影响静电除尘器性能的因素
- 格式:doc
- 大小:41.50 KB
- 文档页数:4
静电除尘器安装的性能测试与验证方法静电除尘器是一种常见的空气净化设备,常用于工业生产中对粉尘和颗粒物的过滤和清除。
为了确保静电除尘器的正常运行和高效净化,需要进行性能测试与验证。
本文将介绍静电除尘器安装的性能测试与验证方法,以提供参考和指导。
一、静电除尘器性能测试的重要性静电除尘器的性能测试是确保其净化效果达到预期的关键步骤。
通过性能测试,可以验证静电除尘器的过滤效率、电场强度、能耗、清灰效果等指标,判断其是否满足设计要求和使用需求。
只有通过性能测试,才能保证静电除尘器的正常运行和有效去除空气中的污染物。
二、静电除尘器性能测试的方法1. 过滤效率测试过滤效率是评价静电除尘器性能的重要指标之一。
常用的测试方法是使用空气中含有粉尘颗粒的模拟气流,并经过静电除尘器处理后,采集处理前后的颗粒物样本,通过称重或显微镜分析等方法来计算过滤效率。
2. 电场强度测试电场强度是影响静电除尘器净化效果的关键因素之一。
通过电场强度测试,可以评估静电除尘器电场分布的均匀性和强度是否符合设计要求。
常用的测试方法是使用电场测量仪器,在静电除尘器的工作区域内进行电场强度的实时监测和记录。
3. 能耗测试能耗是评价静电除尘器使用成本的重要指标之一。
能耗测试旨在确定静电除尘器在正常运行状态下的耗电量。
常用的测试方法是通过电能表或能耗分析仪器对静电除尘器的输入功率进行测量和记录,以计算出单位时间内的能耗。
4. 清灰效果测试清灰效果是评价静电除尘器运行稳定性和清灰效率的关键指标之一。
清灰效果测试一般包括两个方面的内容:静电除尘器对污染物的去除效果和清灰器对积灰的清除效果。
常用的测试方法是收集静电除尘器运行一段时间后的积灰样本,采用显微镜观察污染物去除情况,并对清灰器的清灰效果进行评估。
三、静电除尘器性能验证的步骤1. 设立验证目标与指标在进行性能验证前,需要明确静电除尘器的验证目标和指标。
根据静电除尘器的设计参数和使用要求,制定出性能验证的具体目标和指标,以便后续的测试和评估。
排烟温度与静电除尘器除尘效率的关系2011-3-22作者: 李亚林王玉川业务员网引言我国是以燃煤为主的能源结构的国家,煤产量已据世界第一位,年产量达到16亿吨以上,201年将达到25亿吨。
中国当前的大气污染物中,粉尘的71%来自煤的燃烧。
截止到2010年从排放量来看,电站锅炉粉尘排放量约3800吨/年,其中2700万吨是由煤燃烧产生的,而25%是电站排放的。
由此引发的环境问题日趋严重,为了给人类的生存和繁衍创造一个良好的环境,随着经济的发展和科学技术的提高,电除尘器以除尘效率高开始广泛推广使用。
特别是300MW及以上机组普遍采用。
随着科学技术的不断进步,人们对排博烟温锐度与管静电理除尘在器除线尘效率的关系控制环境污染的认识有新的提升,已经不再只是注重锅炉烟尘浓度的排放,而是提出了一个新的环保理念,即称为“环保设备”。
一、静电除尘器的工作原理是由金属构件组成的电极系统,即放电极(阳极),在放电极上加负电压后能在异极之间产生极不均匀电场,当电场电压升到足够高,即放电极附近的电场强度达到足够大时(出自:业务员网: ),周围的气体被电离,电离后气体中存在着大量的电子和离子。
这些电子和离子使进入电场的烟气中的尘粒荷电,绝大多数荷负电,在电场力的作用下,带负电荷的尘粒趋集于收尘极,带正电的尘粒趋向于放电极。
尘粒达到电极后释放出电荷,然后依靠分子引力和剩余的静电力吸附在电极上。
当此类尘粒积聚到一定厚度时通过振打装置的振打作用,尘粒被其惯性力从电极表面剥离下来落入灰斗,收尘过程即告完成,这一过程是连续而高速进行的。
二、烟气温度对除尘效率的影响粉尘的比电阻是决定电除尘器除尘效率高低的一个主要因素。
飞灰比电阻值偏高,是影响电除尘器效率的关键因素,如何提高高比电阻灰的电除尘效率是一大难题。
飞灰比电阻与烟气温度有关,其峰值根据煤灰特性出现在121℃~232℃之间,在232℃以上时,飞灰的比电阻与绝对温度成反比,与烟气成份无关;而在低于121℃时,飞灰比电阻与绝对温度成正比,并与烟气的湿度和其他成分有关。
浅析影响电除尘器除尘效率的原因及预防措施作者:李静邱继锐来源:《科技创新与应用》2013年第29期摘要:随着国家对环保要求的不断严格,电除尘器凭着阻力小、处理烟气量大、能耗低、适应性广、除尘效率高等优势,广泛应用于冶金、化工、建材、火力发电、电子等行业。
