].(16分)江苏省无锡市2018届高三第一次模拟考试数学附加题参考答案及评分标准21.由矩阵A属于特征值λ1的一个特征向量为α1=-可得-=λ1-,即---(2分)得a=2b=10.(4分) 由矩阵A属于特征值λ2的一个特征向量为α2=-,可得-=λ2-,即---(6分)得2a-3b=9, (8分)解得--即A=--.(10分)22.由ρ=4sinθ,得ρ2=4ρsinθ,所以x2+y2=4x,即圆C的方程为x2+(y-2)2=4.(3分) 又由消去t,得x-y+m=0, (6分) 由直线l与圆C相交,得-<2,即-2<m<6.(10分)23. (1) 记该公司在星期四至少有两辆汽车出车为事件A,则为该公司在星期四最多有一辆汽车出车,P()=++=,所以P(A)=1-P(=.(3分) 答:该公司在星期四至少有两辆汽车出车的概率为.(2) 由题意,ξ的可能取值为0,1,2,3,4,P(ξ=0)==;P(ξ=1)=+·=;P(ξ=2)=++·=;P(ξ=3)=+=;P(ξ=4)==.(8分) 所以ξ的分布列为故E(ξ)=+2×+3×+4×=.答:ξ的数学期望为.(10分) 24. (1) 因为PE⊥底面ABCD,过点E作ES∥BC,则ES⊥AB.以E为坐标原点,EB方向为x轴的正半轴,ES方向为y轴的正半轴,EP方向为z轴的正半轴建立如图所示的空间直角坐标系E-xyz,则E(0,0,0),B(1,0,0),C(1,1,0),A(-1,0,0),D(-1,2,0),P(0,0,),=(-2,1,0),=(1,1,-).(2分) 设平面PCD的法向量为n=(x,y,z),则n·=-2x+y=0,n·=x+y-z=0,令x=1,解得n=(1,2,).又平面ABCD的法向量为m=(0,0,1), (3分)所以cos<n,m>===, (4分)所以sin<n,m>=.(5分)(第24题)(2) 设M点的坐标为(x1,y1,z1),因为EM⊥平面PCD,所以∥n,即==,也即y1=2x1,z1=x1.(6分) 又=(x1,y1,z1-=(-1,2,-),=(1,1,-所以=λ+μ=(λ-μ,λ+2μ,-λ-μ),解得x1=λ-μ,y1=λ+2μ=2x1=2(λ-μ),即λ=3μ, (8分) z1-=-λ-μ,λ=,所以μ=, (9分)所以点M的坐标为.(10分)。
江苏省苏北四市2018 届高三第一次模拟考试数学参考答案及评分标准1. {-1,0,1}2. 13. (0,1]4. 135. 7506.78549.410.11.11 ..12. [ -1,+1] 13 . [-2,2]14. -15 . (1) 在△ABC中 ,由 cos A= ,得A为锐角 ,所以 sin A=-= ,所以 tan A== ,(2 分)所以 tan B=tan[( B-A)+A]= --(4 分) -==3.(6 分) -(2)在△ABC 中,由tan B=3,得 sin B=,cos B=,(8 分)所以 sin C=sin( A+B)=sin A cos B+ cos A sin B=.(10 分)由正弦定理=,得 b===15,(12 分)所以△ABC 的面积为 S= bc sin A= ×15×13×=78 .(14 分)16 . (1) 如图 , 取AB的中点P, 连接PM,PB1.因为 M,P 分别是 AB,AC 的中点,所以 PM∥BC,且 PM= BC.在直三棱柱 ABC- A1B1C1中,BC∥B1C1,BC=B 1C1,又因为N 是 1 1的中点,B C所以 PM∥B1N,且 PM=B1 N,(2 分)所以四边形 PMNB 1是平行四边形,所以∥ 1.(4分 ) MN PB因为 MN?平面 ABB1A1,PB1?平面 ABB1A1,所以 MN∥平面ABB1A1.(6分 )(2)因为三棱柱 ABC-A1B1C1为直三棱柱,所以 BB1⊥平面 A1B1C1,(第 16 题)又因为 BB1?平面 ABB1A1,所以平面 ABB1A1⊥平面 A1 B1C1 .(8 分)因为∠ABC=90°,所以 B1C1⊥B1A1,平面11∩平面1111A1, 1 1?平面111,ABB A ABC=B B C A B C所以 B1 C1⊥平面ABB1 A1 .(10 分)又因为 A1B?平面 ABB1A1,所以 B1 C1⊥A1B,即 NB 1⊥A1 B.如图 ,连接AB1,因为在平行四边形 ABB1 A1中,AB=AA1,所以 AB1⊥A1 B.又因为 NB 1∩AB1=B 1,且 AB1,NB 1?平面 AB1 N,所以 1 ⊥平面 1 ,(12 分)A B AB N因为 AN?平面 AB1N,所以 A1 B⊥AN.(14 分)(第 17题)17 . (1)如图 ,设AO交BC于点D,过点O作OE⊥AB,垂足为 E.在△AOE 中,AE=10cosθ,AB=2 AE=20cosθ,(2 分)在△ABD 中,BD=AB ·sinθ=20cosθ·sinθ,(4 分)所以S=· 2π·20sin ·cos ·20cos400π·sin cos 2θ.(6 分)θ θθ=θ(2)要使侧面积最大 ,由 (1)得 ,S=θθ=θ-θ.(8 分)400π sin cos 2400π(sin sin 3)设 f(x)=x-x3(0 <x<1),则 f' (x)=1 -3 x2,由 f' (x)=1-3x2=0,得 x= .当 x∈时,f'(x)>0;当 x∈时,f'(x)<0,所以 f(x)在区间上单调递增,在区间上单调递减,所以 f(x)在 x=时取得极大值,也是最大值,所以当 sin θ=时 ,侧面积S取得最大值.此时等腰三角形的腰长AB=20cos20 -=20 -=.θ=答: 侧面积S取得最大值时 ,等腰三角形的腰AB 的长度为cm .18 . (1) 设椭圆的方程为+ =1( a>b>0),由题意知解得所以椭圆的方程为+=1 .(2) 若AF=FC,由椭圆的对称性 , 知A,所以B--,此时直线BF的方程为 34 3 0.x- y-=--得 7 x2-6 x-13 =0,由解得 x=( x=-1 舍去 ),- -故== .-(3)设 A(x0,y0),则 B(-x0,-y0),直线 AF 的方程为 y=-(x-1),代入椭圆的方程+ =1,2-8-15+24 x =0 .得(15 -6 x ) x00因为0 是该方程的一个解,所以C 点的横坐标C-.x=x x =-又 C( x C,y C)在直线 y=-(x-1) 上 ,(11 分)(14 分)(2 分)(4 分)(6 分)(8 分)(10 分)(12 分)-所以 y C= -( x C-1) = -.同理 ,点D的坐标为,(14分 )--所以2=-= 1 ,k-= k--即存在 m= ,使得 k2 = k1 .(16分 ) 19 . (1) 函数h( x)的定义域为 (0,+∞).当 a= 1时, h(x)=f(x)-g(x)=x2 +x-ln x+2,所以 ()2 1-,(2 分) h' x = x+ - =所以当 0 <x<时 ,h'(x)<0;当 x> 时,h'(x)>0,所以函数h(x)在区间上单调递减,在区间上单调递增,所以当x=时,函数()取得极小值ln2, 无极大值.(4 分)h x+(2)设函数 f(x)上点( x1,f(x1))与函数 g(x)上点(x2,g(x2))处切线相同, 则(1)(2)-,f' x=g' x=-所以 2x1+a==--(6 分) -,所以 x1=-,代入-=11(ln2-a), +ax +- x得 - +ln x2+ -a-2=0 .(*)(8 分)设 F (x)= - +ln x+ -a- 2,则 F'( x)=- + + =- .不妨设 2+ax0-1=0( x0>0),则当 0<x<x0时 ,F'(x)<0;当 x>x 0时,F'(x) >0,所以 F(x)在区间(0,x0)上单调递减,在区间(x0,+∞)上单调递增,(10 分)代入 a= - = -2x 0 ,得 F (x )min =F ( x 0)= +2x 0 - +ln x 0-2 .设 G (x )=x 2 +2 x- +ln x-2, 则 G'(x ) =2 x+2+ + >0 对 x>0 恒成立 ,所以 ( )在区间 (0,)上单调递增 . 又G (1)=0,G x+∞所以当 0 <x ≤1 时 , G ( x )≤0,即当 0 0≤1 时, ( 0)≤0 .(12 分)<xF x又当 x=e a+2 时,F (x )= -+lne a+2 + -a-2 =- ≥0.(14 分)因此当 0 <x 0≤1 时,函数 F (x )必有零点 ,即当 0 <x 0≤1 时 ,必存在 x 2 使得 ( *)成立 ,即存在 x 1 ,x 2 使得函数 f (x )上点 (x 1 ,f (x 1))与函数 g (x )上点 (x 2, g ( x 2)) 处切线相同 .又由 2 x , 得y'=- 2 0,y= -- <所以 y= -2 x 在(0,1) 上单调递减 ,因此 a= -= -2x 0 ∈[-1,+∞),所以实数 a 的取值范围是 [-1,+∞).(16 分)20 .(1) 若 0, 4,则 n 4 n- 1( ≥2),λ=μ= S = a n所以 a n+1=S n+1 -S n =4( a n -a n- 1),即 a n+1-2a n =2(a n -2a n-1 ), 所以 b =2 b 1.(2 分)n n-又由12, 1 24 1,a = a +a = a得 a 2=3 a 1=6,a 2 -2 a 1 =2 ≠0, 即 b n ≠0,所以2,故数列 {n }是等比数列.(4 分)=b-(2) 若{a n }是等比数列 , 设其公比为 q (q ≠0),当 n= 2 时, S 2 =2λa 2+μa 1,即 a 1 +a 2=2λa 2+μa 1,得1+q=2λ q+μ; ①22当 n= 3 时, S 3 =3λa 3+μa 2,即 a 1 +a 2+a 3 =3 λa 3+μa 2,得 1+q+q =3λq +μq ; ②当 n= 4时, 4 4 43,即 1 2 3 4 4 43 ,得 1 23 4 32③S =λa +μaa +a +a +a= λa +μa +q+q +q = λq +μq .2②-①×q ,得 1 =λq ,③-②×q ,得 13 ,=λq解得 q=1,λ=1.代入① 式 ,得 0(8 分)μ=.此时 S n =na n (n ≥2),所以n1 2,数列 { n }是公比为 1的等比数列 ,a=a =a故 λ=1,μ=0.(10 分)(3) 若 a 2=3,由 a 1+a 2+2λa 2+μa 1, 得 5 =6λ+2μ,又,解得 , 1 (12 分)λ +μ= λ=μ=.由 a 1=2,a 2 =3,λ=,μ=1,代入 S n =λ na+μa n-1 ,得 a 3=4, 所以 a 1,a 2 ,a 3 成等差数列 .由 S n = a n +a n-1 ,得 S n+1 = a n+1 +a n ,两式相减 ,得 an+1 = an+1 - a +a -a n- 1 ,n n即( n-1)a n+1 -( n-2)a n -2a n-1 =0, 所以 na n+2 -(n-1) a n+1 -2a n =0,相减 ,得na n+ 2 2( 1) a n+1 ( 2) n 2 n 2n-10,- n- + n- a - a + a =所以 n (a n+2-2 a n+ 1 +a n )+2( a n+1-2a n +a n- 1) =0,- -所以 (a n+2-2a n+1 +a n ) =- (a n+1-2a n +a n-1 )=(a n -2 a n-1+a n-2 )= =·(a 3-2a 2+a 1 ).(14 分 )--因为1 2 2+a 3 0,所以an+ 2 2 n+1n0,a - a = - a+a =故数列 { a } 是等差数列 .(16 分 )n江苏省苏北四市 2018 届高三第一次模拟考试数学附加题参考答案及评分标准21 . A. 连接 AD. 因为 AB 为圆的直径 ,所以 AD ⊥BD , 又 EF ⊥AB ,则 A ,D ,E ,F 四点共圆 ,所以· ·(5 分)BD BE=BA BF.又△∽△,ABCAEF所以 = ,即 AB ·AF=AE ·AC ,所以· · · ··( ) 2. (10 分 )BE BD-AE AC=BA BF-AB AF=AB BF-AF=ABB. 因为 M=BA= =-(5 分 )- ,-所以 M - 1=.(10 分)- -C. 把直线方程 l :化成普通方程为 x+y= 2.(3 分)-2ρcos θ-2 ρsin θ=0 2 2-2 y=0,将圆 C :ρ+2 化成普通方程为 x +2x+y即( x+1) 2+( y-1) 2=2.(6 分)圆心 C 到直线 l 的距离为 d==,所以直线 l 与圆 C 相切 . (10 分 )D.因为 [(1 +a)+(1+b)+(1+c )+(1 +d)]·≥=(a+b+c+d )2=1,(5 分)又(1 +a)+(1 +b) +(1 +c)+(1 +d)=5,所以+++≥ .(10 分) 22 . (1)因为 AB=1,AA1=2,则 F(0,0,0), A,C -,B,E,所以=(-1,0,0),= -. (2分)记直线 AC 和 BE 所成的角为α,则 cos cos<,>|α =|=-=, -所以直线 AC 和 BE 所成角的余弦值为.(4 分) (2)设平面 BFC1的法向量为 m=(x1,y1, z1),因为=,=-,则-取 x1=4,得 m=(4,0,1) .(6 分)设平面BCC 1 的法向量为(2, 2, 2 ),n= x y z因为=,=(0,0,2),则取 x2=,得n=(,-1,0) .(8 分) -所以 cos <m, n>=-=.根据图形可知二面角 F -BC 1-C 为锐二面角,所以二面角-1-的余弦值为.(10 分)F BC C23 . (1) 因为抛物线 C 的方程为 y2 =4x,所以 F 的坐标为(1,0),设 M(m, n),因为圆 M 与 x 轴、直线 l 都相切,l 平行于 x 轴,所以圆M 的半径为|n|,点(2,2),P n n则直线 PF 的方程为= --,即 2 n(x-1) -y(n2-1) =0,(2 分)所以---=|n|,又,≠0,-m n所以22121,即n2-m+10,|m-n - |=n +=所以 E 的方程为 y2=x- 1( y≠0).(4 分) (2) 设Q(t2+1, t), A(0,y1 ),B(0,y2),由(1) 知, 点Q处的切线l1的斜率存在 ,由对称性不妨设t>0,由 y'=,所以k AQ=-=-- ,,k BQ==-2--所以1= -, 2233,(6 分)y y =t +t所以 AB=-=2t3+ t+ (t>0) .(8 分)令 f(t)=2t3+ t+ ,t>0,则 f' (t)=6 t2 + -=-,由 f' (t)>0,得 t>-;由 f' (t)<0,得0<t<所以 f(t)在区间-,-上单调递减 ,在-上单调递增 ,所以当-时 , ()取得极小值也是最小值,即AB 取得最小值 ,t= f t此时 s=t2 +1=.(10 分)。
2018年数学(文科)试题参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共12小题,每小题5分,满分60分.6.【解析】∵OA →+13AB →+13AC →=0,∴OA →+13(OB →-OA →)+13(OC →-OA →)=0,∴OA →+OB →+OC →=0,所以O 为△ABC 的重心,又O 为△ABC 的外心,所以△ABC 为正三角形.设△ABC 的边长为a ,则23×32a =4,∴a =4 3.所以CA →在CB →上的投影为43cos π3=23,故答案选A .7.【解析】由已知的三视图可得:该几何体是一个底面为直角边为2的等腰直角三角形,高为1的三棱锥,故该几何体的体积为V =23,故答案为C.8.【解析】方程x 2-px +3p -8=0有两个正根,则有⎪⎩⎪⎨⎧>>+≥∆0002121x x x x即解得p ≥8或83<p ≤4,又p ∈[0,4],则所求概率为p =13,故答案选A .11.【解析】由三角形PF 1F 2三边关系可知⎩⎨⎧>>+cc c 2101022,∴52<c<5,∴e 1e 2+1=2c 10+2c ·2c10-2c+1=c 225-c 2+1=2525-c 2>43,因此e 1e 2+1的取值范围是4(,)3+∞,故答案选B . 12.【解析】设F ()x =f ()x -12x ,F ′(x )=f ′(x )-12,∵f ′(x )>12.∴F ′(x )=f ′(x )-12>0,即函数F (x )在R 上单调递增.∵f (x 2)>x 22+12,∴f (x 2)-x 22>f (1)-12,∴F (x 2)>F (1).而函数F (x )在R 上单调递增,x 2>1,∴x>1或x <-1,故答案选C.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分. 13.521033+ 14.n3n -1 15.5% 16.(4,2017)16.【解析】作出函数f (x )的图象,令直线y =t 与f (x )的图象交于四个点,其横坐标由左到右依次为a ,b ,c ,d ,则由图象可得,b +c =2,log 2015(d -1)=a)21(-1=t ,由于0<t <1,则得到-1<a <0,2<d <2016,则2<a +d <2015,即有4<a +b +c +d <2017,故答案为:(4,2017).三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)解:(Ⅰ)f (x )=32sin2x -12(cos 2x -sin 2x )-1=32sin2x -12cos2x -1=sin ⎝⎛⎭⎫2x -π6-1, ........1分 f (C )=sin ⎝⎛⎭⎫2C -π6-1=0,所以sin ⎝⎛⎭⎫2C -π6=1,因为2C -π6∈⎝⎛⎭⎫-π6,11π6,所以2C -π6=π2,所以C =π3, ....... 3分由余弦定理知:a 2+b 2-2ab cos π3=7,因为sin B =3sin A ,由正弦定理知:b =3a , ......... 5分 解得:a =1,b =3.6分(Ⅱ)由条件知g (x )=sin ⎝⎛⎭⎫2x +π6-1,所以g (B )=sin ⎝⎛⎭⎫2B +π6-1=0,所以sin ⎝⎛⎭⎫2B +π6=1,因为2B +π6∈⎝⎛⎭⎫π6,13π6,所以2B +π6=π2,即B =π6,m =⎝⎛⎭⎫cos A ,32,n =(1,sin A -33cos A ),于是m·n =cos A +32⎝⎛⎭⎫sin A -33cos A =12cos A +32sin A =sin ⎝⎛⎭⎫A +π6, ........ 8分∵B =π6,∴A ∈⎝⎛⎭⎫0,56π,得A +π6∈⎝⎛⎭⎫π6,π, ..........10分 ∴sin ⎝⎛⎭⎫A +π6∈(0,1],即m·n ∈(0,1]. ................. 12分18.(本小题满分12分)解:(Ⅰ)证明:取AD 的中点G ,连接OG ,FG . ∵对角线AC 与BD 的交点为O ,∴OG ∥DC ,OG =12DC ,..............2分∵EF ∥DC ,DC =2EF ,∴OG ∥EF ,OG =EF ,∴OGFE 为平行四边形, ∴OE ∥FG , ..............4分 ∵FG ⊂平面ADF ,OE ⊄平面ADF ,∴OE ∥平面ADF ; ..................5分 (Ⅱ)证明:∵四边形ABCD 为菱形,∴OC ⊥BD ,∵FD =FB ,O 是BD 的中点, ∴OF ⊥BD , ∵OF ∩OC =O ,∴BD ⊥平面AFC ,.................7分 ∵BD ⊂平面ABCD ,∴平面AFC ⊥平面ABCD ;..........................8分 (Ⅲ)解:作FH ⊥AC 于H .∵平面AFC ⊥平面ABCD ,∴FH ⊥平面ABCD ,∴∠F AH 为AF 与平面ABCD 所成角,.........................10分 由题意,△BCD 为正三角形,OA =3,BD =AB =2, ∵FD =FB =2,∴△FBD 为正三角形,∴OF = 3.△AOF 中,由余弦定理可得cos ∠AOF =3+3-92·3·3=-12,∴∠AOF =120°,∴∠F AH =∠F AO =30°,∴AF 与平面ABCD 所成角为30°...............................12分19.(本小题满分12分) 解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==, ………………………………………………4分 解得6a =. …………………………………………………………5分因为3240a b ++=,所以2b =.答:a 的值为6,b 的值为2.……………………………………………7分(2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.…9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B , 则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…12分20.(本小题满分12分)解:(Ⅰ)依题意,椭圆Γ:x 22+y 2=1中,a 2=2,b 2=1,故c 2=a 2-b 2=1,故F ()1,0,故p2=1,则2p =4,故抛物线C 的方程为y 2=4x ,将M ()x 0,2代入y 2=4x ,解得x 0=1,故||MF =1+p2=2 .........................4分(Ⅱ)(法一)依题意,F ()1,0,设l :x =ty +1,设A ()x 1,y 1,B ()x 2,y 2,联立方程⎩⎪⎨⎪⎧y 2=4x x =ty +1,消去x ,得y 2-4ty -4=0.∴⎩⎪⎨⎪⎧y 1+y 2=4t y 1y 2=-4 ①且⎩⎪⎨⎪⎧x 1=ty 1+1x 2=ty 2+1,又AF →=λFB → 则()1-x 1,-y 1=λ()x 2-1,y 2,即y 1=-λy 2,代入 ① 得⎩⎨⎧()1-λy 2=4t -λy 22=-4, ................6分 消去y 2得4t 2=λ+1λ-2,且H ()-1,0, ................8分则|HA |2+|HB |2=()x 1+12+y 21+()x 2+12+y 22=x 21+x 22+2()x 1+x 2+2+y 21+y 22=()ty 1+12+()ty 2+12+2()ty 1+ty 2+2+2+y 21+y 22=()t 2+1()y 21+y 22+4t ()y 1+y 2+8=()t 2+1()16t 2+8+4t ·4t +8=16t 4+40t 2+16.由16t 4+40t 2+16=854, ...............10分解得t 2=18或t 2=-218(舍),故λ=2或12...............................12分(法二)若设直线斜率为k ,讨论k 存在与不存在,酌情给分21.(本小题满分12分)解:(Ⅰ)当b =1时,f (x )=12ax 2-(1+a 2)x +a ln x ,f ′(x )=ax -(1+a 2)+a x =(ax -1)(x -a )x...................1分讨论:1°当a ≤0时,x -a >0,1x>0,ax -1<0⇒f ′(x )<0,此时函数f (x )的单调递减区间为(0,+∞),无单调递增区间........................2分2°当a >0时,令f ′(x )=0⇒x =1a或a ,①当1a =a (a >0),即a =1时, 此时f ′(x )=(x -1)2x≥0(x >0),此时函数f (x )单调递增区间为(0,+∞),无单调递减区间;...........................3分②当0<1a<a ,即a >1时,此时在⎝⎛⎭⎫0,1a 和(a ,+∞)上函数f ′(x )>0, 在⎝⎛⎭⎫1a ,a 上函数f ′(x )<0,此时函数f (x )单调递增区间为⎝⎛⎭⎫0,1a 和(a ,+∞); 单调递减区间为⎝⎛⎭⎫1a ,a ; .....................4分③当0<a <1a,即0<a <1时,此时函数f (x )单调递增区间为(0,a )和⎝⎛⎭⎫1a ,+∞; 单调递减区间为⎝⎛⎭⎫a ,1a ................................................6分 (Ⅱ)证明:(法一)当a =-1,b =0时,f (x )+e x >-12x 2-x +1,只需证明:e x -ln x -1>0,设g (x )=e x-ln x -1(x >0), 问题转化为证明∀x >0,g (x )>0.令g ′(x )=e x -1x , g ″(x )=e x +1x2>0,∴g ′(x )=e x -1x 为(0,+∞)上的增函数,且g ′)21(=e -2<0,g ′(1)=e -1>0,........8分∴存在惟一的x 0∈⎝⎛⎭⎫12,1,使得g ′(x 0)=0,e x 0=1x 0, ∴g (x )在(0,x 0)上递减,在(x 0,+∞)上递增.......................................10分∴g (x )min =g (x 0)=e x 0-ln x 0-1=1x 0+x 0-1≥2-1=1,∴g (x )min >0∴不等式得证......................................................12分 (法二)先证:x -1≥ln x (x >0)令h (x )=x -1-ln x (x >0),∴h ′(x )=1-1x =x -1x=0⇒x =1,∴h (x )在(0,1)上单调递减,在(1,+∞)上单调递增∴h (x )min =h (1)=0,∴h (x )≥h (1)⇒x -1≥ln x .............................8分 ∴1+ln x ≤1+x -1=x ⇒ln(1+x )≤x ,∴e ln(1+x )≤e x ,10分∴e x ≥x +1>x ≥1+ln x ,∴e x >1+ln x ,故e x -ln x -1>0,证毕.............................12分22.(本小题满分10分)解:(Ⅰ)曲线⎩⎨⎧x =3cos α+sin α,y =3sin α-cos α,可得:⎩⎨⎧x 2=3cos 2α+23sin αcos α+sin 2α,y 2=3sin 2α-23sin αcos α+cos 2α, 曲线C 的普通方程:x 2+y 2=4 ................................3分直线l :ρsin ⎝⎛⎭⎫θ+π6=1=32ρsin θ+12ρcos θ,直线l 的直角坐标方程:x +3y -2=0 ...................................5分(Ⅱ)∵圆C 的圆心(0,0)半径为2,,圆心C 到直线的距离为1,∴这三个点在平行直线l 1与 l 2上,如图:直线l 1与 l 2与l 的距离为1. l 1:x +3y =0,l 2:x +3y -4=0. ⎩⎨⎧x 2+y 2=1,x +3y =0,可得⎩⎨⎧x =3,y =-1,⎩⎨⎧x =-3,y =1 两个交点(-3,1)、(3,-1); ⎩⎨⎧x 2+y 2=1,x +3y -4=0,解得(1,3), ...................8分 这三个点的极坐标分别为:⎝⎛⎭⎫2,11π6、⎝⎛⎭⎫2,5π6、⎝⎛⎭⎫2,π3 ...........................10分23.(本小题满分10分)解:(Ⅰ)当a =0时,g (x )=-||x -1 ∴-||x -1≤||x -2+b ⇒-b ≤||x -1+||x -2∵x -1+x -2≥x -1+2-x =1∴-b ≤1,∴b ≥-1 ..................5分 (Ⅱ)当a =1时,g (x )=⎩⎪⎨⎪⎧2x -1,0<x <11x -x +1,x ≥1 ......................6分可知g (x )在(0,1)上单调递增,在(1,+∞)单调递减8分 ∴g (x )max =g (1)=1 ....................10分。
高三数学考试(文科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数1z i =-+,则22z z z +=+( )A .-1B .1C .i -D .i 2.若向量(21,)m k k =-与向量(4,1)n =共线,则m n ⋅=( )A .0B .4C .92-D .172-3.已知集合2{|142}A x x =<-≤,{|23}B x x =>,则A B =( ) A.)+∞ B.([2,)+∞C .)+∞D.[(2,)+∞4.函数()cos()6f x x ππ=-的图象的对称轴方程为( ) A .2()3x k k Z =+∈ B .1()3x k k Z =+∈ C .1()6x k k Z =+∈ D .1()3x k k Z =-∈5. 如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .7B .6C .5D .46. 若函数221,1()1,1x x f x x ax x ⎧+≥⎪=⎨-++<⎪⎩在R 上是增函数,则a 的取值范围为( ) A .[2,3] B .[2,)+∞ C .[1,3] D .[1,)+∞7.在公比为q 的正项等比数列{}n a 中,44a =,则当262a a +取得最小值时,2log q =( )A .14B .14-C .18D .18-8.若sin()3sin()αβπαβ+=-+,,(0,)2παβ∈,则tan tan αβ=( )A .2B .12 C .3 D .139.设双曲线Ω:22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,Ω上存在关于y 轴对称的两点P ,Q (P 在Ω的右支上),使得2122PQ PF PF +=,O 为坐标原点,且POQ∆为正三角形,则Ω的离心率为( )A.2 B.2 CD10. 我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )A .B .C .D .11.若函数()ln f x x 在(1,)+∞上单调递减,则称()f x 为P 函数.下列函数中为P 函数的序号为( )①()1f x = ②()x f x = ③1()f x x =④()f x =A .①②④ B .①③ C .①③④ D .②③12.设正三棱锥P ABC -的高为H ,且此棱锥的内切球的半径17R H =,则22H PA =( ) A .2939 B .3239 C .3439 D .3539第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.若x 是从区间[0,3]内任意选取的一个实数,y 也是从区间[0,3]内任意选取的一个实数,则221x y +<的概率为 . 14.若圆C :22(1)x y n ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,则nm = .15. 已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T = .16.若曲线2log (2)(2)xy m x =->上至少存在一点与直线1y x =+上的一点关于原点对称,则m 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 20sin ab C B =,2241a c +=,且8cos 1B =. (1)求b ;(2)证明:ABC ∆的三个内角中必有一个角是另一个角的两倍.18.某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会; ②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包; ④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包; ⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包. 抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率. 19.