河南中美铝业有限公司氢氧化铝焙烧系统采用的烟尘处理系统即为BABW100m2/3型高压静电除尘器,本文根据本公司在生产运行过程中发现的影响电除尘器除尘效率的原因进行整理分析,并提出相应的预防措施和建议。
关键词:高压静电除尘器;除尘效率;原因;预防措施1 除尘系统简介河南中美铝业有限公司氢氧化铝焙烧采用的是气态悬浮焙烧技术,物料被热风从文丘里干燥器带入P01旋风除尘器,进行风料分离,物料进入下一级旋风除尘器,而含尘烟气则经高压静电除尘器除尘后,通过烟囱排入大气。
为实现节能环保的可持续发展目标,公司采用高压静电除尘器回收烟气中的氢氧化铝及氧化铝粉尘。
除尘器型号为:BABW100m2/3,属卧式三电场电除尘器,主要附属设备有:高压硅整流及控制柜GGAJO2-1.0A/72KV三套,低压控制柜DDPLC一台,除尘器的收尘面积7497m2,除尘效率≥99.9%,于2007年10月投产,经技术人员不断调试和改造,除尘器运行平稳,除尘效率达到了设计水平,烟(粉)尘排放浓度远低于国家排放标准。
2 影响除尘器除尘效率的因素2.1 入口粉尘浓度的影响不同的入口粉尘浓度,对应除尘器的处理面积不同,如在使用过程中入口浓度超过设计浓度,则会影响到除尘效率。
当含尘量过高,气体离子电荷大部分给了尘粒,而尘粒在电场中运动速度远低于离子移动速度,从而使电荷活动降低,电流下降,收尘效率也大大下降。
高压静电除尘器处理的烟气是从P01分离出来的,所以P01旋风除尘器的除尘效率决定了进入静电除尘器的氢氧化铝粉尘含量。
氢氧化铝粒度过细、P01中心管的设置于入口风速的不吻合,都会使除尘器入口粉尘浓度上升。
低低温静电除尘器的除尘效果评价与参数优化低低温静电除尘器是一种通过静电作用将空气中的颗粒污染物附着在电极上,并利用电离作用将其去除的设备。
该除尘器主要应用于工业生产过程中产生的大量颗粒污染物的去除,其除尘效果评价与参数优化是保证其正常运行和高效除尘的关键。
一、除尘效果评价评价低低温静电除尘器的除尘效果可以从以下几个方面进行考察:1. 颗粒捕集效率:颗粒捕集效率是衡量除尘器性能的重要指标之一。
可以通过对进入除尘器前后空气中颗粒浓度的测量,计算颗粒捕集效率。
该指标越高,说明除尘器的性能越好。
2. 压力损失:除尘器在工作过程中会产生一定的压力损失。
对除尘器的压力损失进行评价可以反映其适用范围和能耗水平。
压力损失越小,说明除尘器在工作时对气流阻力较小,能耗较低。
3. 除尘效果稳定性:评价除尘器除尘效果的稳定性,可以通过实际运行测试和长时间观察得出。
一个稳定的除尘效果可以保证设备的长期正常运行,减少维护和更换成本。
二、参数优化对低低温静电除尘器的参数进行优化可以提高其除尘效果和工作性能。
以下是一些常见的参数优化方法:1. 电场参数优化:电场是低低温静电除尘器的核心组成部分,其性能和调整方式直接影响除尘器的除尘效果。
通过优化电场结构和调整电场参数,如电场长度、电场间距、电场形状等,可以提高除尘器的除尘效率。
此外,合适的电压和电流也是需要考虑的因素。
2. 温度控制:低低温静电除尘器工作时,温度对其除尘效果也有一定影响。
研究不同温度下的电场作用机理,优化温度控制,可以最大化改善除尘效果。
例如,在一些情况下,提高温度可以提高颗粒的电荷活性和颗粒与电极的接触效果。
3. 能量消耗控制:低低温静电除尘器不仅需要满足除尘效果,还需要节约能源。
通过调整电场结构、电压、电流,优化能量消耗控制,可以提高除尘器的能效比。
此外,采用先进的电源控制技术和电极材料选择也是减少能量消耗的有效途径。
4. 运行参数优化:除尘器的运行参数包括进气速度、颗粒负载和清灰周期等。
静电除尘器除尘效率影响因素0 引言静电除尘器是一个经典的有着优良效率的除尘设施,这几年来其中大部分使用到了冶金行业,水泥行业,电厂火炉烟尘滤化体系,其和其它除尘设施比起来,能耗不多,除尘效果强,适合于去除烟气里0.01- 50的烟尘颗粒,同时能够用到高气温的烟气,高压强的场所。
1 构造因素1.1 极板、极线形变导致极距离不均衡电流的密集度、内部电荷的密集度和电场强弱都受极线距离和电晕线距离的作用。