如图,在各棱长均为2的正三棱柱111ABC A B C -中,D 为棱11A B 的中点,E 在棱1BB 上,13B E BE =,M ,N 为线段1C D 上的动点,其中,M 更靠近D ,且1MN =.F 在棱1AA 上,且1A E DF ⊥.(1)证明:1A E ⊥平面1C DF ;(2)若BM =,求三棱锥E AFN -的体积.20.已知0p >,抛物线1C :22x py =与抛物线2C :22y px =异于原点O 的交点为M ,且抛物线1C 在点M 处的切线与x 轴交于点A ,抛物线2C 在点M 处的切线与x 轴交于点B ,与y 轴交于点C .(1)若直线1y x =+与抛物线1C 交于点P ,Q,且PQ =1C 的方程;(2)证明:BOC ∆的面积与四边形AOCM 的面积之比为定值.21.已知函数2()3x f x e x =+,()91g x x =-.(1)求函数()4()xx xe x f x ϕ=+-的单调区间; (2)比较()f x 与()g x 的大小,并加以证明;(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔将所选题目对应的题号右侧方框涂黑,并且在解答过程中写清每问的小题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线M的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩t 为参数,且0t >),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=. (1)将曲线M 的参数方程化为普通方程,并将曲线C 的极坐标方程化为直角坐标方程; (2)求曲线M 与曲线C 交点的极坐标(0,02)ρθπ≥≤<.23.[选修4-5:不等式选讲]已知函数()413 f x x x=-+--.(1)求不等式()2f x≤的解集;(2)若直线2y kx=-与函数()f x的图象有公共点,求k的取值范围.高三数学详细参考答案(文科) 一、选择题1-5: ADBCB 6-10: AAADB 11、12:BD 二、填空题13. 36π14. 8 15.22(1)4n n n +++- 16. (2,4] 三、解答题17.(1)解:∵sin 20sin ab C B =,∴20abc b =,即20ac =,则b =6==.(2)证明:∵20ac =,2241a c +=,∴4a =,5c =或5a =,4c =.若4a =,5c =,则2225643cos 2564A +-==⨯⨯,∴2c o s 2c o s 1c o s2B A A =-=,∴2B A =.若5a =,4c =,同理可得2B C =.故ABC ∆的三个内角中必有一个角的大小是另一个角的两倍.18.解:(1)这20位顾客中获得抽奖机会的人数为5+3+2+1=11.这20位顾客中,有8位顾客获得一次抽奖的机会,有3位顾客获得两次抽奖的机会,故共有14次抽奖机会.(2)获得抽奖机会的数据的中位数为110, 平均数为1(10111++++11+++143813111=≈.(3)记抽奖箱里的2个红球为红1,红2,从箱中随机取2个小球的所有结果为(红1,红2),(红1,蓝),(红1,黄),(红2,蓝),(红2,黄),(蓝,黄),共有6个基本事件.在一次抽奖中获得红包奖金10元的概率为116P =,获得5元的概率为216P =, 获得2元的概率为34263P ==.19.(1)证明:由已知得111A B C ∆为正三角形,D 为棱11A B 的中点,∴111C D A B ⊥,在正三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,则11AA C D ⊥.又1111A B AA A =,∴1C D ⊥平面11ABB A ,∴11C D A E ⊥.易证1A E AD ⊥,又1AD C D D =,∴1A E ⊥平面1AC D .(2)解:连结1MB ,则11BB MB ⊥,∵12BB =,BM =,∴1MB =.又11MD A B ⊥,∴MD =.由(1)知1C D ⊥平面AEF ,∴N 到平面AEF的距离1d DN ==.设1A EDF O =,∵1A E DF ⊥,∴111AOD A B E ∆∆, ∵13B E BE =,∴11111B E A D A B A F =,∴1134A F =,∴143A F =. ∴E AFN N AEFV V --=1122323d =⨯⨯⨯⨯21)9=⨯=.20.(1)解:由212y x x py =+⎧⎨=⎩,消去y 得2220x px p --=.设P ,Q 的坐标分别为11(,)x y ,22(,)x y ,则122x x p +=,122x x p =-.∴PQ ==0p >,∴1p =.故抛物线1C 的方程为22x y =.(2)证明:由2222y px x py ⎧=⎪⎨=⎪⎩,得2x y p ==或0x y ==,则(2,2)M p p .设直线AM :12(2)y p k x p -=-,与22x py =联立得221124(1)0x pk x p k ---=. 由222111416(1)0p k p k ∆=+-=,得21(2)0k -=,∴12k =. 设直线BM :22(2)y p k x p -=-,与22y px =联立得222224(1)0k y py p k ---=. 由22222416(1)0p p k k ∆=+-=,得22(12)0k -=,∴212k =.故直线AM :22(2)y p x p -=-,直线BM :12(2)2y p x p -=-,从而不难求得(,0)A p ,(2,0)B p -,(0,)C p ,∴2BOC S p ∆=,23ABM S p ∆=,∴B O C ∆的面积与四边形AOCM 的面积之比为222132p p p =-(为定值).21.解:(1)'()(2)(2)xx x e ϕ=--, 令'()0x ϕ=,得1ln 2x =,22x =;令'()0x ϕ>,得ln 2x <或2x >; 令'()0x ϕ<,得ln 22x <<.故()x ϕ在(,ln 2)-∞上单调递增,在(ln 2,2)上单调递减,在(2,)+∞上单调递增. (2)()()f x g x >. 证明如下:设()()()h x f x g x =-2391x e x x +-+,∵'()329x h x e x =+-为增函数, ∴可设0'()0h x =,∵'(0)60h =-<,'(1)370h e =->,∴0(0,1)x ∈.当0x x >时,'()0h x >;当0x x <时,'()0h x <.∴min 0()()h x h x =0200391x e x x =+-+, 又003290x e x +-=,∴00329x e x =-+,∴2min 000()2991h x x x x =-++-+2001110x x =-+00(1)(10)x x =--. ∵0(0,1)x ∈,∴00(1)(10)0x x -->, ∴min ()0h x >,()()f x g x >.22.解:(1)∵y tx =,∴x x =,即2)y x =-,又0t >0>,∴2x >或0x <,∴曲线M的普通方程为2)y x =-(2x >或0x <).∵4cos ρθ=,∴24c o s ρρθ=,∴224x y x +=,即曲线C 的直角坐标方程为2240x x y -+=.(2)由222)40y x x x y ⎧=-⎪⎨-+=⎪⎩得2430x x -+=,∴11x =(舍去),23x =,则交点的直角坐标为,极坐标为)6π. 23.解:(1)由()2f x ≤,得1222x x ≤⎧⎨-≤⎩或1402x <<⎧⎨≤⎩或4282x x ≥⎧⎨-≤⎩, 解得05x ≤≤,故不等式()2f x ≤的解集为[0,5].(2)()413f x x x =-+--22,10,1428,4x x x x x -≤⎧⎪=<<⎨⎪-≥⎩,作出函数()f x 的图象,如图所示,直线2y kx =-过定点(0,2)C -, 当此直线经过点(4,0)B 时,12k =; 当此直线与直线AD 平行时,2k =-. 故由图可知,1(,2)[,)2k ∈-∞-+∞.。
苏北四市2018届高三一模数学试卷2.圆锥的侧面积公式:12S cl =,其中c 是圆锥底面的周长,l 是母线长. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.已知集合2{0}A x x x =-=,{1,0}B =-,则A B = ▲ .2.已知复数2iz +=(i 为虚数单位),则z 的模为 ▲ . 3.函数y 的定义域为 ▲ .4.如图是一个算法的伪代码,运行后输出b的值为 ▲ .5.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有 ▲ 人.6.在平面直角坐标系xOy 中,已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为20x y -=,则该双曲线的离心率为 ▲ .7.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为 ▲ .(第5题) (第17题) 012While 62End While Pr int a b I I a a b b a b I I b ←←← ←+ ←+ ←+ … (第4题)8.已知正四棱柱的底面边长为3cm,侧面的对角线长是,则这个正四棱柱的体积是 ▲ 3cm .9.若函数()sin()(0,0)f x A x A ωϕω=+>>的图象与直线y m =的三个相邻交点的横坐标分别是6π,3π,23π,则实数ω的值为 ▲ . 10.在平面直角坐标系xOy 中,曲线:C xy =P到直线:0l x =的距离的最小值为 ▲ .11.已知等差数列{}n a 满足13579+10a a a a a +++=,228236a a -=,则11a 的值为 ▲ . 12.在平面直角坐标系xOy 中,若圆1C :222(1)(0)x y r r +-=>上存在点P ,且点P 关于直线0x y -=的对称点Q 在圆2C :22(2)(1)1x y -+-=上,则r 的取值范围是 ▲ .13.已知函数2211()(1)1x x f x x x ⎧-+ ⎪=⎨- > ⎪⎩,≤,,,函数()()()g x f x f x =+-,则不等式()2g x ≤的解集为 ▲ .14.如图,在ABC △中,已知32120AB AC BAC = = ∠=︒,,,D 为边BC 的中点.若CE AD ⊥,垂足为E ,则EB ·EC 的值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且3cos 5A =,1tan()3B A -=.⑴求tan B 的值;⑵若13c =,求ABC △的面积.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,90ABC ∠=,1=AB AA ,M ,N 分别是AC ,11B C 的中点.求证:⑴//MN 平面11ABB A ;⑵1AN A B ⊥.17.(本小题满分14分)B (第14题) A DC E (第16题)1A 1B NM1C CBA某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O 及其内接等腰三角形ABC 绕底边BC 上的高所在直线AO 旋转180°而成,如图2.已知圆O 的半径为10 cm ,设∠BAO=θ,π02θ<<,圆锥的侧面积为S cm 2. ⑴求S 关于θ的函数关系式;⑵为了达到最佳观赏效果,要求圆锥的侧面积S 最大.求S 取得最大值时腰AB 的长度.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为12,且过点312(,).F 为椭圆的右焦点,,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点. ⑴求椭圆的标准方程;⑵若AF FC =,求BFFD的值;⑶设直线AB ,CD 的斜率分别为1k ,2k求出m 的值;若不存在,请说明理由.图1 图2(第17题)(第18题)19.(本小题满分16分)已知函数2()1()ln ()f x x ax g x x a a =++ =-∈R ,. ⑴当1a =时,求函数()()()h x f x g x =-的极值;⑵若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 20.(本小题满分16分)已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n …,n *∈N ,λ,μ∈R .⑴若0λ=,4μ=,12n n n b a a +=-(n *∈N ),求证:数列{}n b 是等比数列; ⑵若数列{}n a 是等比数列,求λ,μ的值; ⑶若23a =,且32λμ+=,求证:数列{}n a 是等差数列.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域.........内作答...,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修41:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F .求证:2AB BE BD AE AC =⋅-⋅A C D E F(第21-A 题) O .B .[选修:矩阵与变换](本小题满分10分) 已知矩阵1001⎡⎤=⎢⎥-⎣⎦A ,4123⎡⎤=⎢⎥⎣⎦B ,若矩阵=M BA ,求矩阵M 的逆矩阵1-M .C .[选修:坐标系与参数方程](本小题满分10分)以坐标原点为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线12:12x tl y t=+⎧⎨=-⎩(t 为参数)与圆2:2cos 2sin 0C ρρθρθ+-=的位置关系.D .[选修:不等式选讲](本小题满分10分)已知,,,a b c d 都是正实数,且1a b c d +++=,求证: 2222111115a b c d a b c d +++++++….【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在正三棱柱111ABC A B C -中,已知1AB =,12AA =,E ,F ,G 分别是1AA ,AC 和11AC 的中点.以{,,}FA FB FG 为正交基底,建立如图所示的空间直角坐标系F xyz -. ⑴求异面直线AC 与BE 所成角的余弦值;⑵求二面角1F BC C --的余弦值.23.(本小题满分10分)在平面直角坐标系xOy 中,已知平行于x 轴的动直线l 交抛物线2:4C y x =于点P ,点F 为C 的焦点.圆心不在y 轴上的圆M 与直线l ,PF ,x 轴都相切,设M 的轨迹为曲线E .⑴求曲线E 的方程;⑵若直线1l 与曲线E 相切于点(,)Q s t ,过Q 且垂直于1l 的直线为2l ,直线1l ,2l 分别与y 轴相交于点A ,B .当线段AB 的长度最小时,求s 的值.数学参考答案与评分标准一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.{1,0,1}- 2.1 3.(0,1] 4.13 5.750 67.598.54 9.4 1011.11 12.1] 13.[2,2]- 14.277-二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(1)在ABC △中,由3cos 5A =,得A为锐角,所以4sin 5A ==,所以sin 4tan cos 3A A A ==,………………………………………………………………2分 所以tan()tan tan tan[()]1tan()tan B A AB B A A B A A-+=-+=--⋅. ………………………………4分1433314133+==-⨯ …………………………………………………………6分 (2)在三角形ABC 中,由tan 3B =,所以sin B B ==, ………………………………………………8分由sin sin()sin cos cos sin C A B A B A B =+=+=,…………………………10分由正弦定理sin sin b c B C =,得13sin sin c B b C =,………………………12分 所以ABC △的面积114sin 151378225S bc A ==⨯⨯⨯=. …………………………14分16.(1)证明:取AB 的中点P ,连结1,.PM PB因为,M P 分别是,AB AC 的中点,所以//,PM BC 且1.2PM BC =在直三棱柱111ABC A B C -中,11//BC B C ,11BC B C =, 又因为N 是11B C 的中点,所以1//,PM B N 且1PM B N =. …………………………………………2分 所以四边形1PMNB 是平行四边形,所以1//MN PB , ………………………………………………………………4分 而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,所以//MN 平面11ABB A . ……………………………………………………6分(2)证明:因为三棱柱111ABC A B C -为直三棱柱,所以1BB ⊥面111A B C , 又因为1BB ⊂面11ABB A ,所以面11ABB A ⊥面111A B C , …………………8分 又因为90ABC ∠=,所以1111B C B A ⊥, 面11ABB A 面11111=A B C B A ,11111B C A B C ⊂平面,所以11B C ⊥面11ABB A , ………………………10分 又因为1A B ⊂面11ABB A , 所以111B C A B ⊥,即11NB A B ⊥,连结1AB ,因为在平行四边形11ABB A 中,1=AB AA , 所以11AB A B ⊥, 又因为111=NB AB B ,且1AB ,1NB ⊂面1AB N ,所以1A B ⊥面1AB N ,……………………………………………………………………12分 而AN ⊂面1AB N ,所以1A B AN ⊥.……………………………………………………………………………14分 17.(1)设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E ,在AOE ∆中,10cos AE θ=,220cos AB AE θ==, …………………………………………………………2分在ABD ∆中,sin 20cos sin BD AB θθθ=⋅=⋅,…………………………………………………………4分所以1220sin cos 20cos 2S θθθ=⋅π⋅⋅2400sin cos θθ=π,(0)2πθ<<……………………6分(2)要使侧面积最大,由(1)得:23400sin cos 400(sin sin )S πθθπθθ==-…………8分 设3(),(01)f x x x x =-<< 则2()13f x x '=-,由2()130f x x '=-=得:x =当x ∈时,()0f x '>,当x ∈时,()0f x '< 所以()f x在区间上单调递增,在区间上单调递减, 所以()f x在x =所以当sin θ=时,侧面积S 取得最大值, …………………………11分此时等腰三角形的腰长20cos AB θ===答:侧面积S 取得最大值时,等腰三角形的腰AB.…………14分(第16题)1A 1B NM1C CB AP18.(1)设椭圆方程为22221(0)x y a b a b +=>>,由题意知:22121914c a a b ⎧=⎪⎪⎨⎪+=⎪⎩……………2分解之得:2a b =⎧⎪⎨=⎪⎩,所以椭圆方程为:22143x y += ……………………………4分 (2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --,此时直线BF 方程为3430x y --=, ……………………………………………6分 由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去),…………8分故1(1)713317BF FD --==-.…………………………………………………………………10分(3)设00,)A x y (,则00(,)B x y --, 直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 2220000(156)815240x x y x x ---+=,因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,…………………12分又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 同理,D 点坐标为0085(52x x ++,3)52y x +, ……………………………………………14分 所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,即存在53m =,使得2153k k =. ………………………………………………………16分19.(1)函数()h x 的定义域为(0,)+∞当1a =时,2()()()ln 2h x f x g x x x x =-=+-+,所以1(21)(1)()21x x h x x x x -+'=+-=………………………………………………2分 所以当102x <<时,()0h x '<,当12x >时,()0h x '>,所以函数()h x 在区间1(0,)2单调递减,在区间1(,)2+∞单调递增,所以当12x =时,函数()h x 取得极小值为11+ln24,无极大值;…………………4分 (2)设函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同,则121212()()()()f x g x f x g x x x -''==-所以211212121(ln )12x ax x a x a x x x ++--+==- ……………………………………6分 所以12122ax x =-,代入21211221(ln )x x x ax x a x -=++--得:222221ln 20(*)424a a x a x x -++--= ………………………………………………8分 设221()ln 2424a a F x x a x x =-++--,则23231121()222a x ax F x x x x x +-'=-++= 不妨设2000210(0)x ax x +-=>则当00x x <<时,()0F x '<,当0x x >时,()0F x '> 所以()F x 在区间0(0,)x 上单调递减,在区间0(,)x +∞上单调递增,……………10分代入20000121=2x a x x x -=-可得:2min 000001()()2ln 2F x F x x x x x ==+-+-设21()2ln 2G x x x x x =+-+-,则211()220G x x x x'=+++>对0x >恒成立, 所以()G x 在区间(0,)+∞上单调递增,又(1)=0G所以当01x <≤时()0G x ≤,即当001x <≤时0()0F x ≤, ……………12分又当2a x e+=时222421()ln 2424a a a a a F x e a e e +++=-++-- 2211()04a a e+=-≥ ……………………………………14分 因此当001x <≤时,函数()F x 必有零点;即当001x <≤时,必存在2x 使得(*)成立; 即存在12,x x 使得函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同.又由12y x x =-得:2120y x'=--<所以12(0,1)y x x =-在单调递减,因此20000121=2[1+)x a x x x -=-∈-∞, 所以实数a 的取值范围是[1,)-+∞.…………………………………………………16分 20.(1)证明:若=0,4 =λμ,则当14n n S a -=(2n ≥),所以1114()n n n n n a S S a a ++-=-=-, 即1122(2)n n n n a a a a +--=-,所以12n n b b -=, ……………………………………………………………2分 又由12a =,1214a a a +=,得2136a a ==,21220a a -=≠,即0n b ≠,所以12nn b b -=, 故数列{}n b 是等比数列.……………………………………………………………4分 (2)若{}n a 是等比数列,设其公比为q (0q ≠ ),当2n =时,2212S a a =+λμ,即12212a a a a +=+λμ,得12q q +=+λμ, ① 当3n =时,3323S a a =+λμ,即123323a a a a a ++=+λμ,得2213q q q q ++=+λμ, ② 当4n =时,4434S a a =+λμ,即1234434a a a a a a +++=+λμ,得 233214+q q q q q ++=+λμ, ③②①q ,得21q =λ ,③②q ,得31q =λ , 解得1,1 q ==λ.代入①式,得0=μ.…………………………………………………………………8分此时n n S na =(2n ≥),所以12n a a ==,{}n a 是公比为1的等比数列,故10 ==,λμ. ……………………………………………………………………10分 (3)证明:若23a =,由12212a a a a +=+λμ,得562=+λμ, 又32+=λμ,解得112==,λμ.…………………………………………………12分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+,两式相减得:111122n n n n n n na a a a a ++-+=-+-即11(1)(2)20n n n n a n a a +-----= 所以21(1)20n n n na n a a ++---=相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+= 所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+=所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-, ……………………………………14分因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………………………………………………………………16分数学Ⅱ(附加题)参考答案与评分标准21.A .证明:连接AD ,因为AB 为圆的直径,所以AD BD ⊥,又EF AB ⊥,则,,,A D E F 四点共圆,所以BD BE BA BF ⋅=⋅. …………………………………………………………5分 又△ABC ∽△AEF , 所以AB AC AE AF=,即AB AF AE AC ⋅=⋅, ∴2()BE BD AE AC BA BF AB AF AB BF AF AB ⋅-⋅=⋅-⋅=⋅-=. …………10分B .因为411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, ………………………………………5分 所以131********M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. ………………………………………………………10分 C .把直线方程12:12x t l y t =+⎧⎨=-⎩化为普通方程为2x y +=. ……………………………3分 将圆:C 22cos 2sin 0ρρθρθ+-=化为普通方程为22220x x y y ++-=,即22(1)(1)2x y ++-=. ………………………………………………………………6分圆心C 到直线l的距离d == 所以直线l 与圆C 相切.…………………………………………………………………10分D .证明:因为2222[(1)(1)(1)(1)]()1111a b c d a b c d a b c d++++++++++++++2≥ 2()1a b c d =+++=, …………………………………………5分又(1)(1)(1)(1)5a b c d +++++++=, 所以2222111115a b c d a b c d +++≥++++.…………………………………………10分 22.(1)因为11,2AB AA ==,则111(0,0,0),(,0,0),(,0,0),(,0,1)222F A C B E -, 所以(1,0,0)=-AC,1(,2=BE , ………………………………………2分 记直线AC 和BE 所成角为α,则11cos |cos ,|4α-⨯=<>==AC BE , 所以直线AC 和BE………………………………………4分 (2)设平面1BFC 的法向量为111(,,)x y z =m ,因为(0,FB =,11(,0,2)2FC =-, 则1111301202FB y FC x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩m m ,取14x =得:(4,0,1)=m ……………………………6分 设平面1BCC 的一个法向量为222(,,)x y z =n , 因为1(2CB =,1(0,0,2)CC=, 则221210220CB x y CC z ⎧⋅==⎪⎨⎪⋅==⎩n n ,取2x =1,0)=-n ………………………8分cos ,∴<m n 根据图形可知二面角1F BC C --为锐二面角,所以二面角1F BC C -- ……………………………………10分 23.(1)因为抛物线C 的方程为24y x =,所以F 的坐标为(1,0),设(,)M m n ,因为圆M 与x 轴、直线l 都相切,l 平行于x 轴, 所以圆M 的半径为n,点P 2(,2)n n ,则直线PF 的方程为2121y x n n -=-,即22(1)(1)0n x y n ---=,………………………2分n =,又,0m n ≠, 所以22211m n n --=+,即210n m -+=, 所以E 的方程为2=1y x -(0)y ≠ ………………………………………………4分(2)设2(1,)+Q t t , 1(0,)A y ,2(0,)B y , 由(1)知,点Q处的切线1l 的斜率存在,由对称性不妨设0>t ,由'=y 121AQ t y k t -==+,221BQ t y k t -==-+ 所以1122=-t y t,3223=+y t t , ……………………………………………………6分 所以33151|23|2(0)2222t AB t t t t t t t=+-+=++>.……………………………………8分 令351()222f t t t t=++,0t >, 则42222511251()6222t t f t t t t +-'=+-=,由()0f t'<得0t<<,f t'>得t>()0所以()f t在区间单调递减,在)+∞单调递增,所以当t=时,()f t取得极小值也是最小值,即AB取得最小值s t=+=.……………………………………………………………10分此时21。
2018年江苏省高三文科数学试数 学(文科)一.选择题(每小题5分,共60分)1.平面上有)1,2(-A 、)4,1(B 两点,点C 在直线AB 上,且21=,则点C 的坐标为( )A .)2,1(-B .)2,1(-或)2,5(--C .)3,0(D .)2,5(--2.在nx x ⎪⎭⎫ ⎝⎛-12的展开式中,常数项为15,则n 的一个值可以是( )A .3B .4C .5D .53.在三棱锥BCD A -中,侧棱AB 、AC 、AD 两两垂直,ABC ∆、ACD ∆、ADB ∆的面积分别为22、23、26,则三棱锥BCD A -的外接球的体积为( ) A .π6 B .π62 C .π64 D .π684. 设曲线2ax y =在点),1(a 处的切线与直线062=--y x 平行,则实数a 的值为( ) A.1 B.21 C. 21- D. 1- 5.若21>a ,下列不等式一定成立的是( ) A.21a a a> B. a a a >2 C.21212<⎪⎭⎫ ⎝⎛aD. 212121⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛a6.若O 是ABC ∆所在平面内一点,且()()0O =-⋅,则ABC ∆一定是( ) A.等边三角形 B.斜三角形 C.等腰三角形 D. 直角三角形 7.设)(x f 是定义在R 上的奇函数,且对任意的R x ∈,恒有)1()1(-=+x f x f ,当)1,0(∈x 时xx f -=11log )(2,则)(x f 在)2,1(上( ) A.是增函数且0)(>x f B. 是减函数且0)(>x f C. 是增函数且0)(<x f D. 是减函数且0)(<x f 8.已知正方体的外接球的体积是332π,那么正方体的棱长等于( )A.22B.332 C. 324 D. 334 9.已知等差数列的前20项和为100,则147a a ⋅的最大值为( )A.25B.50C. 100D. 以上都不对10.在样本频率分布直方图中,一共有m )3(≥m 个小矩形,第3个小矩形的面积等于其余1-m 个小矩形面积之和的41,若样本容量为100,则第三组的频率是( )A.0.2B.25C.20D. 以上都不对11.双曲线)0,0(,12222>>=-b a by a x 的两焦点分别为21,F F ,P 为双曲线上一点,21PF PF ⊥,则P 到实轴距离为( )A.c b 2B. c a 2C. a b 2D. ac 212. 8次射击命中3次,恰好2次连续命中的情况有() A.15种 B.30种 C. 48种 D. 60种二.填空题(每小题5分,共20分)13.在AB C ∆中,3,2==AC AB ,D 是边BC 的中点,则=⋅BC AD 。
2018届江苏高考数学模拟试卷(1)数学I一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.已知集合{02},{11}A x x B x x =<<=-<<,则A B U = ▲ .2. 设复数1a +=-i z i(i 是虚数单位,a ∈R ).若z 的虚部为3,则a 的值为 ▲ .3.一组数据5,4,6,5,3,7的方差等于 ▲ .4.右图是一个算法的伪代码,输出结果是 ▲ .5.某校有B A ,两个学生食堂,若甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则此三人不在同一食堂用餐的概率为 ▲ .6. 长方体1111ABCD A B C D -中,111,2,3AB AA AC ===,则它的体积等于 ▲ .7.若双曲线2213x y a -=的焦距等于4,则它的两准线之间的距离等于 ▲ .8. 若函数()22xx af x =+是偶函数,则实数a 等于 ▲ .9. 已知函数f (x )=2sin(ωx +φ)(ω>0).若f (π3)=0,f (π2)=2,则实数ω的最小值为 ▲ .10. 如图,在梯形ABCD 中,S ←0 a ←1 For I From 1 to 3a ←2×a S ←S +a End For Print S (第4题),2,234,//CD AD AB CD AB ====,,如果 ⋅-=⋅则,3= ▲ .11.椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是 ▲ .12.若数列12{}(21)(21)n n n +--的前k 项的和不小于20172018,则k 的最小值为 ▲ .13. 已知24παπ<<,24πβπ<<,且22sin sin sin()cos cos αβαβαβ=+,则tan()αβ+的最大值为 ▲ .14. 设,0a b >,关于x 的不等式3232x xx xa N Mb ⋅-<<⋅+在区间(0,1)上恒成立,其中M , N 是与x 无关的实数,且M N >,M N -的最小值为1. 则ab的最小值为___▲___.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤.15.如图,在ABC ∆中,已知7,45AC B =∠=o,D 是边AB 上的一点,3,120AD ADC =∠=o . 求:(1)CD 的长; (2)ABC ∆的面积.16.如图,在四棱锥S-ABCD 中,底面ABCD 是平行四边形,E ,F 分别是AB ,SC 的中点. (1)求证:EF ∥平面SAD ; (2)若SA=AD ,平面SAD ⊥平面SCD ,求证:EF ⊥AB .A D CB17.如图,有一椭圆形花坛,O 是其中心,AB 是椭圆的长轴,C 是短轴的一个端点. 现欲铺设灌溉管道,拟在AB 上选两点E ,F ,使OE =OF ,沿CE 、CF 、F A 铺设管道,设θ=∠CFO ,若OA =20m ,OC =10m , (1)求管道长度u 关于角θ的函数;(2)求管道长度u 的最大值.18.在平面直角坐标系xOy 中,已知圆222:C x y r +=和直线:l x a =(其中r 和a 均为常数,且0r a <<),M 为l 上一动点,1A ,2A 为圆C 与x 轴的两个交点,直线1MA ,2MA 与圆C 的另一个交点分别为,P Q .(1)若2r =,M 点的坐标为(4,2),求直线PQ 方程; (2)求证:直线PQ 过定点,并求定点的坐标.19.设R k ∈,函数2()ln 1f x x x kx =+--,求: (1)1=k 时,不等式()1f x >-的解集; (2)函数()x f 的单调递增区间;(3)函数()x f 在定义域内的零点个数.20.设数列{}n a ,{}n b 分别是各项为实数的无穷等差数列和无穷等比数列. (1)已知06,12321=+-=b b b b ,求数列{}n b 的前n 项的和n S ;(2)已知数列{}n a 的公差为d (0)d ≠,且11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+,求数列{}n a ,{}n b 的通项公式(用含n ,d 的式子表达); (3)求所有满足:11n n n na b b a ++=+对一切的*N n ∈成立的数列{}n a ,{}n b .数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲(本小题满分10分) 如图,在△ABC 中,90BAC ∠=,延长BA 到D ,使得AD =12AB ,E ,F 分别为BC ,AC 的中点,求证:DF =BE .B .选修4—2:矩阵与变换 (本小题满分10分)已知曲线1C :221x y +=,对它先作矩阵1002A ⎡⎤=⎢⎥⎣⎦对应的变换,再作矩阵010m B ⎡⎤=⎢⎥⎣⎦对应的变换(其中0≠m ),得到曲线2C :2214x y +=,求实数m 的值.C .选修4—4:坐标系与参数方程 (本小题满分10分)已知圆C 的参数方程为12cos 32sin x y θθ=+⎧⎪⎨=⎪⎩,, (θ为参数),直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩, , (t 为参数,0 ααπ<<π≠2,且),若圆C 被直线l 13,求α的值.D .选修4—5:不等式选讲 (本小题满分10分)对任给的实数a 0a ≠()和b ,不等式()12a b a b a x x ++-⋅-+-≥恒成立,求实数x 的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,A A 1=AB =AC =1,AB ⊥AC ,M ,N 分别是棱CC 1,BC 的 中点,点P 在直线A 1B 1上.(1)求直线PN 与平面ABC 所成的角最大时,线段1A P 的长度;(2)是否存在这样的点P ,使平面PMN 与平面ABC 所成的二面角为6π. 如果存在,试确定点P 的位置;如果不存在,请说明理由.(第21—A 题)BECFDA123.(本小题满分10分)设函数()sin cos n n f θθθ=+,其中n 为常数,n ∈*N ,(1)当(0,)2πθ∈时, ()f θ是否存在极值?如果存在,是极大值还是极小值?(2)若sin cos a θθ+=,其中常数a 为区间[2,2]内的有理数. 求证:对任意的正整数n ,()f θ为有理数.2018高考数学模拟试卷(1)数学Ⅰ答案一、填空题答案:1. {12}x x -<<2. 5 3.53 4. 14 5. 43 6.4 7. 1 8. 1 9. 3 10.2311. 111(,)(,1)322⋃.解:422111232c a c e e c a>-⎧⇒<<≠⎨≠⎩且,故离心率范围为111(,)(,1)322⋃.12. 10解:因为对任意的正整数n ,都有1212)12)(12(211--=--++n n n n n 1-1, 所以⎭⎬⎫⎩⎨⎧--+)12)(12(21n n n的前k 项和为 1)1)(2(221)1)(2(221)1)(2(221322211--++--+--+k kk12112112112112112113221---++---+---=+k k 12111--=+k 使2018201712111≥--+k ,即2018121≥-+k ,解得10≥k ,因此k 的最小值为10.13. -4解:因为24ππ<<βα,,所以βαβαsin sin cos cos ,,,均不为0.由βαβαβαcos cos )sin(sin sin 22+=,得βαβαβαβαsin cos cos sin tan tan sin sin +=,于是αββαtan 1tan 1tan tan +=,即βαβαβαtan tan tan tan tan tan +=, 也就是βαβα22tan tan tan tan =+,其中βαtan tan ,均大于1. 由βαβαβαtan tan 2tan tan tan tan22⋅≥+=⋅,所以34tan tan ≥βα.令()341tan tan 1-,--∞∈=βαt , βαβαβαβαβαtan tan 1tan tan tan tan 1tan tan )tan(22-=-+=+21-+=tt 4-≤,当且仅当1-=t 时取等号.14.4+解:32()32xxx x a f x b ⋅-=⋅+,则23()6l n2()0(32)xx x a b f x b +'=>⋅+恒成立,所以()f x 在(0,1)上单调递增, 132(0),(1)132a a f f b b --==++,∴()f x 在(0, 1)上的值域为132(,)132a ab b --++,M x f N <<)( 在(0,1)上恒成立,故min 321()1321(32)(1)a a a b M N b b b b --+-=-==++++,所以2342a b b =++,所以2344a b b b=++≥.所以min ()4a b=+二、解答题答案15.解:(1)在ACD ∆中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⋅∠,2227323cos120CD CD =+-⨯⋅o ,解得5CD =.(2)在BCD ∆中,由正弦定理得sin sin BD CD BCD B =∠,5sin 75sin 45BD =o o,解得BD = 所以BDC BD CD ADC CD AD S S S BCD ACD ABC ∠⋅+∠⋅=+=∆∆∆sin 21sin 21 1155335sin12056022+=⨯⨯+⨯o o 75553+=16. 解(1)取SD 的中点G ,连AG ,FG .在SCD ∆中,因为F ,G 分别是SC ,SD 的中点, 所以FG ∥CD ,12FG CD =. 因为四边形ABCD 是平行四边形,E 是AB 的中点, 所以1122AE AB CD ==,AE ∥CD . 所以FG ∥AE ,FG=AE ,所以四边形AEFG 是平行四边形,所以EF ∥AG .因为AG ⊂平面SAD ,EF ⊄平面SAD ,所以EF ∥平面SAD . (2)由(1)及SA=AD 得,AG SD ⊥.因为平面SAD ⊥平面SCD ,平面SAD ⋂平面SCD =SD ,AG ⊂平面SAD , 所以AG ⊥平面SCD ,又因为SCD CD 面⊂,所以AG ⊥CD . 因为EF ∥AG ,所以EF ⊥CD , 又因为CD AB //,所以EF ⊥AB .17. 解:(1)因为θsin 01=CF ,θtan 10=OF ,θtan 10-20=AF , 所以θθθθsin cos 102020tan 1002sin 02-+=-+=++=AF CF CE u , 其中,552cos 0<<θ. ADCBS FG(2)由 θθsin cos 102020-+=u ,得θθ2'sin cos 0201-=u ,令21cos 0'==θ,u , 当 21cos 0<<θ时,0'>u ,函数)(θu 为增函数;当552c o s 21<<θ时,0'<u ,函数)(θu 为减函数. 所以,当21cos =θ,即3πθ=时,310203sin21102020max +=⨯-+=πu (m )所以,管道长度u 的最大值为)(31020+m.18. 解:(1)当2r =,(4,2)M 时,则1(2,0)A -,2(2,0)A ,直线1MA 的方程:320x y -+=,解224320x y x y ⎧+=⎨-+=⎩得86(,)55P .直线2MA 的方程:20x y --=,解22420x y x y ⎧+=⎨--=⎩得(0,2)Q -.所以PQ 方程为220x y --=.(2)由题设得1(,0)A r -,2(,0)A r ,设(,)M a t ,直线1MA 的方程是()ty x r a r =++,与圆C 的交点11(,)P x y , 直线2MA 的方程是()ty x r a r=--,与圆C 的交点22(,)Q x y ,则点11(,)P x y ,22(,)Q x y 在曲线[()()][()()]0a r y t x r a r y t x r +-+---=上, 化简得2222222()2()()0a r y ty ax r t x r ---+-=, ①又11(,)P x y ,22(,)Q x y 在圆C 上,圆C :2220x y r +-=, ②①-2t ×②得22222222222()2()()()0a r y ty ax r t x r t x y r ---+--+-=,化简得2222()2()0a r y t ax r t y ----=.所以直线PQ 方程为2222()2()0a r y t ax r t y ----=.令0y =得2r x a =,所以直线PQ 过定点2(,0)r a.19.解(1)k =1时,不等式()1f x >-即2ln 0x x x +->,设2()l n g x x x x =+-,因为2121()210x x g x x x x-+'=+-=>在定义域(0,)+∞上恒成立,所以g (x )在(0,)+∞上单调递增,又(1)0g =,所以()1f x >-的解集为(1,)+∞.(2)2121()2(0)x kx f x x k x x x-+'=+-=>,由()0f x '≥得2210x kx -+≥……(*). (ⅰ)当280k ∆=-≤,即2222k -≤≤(*)在R 上恒成立,所以()f x 的单调递增区间为(0,)+∞. (ⅱ)当22k >时,280k ∆=->,此时方程2210x k x -+=的相异实根分别为2128k k x x +-==,因为12120,2102k x x x x ⎧+=>⎪⎪⎨⎪=>⎪⎩,所以120x x <<,所以()0f x '≥的解集为2288)k k k k --+-+∞U , 故函数f (x )的单调递增区间为2288(0,[)44k k k k --+-+∞和. (ⅲ)当22k <-时,同理可得:,0,21,020212121<<∴⎩⎨⎧<=+>=x x kx x x x ()f x 的单调递增区间为(0,)+∞.综上所述,当k >时,函数()f x 的单调递增区间为2288(0,[,)44k k k k -+-+∞和;当k ≤时,函数()f x 的单调递增区间为(0,)+∞. (3)据(2)知①当k ≤时,函数()f x 在定义域(0,)+∞上单调递增,令210,0x kx x ⎧-->⎨>⎩得x >,取max{m =,则当x >m 时,2()10f x x kx >-->.设01x <<,21max{1,}x kx k λ--<--=,所以()ln f x x λ<+,当0x e λ-<<时,()0f x <,取mi n {1,}n e λ-=,则当(0,)x n ∈时,()0f x <,又函数()f x 在定义域(0,)+∞上连续不间断,所以函数()f x 在定义域内有且仅有一个零点.②当22>k 时,()f x 在12(0,)(,)x x +∞和上递增,在12(,)x x 上递减, 其中012,0122211=+-=+-kx x kx x则2221111111()ln 1ln (21)1f x x x kx x x x =+--=+-+-211ln 2x x =--.下面先证明ln (0)x x x <>:设x x x h -=ln )(),由1()xh x x-'=>0得01x <<,所以h (x )在(0,1)上递增,在(1,)+∞上递减,01)1()(max <-==h x h ,所以()0h x <)0(>x ,即 ln (0)x x x <>.因此,047)21(2)(212111<---=--<x x x x f ,又因为)(x f 在12(,)x x 上递减,所以21()()0f x f x <<,所以()f x 在区间2(0,)x 不存在零点.由①知,当x m >时,()0f x >,()f x 的图象连续不间断,所以()f x 在区间2(,)x +∞上有且仅有一个零点. 综上所述,函数()f x 在定义域内有且仅有一个零点.20.解(1)设{}n b 的公比为q ,则有063=+-q q ,即2(2)(23)0q q q +-+=,所以2q =-,从而1(2)3nn S --=.(2)由11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+得112211(2)22nn n a b a b a b n --++⋅⋅⋅+=-+,两式两边分别相减得2(2)n n n a b n n =⋅≥.由条件112a b =,所以*2(N )n n n a b n n =⋅∈,因此111(1)2(2)n n n a b n n ---=-⋅≥,两式两边分别相除得12(2)1n n a n q n a n -⋅=≥-,其中q 是数列{}n b 的公比.所以122(1)(3)2n n a n q n a n ---⋅=≥-,上面两式两边分别相除得2221(2)(3)(1)n n n a a n n n a n ---=≥-.所以312234a a a =,即1121(2)3()4a d a a d +=+,解得113a d a d ==-或,若d a 31-=,则04=a ,有024444==⋅b a 矛盾,所以1a d =满足条件,所以2,nn n a dn b d==.(3)设数列{}n a 的公差为d ,{}n b 的公比为q ,当q =1时,112n n b b b ++=,所以112n na b a +=,所以数列{}n a 是等比数列,又数列{}n a 是等差数列,从而数列{}n a 是各项不为0的常数列,因此112b =,经验证,110,2n n a a b =≠=满足条件.当1q ≠时,由11n n n n a b b a ++=+得1111(1)n dn a b q q dn a d-+=++-……(*) ①当d>0时,则1d a n d ->时,10n n a a +>>,所以111dn a dn a d +>+-此时令112dn a dn a d +<+-得12d a n d->,因为112d a d a d d -->所以,当12d a n d->时,1112dn a dn a d +<<+-. 由(*)知,10,0b q >>. (ⅰ)当q >1时,令11(1)2n b q q-+>得121log (1)qn b q >++,取11122max{,1log }(1)q d a M d b q -=++,则当1n M >时,(*)不成立. (ⅱ)当0<q <1时,令11(1)1n b q q -+<得111log (1)qn b q >++,取12121max{,1log }(1)q d a M d b q -=++,则当2n M >时,(*)不成立. 因此,没有满足条件的数列{}n a ,{}n b .②同理可证:当d <0时,也没有满足条件的数列{}n a ,{}n b .综上所述,所有满足条件的数列{}n a ,{}n b 的通项公式为110,2n n a a b =≠=(*N n ∈).数学Ⅱ(附加题)答案21.【选做题】答案A .选修4—1:几何证明选讲 解:取AB 中点G ,连结GF ,12AD AB =,AD AG ∴=,又90BAC ∠=, 即AC 为DG 的垂直平分线, ∴ DF = FG ………………① ,又E 、F 分别为BC 、AC 中点, 1//2EF AB BG EF BG ==∴ 四边形BEFG 为平行四边形, ∴ FG = BE …………② 由①②得BE =DF .B .选修4—2:矩阵与变换 解:010********m m BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,设P ()00,x y 是曲线1C 上的任一点,它在矩阵BA 变换作用下变成点(),P x y ''',则000020210x my x m y x y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,则002x my y x '=⎧⎨'=⎩,即0012x y y x m'=⎧⎪⎨'=⎪⎩, 又点P 在曲线1C 上,则22214x y m''+=,'p 在曲线2C 上,则14''22=+x y , 故21m =,所以,1m =±.C .选修4—4:坐标系与参数方程 解:圆的直角坐标方程为()(22134x y -+=,直线的直角坐标方程为()1y k x =-()tan k α=,因为圆C 被直线l,=k =tan α= 又0πα≤<,∴α=π3或2π3.D .选修4—5:不等式选讲 解:由题知,aba b a x x ++-≤-+-21恒成立,故|1||2|x x -+-不大于aba b a ++-的最小值 ,∵||||2|||≥|a b a b a b a b a -++++-=,当且仅当()()0≥a b a b +-时取等号, ∴aba b a ++-的最小值等于2.∴x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得1522≤≤x .【必做题】答案22. 解:如图,以A 为原点建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M (0,1,12),N (12,12,0)设10),1,0,(<<=λλp .则)0,0,(1λ=P A ,)1,0,(11λ=+=P A AA AP ;PN )1,21,21(--=λ, (1)∵()0,0,1=m 是平面ABC 的一个法向量.=><=∴|,cos |sin m θ45)21(1141)21(|100|22+-=++--+λλ∴当12λ=时,θ取得最大值,此时25sin θ,tan 2θ=即:当12λ=时, θ取得最大值,此时tan 2θ=. 故P A 1的长度为21.(2)=)21,21,21(-,由(1))1,21,21(--=λ, 设(),,x y z =n 是平面PMN 的一个法向量.A 1C 1B 1MBAPx yz则111022211()022x y z x y z λ⎧-++=⎪⎨⎪-+-=⎩得123223y x z x λλ+⎧=⎪⎨-⎪=⎩令x =3,得y =1+2λ,z=2-2λ, ∴()3,12,22λλ=+-n , ∴()()22223|cos ,|91222λλλ-<>==+++-m n 4210130λλ++=(*)∵△=100-4⨯4⨯13=-108<0,∴方程(*)无解∴不存在点P 使得平面PMN 与平面ABC 所成的二面角为30º. 23. 解:(1)当(0,)2πθ∈时,设22()sin cos (sin cos )0n n f n θθθθθ--'=->,等价于0cos sin 22>---θθn n .(ⅰ)n =1时,令,>0)('f θ得110sin cos θθ->,解得04πθ<<,所以()f θ在(0,)4π上单调递增,在(,)42ππ上单调递减,所以()f θ存在极大值,无极小值.(ⅱ)n =2时,()f θ=1,()f θ既无极大值,也无极小值. (ⅲ)3n ≥时,令,>0)('f θ得sin cos θθ>,所以42ππθ<<,所以()f θ在(0,)4π上单调递减,在(,)42ππ上单调递增,所以()f θ存在极小值,无极大值.(3)由22sin cos sin cos 1a θθθθ+=⎧⎪⎨+=⎪⎩得:21sin cos 2a θθ-= , 所以sin θ,cos θ是方程22102a x ax --+=的两根, 22a a x ±-,∴()((2222222nnnnna a a aa a f θ+-+---=+=⎝⎭⎝⎭,当k n 2=为偶数时,()()()()()()()()]222222[(2]222222[(2222222244222224244222222kn n n n n kn nn nnnna a C a C a a C a C a a-++-+-+=-++-+-+=--+-+----当12+=k n 为奇数时,()()()()()()()()]2222222[(22222222(222222122442222214244222222kn n n n n n n knn nn nn n nnna C a C a C a C a C a C a a -++-+-+=-++-+-+=--+-+------∵a为[内的有理数,m n C,2n为正整数,∴()fθ为有理数.。
南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ .10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟) 组距 50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy中,若直线(y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c已知2c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.第17题-图甲 FH 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B E D F O · 第21(A)图[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M A C D O P 第22题图南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412. 13.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A MMC M =,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为c =,则由正弦定理,得sin C B =. ……………2分 又2C B =,所以sin 22B B =,即4sin cos B B B =. ……………4分 又B 是ABC ∆的内角,所以sin 0B >,故cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而2223cos 25a cb B ac +-===, ……………12分又0B π<<,所以4sin 5B ==.从而34cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=. 从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=-. ……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由NQ ,得直线NQ的方程为32y x =…………………2分令0x =,得点B 的坐标为(0,. 所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标2代入,得222213a +=,解得24a =. 所以椭圆C 的标准方程为22143x y +=. (8)分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-在y kx =0y =,得P x k =,而点Q 是线段OP 的中点,所以2Q x k=.所以直线BN的斜率22BN BQ k k k k===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得234M x k =+. 用2k 代k,得N x =………………12分又2DN NM =,所以2()N M N x x x =-,得23M N x x =. ………………14分故23=0k >,解得k = 所以直线BM的方程为y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为11y y x x +=0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=,解得21433y y =+. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2119x +=. 又22114(1)3y x =-,所以21214(1)(431927y y -++=21120y +=,解得1y =13y =.又10x >,所以点M的坐标为(33M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立, 则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩,所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-; 由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值范围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1(](133x x ++≥⨯⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.则cos ,6||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,C第22题图则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =.则cos ,||||29n OBn OB n OB ⋅<>===故平面ABM 与平面PAC ………………10分 23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n n C C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+.而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n nnn n n n n n n C C x C x C x C C x C x C x ------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n nn n C C C C C C -----+++.另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n n n n n n x C C x C x C x +=++++ ③. 两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++ ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
南京市、盐城市2018届高三第一次模拟考试数学试题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲.2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为▲.3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为▲.4.执行如图所示的伪代码,若0x =,则输出的y 的值为▲.5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为▲.6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为▲.7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是▲.8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为▲.时间(单位:分钟)频率组距50607080901000.035a 0.0200.0100.005第3题图Read xIf 0x >Thenln y x←Elsexy e ←End If Print y第4题图9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是▲.10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为▲.11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m=-有四个不同的零点,则实数m 的取值范围是▲.12.在平面直角坐标系xOy中,若直线(y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为▲.13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为▲.14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为▲.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ;(2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =.(1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅ ,求cos()4B π+的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个AB第13题图ACA 1B 1C 1MN第15题图底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N .(1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N运动到点)2处时,点Q的坐标为(,0)3.(1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.19.(本小题满分16分)设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.xy O BN M PQ D第18题图ADCB EG FOM N H第17题-图甲NEFG第17题-图乙(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅- m 对任意的*n N ∈都成立,求m m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈).(1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D .若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内)22.(本小题满分10分)ABEDF O ·第21(A)图如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n n n n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.MABCDOP第22题图1.{}12.13.12004.15.236.67.(,2]-∞8.34π9.1(0,]410.403411.9[1,)412.13.2414.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN .……………4分又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC .…………6分(2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A .……………8分又1AB ⊂侧面11ABB A ,所以1AB CM ⊥.……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M = ,所以1AB ⊥平面1A MC .……………12分又1A C ⊂平面1A MC ,所以11AB A C ⊥.……………14分16.解:(1)因为52c b =,则由正弦定理,得5sin sin 2C B=.……………2分又2C B =,所以sin 2sin 2B B=,即4sin cos B B B =.……………4分又B 是ABC ∆的内角,所以sin 0B >,故5cos 4B =.……………6分(2)因为AB AC CA CB ⋅=⋅,所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =.……………10分从而2223cos 25a c b B ac +-===,……………12分又0B π<<,所以4sin 5B ==.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-.……14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2RMT OM OT =-=.从而2RBE MT ==,即22R BE ==.……………2分故所得柱体的底面积OEFOEF S S S ∆=-扇形22114sin120323R R ππ=-︒=-.……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-.…………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=-.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<.………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =.…………………12分列表如下:x (0,2)2(2,3)()f x '+0-()f x 增极大值减所以当2x =时,()f x 取得最大值.答:当BE 的长为2分米时,折卷成的包装盒的容积最大.…………………14分18.解:(1)由32N Q,得直线NQ 的方程为32y x =-.………2分令0x =,得点B的坐标为(0,.所以椭圆的方程为22213x y a +=.…………………4分将点N 的坐标2代入,得222((3)213a+=,解得24a =.ADCB EG FO MNHT所以椭圆C 的标准方程为22143x y +=.…………………8分(2)方法一:设直线BM 的斜率为(0)k k >,则直线BM的方程为y kx =-在y kx =0y =,得P xk =,而点Q 是线段OP的中点,所以2Q x k =.所以直线BN 的斜率22BN BQk k k k===.………………10分联立22143y kx x y ⎧=-⎪⎨+=⎪⎩,消去y ,得22(34)0k x +-=,解得234M x k =+.用2k 代k ,得2316N x k =+.………………12分又2DN NM =,所以2()N M N xx x =-,得23M N x x =.………14分故222334316k k ⨯=⨯++,又0k >,解得2k =.所以直线BM 的方程为62y x =.………………16分方法二:设点,M N 的坐标分别为1122(,),(,)xy x y .由(0,B ,得直线BN的方程为11y y x x =-,令0y =,得P x =同理,得Qx =.而点Q 是线段OP 的中点,所以2P Q x x ==.………10分又2DN NM = ,所以2122()x x x =-,得21203x x =>43=,解得21433y y =+.………12分将212123433x x y y ⎧=⎪⎪⎨⎪=+⎪⎩代入到椭圆C 的方程中,得2211(41927x y ++=.又22114(1)3yx=-,所以21214(1)(431927yy-+=21120y+=,解得1y=(舍)或13y=.又1x>,所以点M的坐标为(,33M.……………14分故直线BM的方程为2y x=.…………………16分19.解:(1)由题意,可得22()()n n na a d a d dλ=+-+,化简得2(1)0dλ-=,又0d≠,所以1λ=.………………4分(2)将1231,2,4a a a===代入条件,可得414λ=⨯+,解得0λ=,所以211n n na a a+-=,所以数列{}n a是首项为1,公比2q=的等比数列,所以12nna-=…6分欲存在[3,7]r∈,使得12nm n r-⋅-,即12nr n m--⋅对任意*n N∈都成立,则172nn m--⋅,所以172nnm--对任意*n N∈都成立.………………8分令172n nnb--=,则11678222n n n n nn n nb b+-----=-=,所以当8n>时,1n nb b+<;当8n=时,98b b=;当8n<时,1n nb b+>.所以n b的最大值为981128b b==,所以m的最小值为1128.………………10分(3)因为数列{}n a不是常数列,所以2T .①若2T=,则2n na a+=恒成立,从而31a a=,42a a=,所以22221212221221()()a a a aa a a aλλ⎧=+-⎪⎨=+-⎪⎩,所以221()0a aλ-=,又0λ≠,所以21a a=,可得{}n a是常数列.矛盾.所以2T=不合题意.………………12分②若3T=,取*1,322,31()3,3nn ka n k k Nn k=-⎧⎪==-∈⎨⎪-=⎩(*),满足3n na a+=恒成立.……14分由2221321()a a a a aλ=+-,得7λ=.则条件式变为2117n n na a a+-=+.由221(3)7=⨯-+,知223132321()k k ka a a a aλ--=+-;由2(3)217-=⨯+,知223313121()k k ka a a a aλ-+=+-;由21(3)27=-⨯+,知223133221()k k ka a a a aλ++=+-.所以,数列(*)适合题意.所以T 的最小值为3.………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x '=,所以(1)1f '=,.当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-.…2分因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩.………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x -+-=>在(0,)+∞上有相异两实根12,x x .………6分即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立.………………8分因为03a <<,所以3=2(当且仅当32a =时取等号),又0t -<,所以t 的取值范围是(,3)-∞,所以3c .故c 的最小值为3.………………10分(3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--.……………12分要证明122121x x x b x x x -<<-,即证211221212121ln ln (1x x x x x x x x x x x x --<-<--,即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-.………………14分令21x t x =,则1t >,此时即证11ln 1t t t -<<-.令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t -<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述,实数12,x x 满足122121x x x b x x x -<<-.………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,①在⊙O 中OE OA =,所以OEA OAE ∠=∠,②………………5分由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠,又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =,即E 到直径AB 的距离为4.………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,设点()00,P x y 在矩阵M对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y ⎧=⎪⎨⎪=⎩,………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程.………10分(C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos(13πρθ+=,得(cos cos sin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=.………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.ABE DF O ·第21(A)图因为直线cos(13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =.10分(D)解:由柯西不等式,得22222[)][1](133x x ++≥⨯+⨯,即2224(3)()3x y x y +≥+.而2231x y +=,所以24()3x y +≤,所以x y ≤+≤,………5分由133x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得26x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当且仅当,26x y ==时,max ()x y +=.所以当x y +取最大值时x的值为2x =.………………10分22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系.则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =- ,(1,1,2)BM =--,10AP BM ⋅=,||AP =,||BM =.则cos ,6||||AP BM AP BM AP BM ⋅<>===.故直线AP 与BM所成角的余弦值为6.………5分(2)(2,1,0)AB =- ,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB = ,所以n 4OB ⋅=,||n = ||1OB = .则cos ,||||n OB n OB n OB ⋅<>===.故平面ABM 与平面PAC……………10分23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+①,MABCDOP第22题图xyz在①中令1n =,得()011111f C C ==.………………1分在①中令2n =,得()011222222226f C C C C =+=,得()23f =.…………2分在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =.……3分(2)猜想()f n =21n n C -(或()f n =121n n C --).………………5分欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n 时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+.即证00111111211111n r r n n n n n n n n n n n C C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+.而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+②.由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n n n n n n n n n n C C x C x C xC C x C x C x ------=++++++++ ,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立.………………10分方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n r n n C C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n n C C C C C C -----+++ .另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21n n C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++ ,即②成立.余下同方法一.…………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x+=++++ ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x---+=+++++ ④.③×④,得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++ ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n nC C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n nn n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立.………………10分。
2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5 分)已知集合A={X|X2W 1} , B={x|0v x v 1},则A H B=()A. [ - 1, 1)B・(0, 1) C. [ - 1, 1] D. (- 1,1)2. (5分)若i为虚数单位,则复数z= _在复平面上对应的点位于()丄*A.第一象限B.第二象限C第三象限D.第四象限3. (5分)已知等差数列{a n}前3项的和为6, a5=8,则a20=()A. 40B. 39 C 38 D . 374 . (5分)若向量的夹角为一,且|打|=4, |.・|=1,则「41-|=()A . 2B . 3 C. 4 D . 52 25. (5分)已知双曲线C: ———(a>0, b>0)的渐近线与圆(X+4)2+y2=8a2b2无交点,则双曲线离心率的取值范围是()A. (1,二)B. (一,1■'■')C. (1, 2)D. (2, +x)6. (5分)已知实数x,y满足约束条件\ i-2y+4>0,则z=x+2y的最大值为A . 6B . 7 C. 8 D . 97. (5分)函数y=log 〔(X2-4X+3)的单调递增区间为()TA. (3, +x)B. (-X, 1)C. (-X, 1)U(3, +x) D . (0, +x)8. (5分)宜宾市组织歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A, B, C, D对比赛预测如下:A说:是甲或乙获得特等奖”B说:丁作品获得特等奖”C说:丙、乙未获得特等奖”D说:是甲获得特等奖”比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A .甲 B.乙 C.丙 D . 丁9. (5分)某几何组合体的三视图如图所示,则该几何组合体的体积为(A . 4 B. 5 C. 6 D . 711. (5分)分别从写标有1, 2, 3, 4, 5, 6, 7的7个小球中随机摸取两个小 球,则摸得的两个小球上的数字之和能被 3整除的概率为()A•寻B 寻C 骨D.寺12. (5分)已知函数f (x )是定义在R 上的奇函数,当x v 0时,f (x ) =e x (x+1), 给出下列命题:① 当 x >0 时,f (x ) =e x (x+1);10.(5分) 若输入S=12 A=4, B=16, n=1,执行如图所示的程序框图,则输出的结果为(②? X I, X2€ R,都有| f (X1)— f (X2)| V2;③f (x)> 0 的解集为(—1, 0)u, (1, +x);④方程2[f (x) ]2-f (x) =0有3个根.其中正确命题的序号是( )A.①③ B •②③C•②④ D •③④二、填空题:本大题共4个小题,每小题5分,共20分.13. (5分)在等比数列{a n}中,若a2+a4丄,a3丄,且公比q V1,则该数列的通项公式a n= ______ .14. (5 分)已知y=f (x)是偶函数,且f (x) =g (x)- 2x, g (3) =3,则g (3) = ______ .15. (5分)三棱锥P- ABC中,底面△ ABC是边长为.二的等边三角形,PA=PB=PC PB丄平面PAC则三棱锥P- ABC外接球的表面积为_______ .16. (5 分)在厶ABC中,D 为AC上一点,若AB=AC AD*D, BD=4 ,则厶ABCu-n面积的最大值为_______ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤•第17〜21题为必考题,每个试题考生都必须答•第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17. (12分)在厶ABC中,a, b, c分别为A, B, C的对边,且sinA=2sinB(1)若C^—, △ ABC的面积为「,求a的值;4 4(2)求亟竽■—沁迥嗚的值.SLED 218. (12分)每年4月15至21日是全国肿瘤防治宣传周,全国每天有超 1万人确诊为癌症,其中肺癌位列发病首位,吸烟人群是不吸烟人群患肺癌的10倍•某 调查小组为了调查中学生吸烟与家庭中有无成人吸烟的关系,发放了 500份不记名调查表,据统计中学生吸烟的频率是0.08,家庭中成人吸烟人数的频率分布条 形图如图.(1) 根据题意,求出a 并完善以下2X 2列联表;家中有成人吸烟家中无成人吸烟合计学生吸烟人数 28学生不吸烟人数合计(2) 能否据此判断有97.5%的把握认为中学生吸烟与家庭中有成人吸烟有关? 附表及公式: P (K 2>k 0)0.100 0.050 0.025 0.010 0.005 k 02.7063.8415.0246.6357.879Q= Ca+b) (c+d) Ca-Fc) (b+d)'19. ( 12分)如图,四棱锥P -ABCD 的底面ABCD 是直角梯形,AD // BC, / ADC=90 , 平面PAD 丄平面ABCDQ 是AD 的中点,M 是棱PC 上的点,PA=PD=2AD=2BC=2n=a+b+c+dCD=:(1)求证:平面BMQ丄平面PAD;(2)当M是PC的中点时,过B,M,Q的平面去截四棱锥P-ABCD求这个截面的面积.20. (12分)已知抛物线C的焦点在x轴上,顶点在原点且过点p (2,1),过点(2,0)的直线I交抛物线C于A,B两点,M是线段AB的中点,过点M作y 轴的垂线交C于点N.(1)求抛物线C的方程;(2)是否存在直线I,使得以AB为直径的圆M经过点N?若存在,求出直线I 的方程;若不存在,说明理由.21. (12 分)已知函数f (x) =e x+x- 2, g (x) =alnx+x.(1)函数y=g (x)有两个零点,求a的取值范围;(2)当a=1 时,证明:f (x)> g (x).(二)选做题:共10分•请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在直角坐标系xOy中,圆C的参数方程为—,(参数©[y=2sin$€ R).以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,(I)求圆C的极坐标方程;(II)直线I,射线OM的极坐标方程分别是旦)二还,。
2018年高考真题模拟卷(含答案)
文科数学 2018年高三江苏省第一次模拟考试
文科数学
单选题(本大题共12小题,每小题____分,共____分。
)
已知集合A={x|x2﹣3x+2=0},B={x|logx4=2},则A∪B=()
A. {﹣2,1,2}
B. {1,2}
C. {﹣2,2}
D. {2}
若复数z=(a2+2a﹣3)+(a+3)i为纯虚数(i为虚数单位),则实数a的值是()
A. ﹣3
B. ﹣ 3或1
C. 3或﹣1
D. 1
已知命题p:∀x∈R,sinx≤1,则¬p为()
A. ∃x∈R,sinx≥1
B. ∀x∈R,sinx≥1
C. ∃x∈R,sinx>1
D. ∀x∈R,sinx>1
为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是()
A. 8
B. 400
C. 96
D. 96名学生的成绩
下列函数既是偶函数又在(0,+∞)上单调递增的函数是()
A. y=x3
B. y=|x|+1
C. y=﹣x2+1
D. y=2﹣|x
已知数列{an}的前n项和Sn=3n﹣1则其通项公式an=()
A. 3•2n﹣1
B. 2×3n﹣1
C. 2n
D. 3n
如果不共线向量满足,那么向量的夹角为()
A.
B.
C.
D.
为了得到函数y=2sin(2x﹣)的图象,可以将函数y=2sin2x的图象()
A. 向右平移个单位长度
B. 向右平移个单位长度
C. 向左平移个单位长度
D. 向左平移个单位长度
A为三角形ABC的一个内角,若sinA+cosA=,则这个三角形的形状为()
A. 锐角三角形
B. 钝角三角形
C. 直角三角形
D. 无法确定
若实数x,y满足不等式组且x+y的最大值为9,则实数m=()
A. ﹣2
B. ﹣1
C. 1
D. 2
函数y=2cos(x+)图象上的最高点与最低点的最短距离是()
A. 2
B. 4
C. 5
D. 2
已知等差数列{an}的前项和为Sn,若=a1005O+a1006,且A、B、C三点共线(该直线不经过坐标原点O),则S2010=()
A. 1005
B. 1010
C. 2009
D. 2010
填空题(本大题共4小题,每小题____分,共____分。
)
某校高三年级的学生共1000人,一次测验成绩的分布直方图如图所示,现要按如图所示的4个分数段进行分层抽样,抽取50人了解情况,则在80~90分数段应抽取人数为____.
函数,则f(f(1))=____.
已知向量夹角为45°,且,则=____.
曲线y=x3﹣2x在点(1,﹣1)处的切线方程是____.
简答题(综合题)(本大题共6小题,每小题____分,共____分。
)
在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系
(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,),求|PA|+|PB|.
设函数f(x)=(x﹣1)2+blnx,其中b为常数.
(1)当时,判断函数f(x)在定义域上的单调性;
(2)b≤0时,求f(x)的极值点;
(3)求证:对任意不小于3的正整数n,不等式ln(n+1)﹣lnn>都成立.
设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,
(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn.
在△ABC中,角A,B,C所对的边分别为a,b,c且满足csinA=acosC,
(I)求角C的大小;
(II)求sinA﹣cos(B+)的最大值,并求取得最大值时角A,B的大小.
已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与
x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;
(Ⅱ)当,求f(x)的值域.
在数列{an}中,a1=1,an+1=2an+2n,设bn=.
(1)证明:数列{bn}是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn.
答案
单选题
1. B
2. D
3. C
4. C
5. B
6. B
7. C
8. A
9. B 10. C 11. C 12. A
填空题
13.
20
14.
.
15.
3
16.
x﹣y﹣2=0
简答题
17.
解:(I)由⊙C的方程可得:,化为
.
(II)把直线l的参数方程(t为参数)代入⊙C的方程得
=0,化为.∴.(t1t2=4>0).
根据参数的意义可得|PA|+|PB|=|t1|+|t2|=|t1+t2|=.
18.
解:(1)由题意知,f(x)的定义域为(0,+∞),
.
当时,f'(x)>0,函数f(x)在定义域(0,+∞)上单调递增;
(2)令,
得,.
当b≤0时,∉(0,+∞)(舍去),
而∈(0,+∞),
此时:f'(x),f(x)随x在定义域上的变化情况如下表:
由此表可知:∵b≤0时,f(x)有惟一极小值点;
(3)由(2)可知当b=﹣1时,函数f(x)=(x﹣1)2﹣lnx,此时f(x)有惟一极小值点:,
且时,f'(x)<0,f(x)在为减函数.
∵当n≥3时,,
∴恒有,即恒有.
∴当n≥3时,恒有成立.
19.
解:(Ⅰ)设等差数列{an}的首项为a1,公差为d(d>0),
由a3=1得,a1+2d=1①,由a4是a3和a7的等比中项得,
②,
整理②得,,因为d>0,所以2a1+3d=0③,
联立①③得:a1=﹣3,d=2.
所以an=a1+(n﹣1)d=﹣3+2(n﹣1)=2n﹣5.
(Ⅱ)数列{an}的前n项和Sn===n2﹣4n.
20.
(I)△ABC中,∵csinA=acosC,由正弦定理可得 sinCsinA=sinAcosC,∴tanC=1,∴C=.
(II)由上可得B=﹣A,∴sinA﹣cos(B+)=sinA+cosA=2sin(A+).
∵0<A<,∴<A+<,
∴当 A+=时,所求的式子取得最大值为 2,此时,A=,B=.
21.
解:(1)由最低点为得A=2.
由x轴上相邻的两个交点之间的距离为得=,
即T=π,
由点在图象上的
故∴
又,∴
(2)∵,∴
当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,
故f(x)的值域为[﹣1,2]
22.
【解答】(1)证明:∵an+1=2an+2n,bn=,
∴bn+1===1+=1+bn,
即bn+1﹣bn=1,
∴数列{bn}是公差为1的等差数列;
(2)解:∵a1=1,
∴b1==a1=1,
∴bn=1+(n﹣1)=n,
∴an=2n﹣1•bn=n•2n﹣1;
(3)解:∵an=n•2n﹣1,
∴Sn=1•20+2•21+3•22+…+n•2n﹣1,
2Sn=1•21+2•22+3•23+…+(n﹣1)•2n﹣1+n•2n,
两式相减得:﹣Sn=20+21+22+23+…+2n﹣1﹣n•2n
=﹣n•2n
=(1﹣n)•2n﹣1,
∴Sn=(n﹣1)•2n+1.
解析
单选题
略略略略略略略略略略略略填空题
略略略略
简答题
略略略略略略。