在运行电压和电晕线距离相同的状况下,增多极线的隔离差距会对电晕线周围的离子电流发生作用,同时增大电位差值,最后的作用是让电流电晕密集度与电场压力和空间电荷分布程度发生减低与变小。
假如碰到工作电压、电晕线极板差距相同的状况下,加大电晕线的差距将获得电晕电流的较合适的值。
假如是电晕线的差距比这个值低的情况,可能导致电晕电流减低。
1.2 气流分布的影响电除尘器内之所以会出现气流分布的不平均,根本原因在于导向板、气流分布板的安装位置不同,以及除尘器管道与风机的连接方式未按要求连接,这些因素累加在一起,就会造成除尘器效率降低20%~30%。
气流分布不均导致除尘效率降低,由下列几个原因造成。
(1)即使在气流相同的区域内所获得的粉尘数量也不同,通过降低风速来增加粉尘数量的方法无效。
(2)出现冲刷现象的位置多为气流速度高的位置,由于气流速度高集尘极和灰斗上面的粉尘会重新飞起。
(3)由于除尘器进口位置的灰尘浓度不一致,使除尘器内的灰尘存量增加。
如果在除尘器内例如管道和弯头以及导向板上积累的粉尘过多,将会极大的破坏进口气流的平稳性。
(4)设备漏风。
一旦灰斗和排灰装置发生漏风,将导致粉尘的二次漂浮,使除尘器内本已经进入排灰程序的灰尘再次折返到入口气流中;如果膨胀节和风道闸门漏气,将直接导致除尘器的温度发生异常,气体中会增加水蒸气的含量,对设备形成腐蚀,最严重的后果是粉尘粘在电极上,使电压将电极击穿。
2 粉尘性质的作用粉尘的属性关键决定于粉尘的化学组成、物理构造、化理特点与空间密集度、颗粒分布和变形、颗径、附着力等。
### 一、实验目的1. 了解静电除尘器的结构和工作原理。
2. 掌握阻力、风量、电场强度、除尘效率之间的关系。
3. 通过实验验证静电除尘器在实际应用中的效果。
### 二、实验原理静电除尘是利用高压静电场使含尘气体电离,从而使尘粒带电吸附到电极上的收尘方法。
当含尘气体通过静电除尘器时,尘粒在电场力的作用下,向与其极性相反的电极移动,并沉积于电极上,从而达到净化气体的目的。
### 三、实验仪器与材料1. 静电除尘器2. 高压静电发生器(含变压器、整流器、高压发生装置、控制装置)3. 抽风机4. 发尘箱5. 集尘装置6. 尾气收集装置7. 不锈钢框架8. 控制屏9. 粉尘10. 计时器### 四、实验步骤1. 将高压静电发生器的输出端接到静电除尘仪玻璃筒的中轴铜杆上,地线接到紧贴玻璃筒内壁的螺旋铜线接头上,同时把电源的地线接地。
2. 在玻璃筒的下方的铁盒里点燃蚊香,可看到浓烟上升。
3. 开启高压电源,逐渐加大电压,电压升高到一定值时,烟尘立即消失。
4. 记录此时电压、风量、电场强度和除尘效率等数据。
5. 改变实验条件,如阻力、风量、电场强度等,观察除尘效果的变化。
6. 演示完毕后将电源电压降到0,关掉电源。
### 五、实验结果与分析1. 在实验过程中,当电压升高到一定值时,烟尘立即消失,说明静电除尘器具有良好的除尘效果。
2. 改变实验条件,如阻力、风量、电场强度等,发现除尘效率随之变化。
阻力增加,除尘效率降低;风量增加,除尘效率提高;电场强度增加,除尘效率提高。
3. 通过实验验证,静电除尘器在实际应用中具有良好的除尘效果,且操作简便、维护方便。
### 六、实验结论1. 静电除尘器是一种高效、节能、环保的气体净化设备。
2. 阻力、风量、电场强度等因素对静电除尘器的除尘效率有显著影响。
3. 在实际应用中,应根据具体情况选择合适的静电除尘器参数,以提高除尘效果。
### 七、实验注意事项1. 实验过程中,要注意安全,避免触电事故。
影响静电除尘器除尘效率的关键因素发表时间:2021-01-04T09:03:51.165Z 来源:《福光技术》2020年21期作者:赵忠峰刘景宏[导读] 低浓度含尘气体经电收尘而凝聚在阴阳极板上,经清灰振打而将收集的粉尘由锁风排灰装置输送走。
陕西龙门钢铁有限责任公司陕西韩城 715405摘要:本文先概述了电除尘器的工作原理,然后简单介绍了静电除尘器的特点,最后针对静电除尘器除尘效率影响因素进行分析,以供相关的工作人员参考。
关键词:静电除尘器;除尘效率;影响因素1电除尘器工作原理电除尘器由两大部分组成、一部分是电除尘器本体系统,另一部分是提供高压直流电的高压供电装置和低压自动控制系统。
电除尘器中高压供电系统为升压变压器供电,升压变压器输出负的高压通过阻尼电阻与本体的电晕极相连,阻尼电阻可缓冲瞬时火花放电电流,并起到抑制高频分量的作用,使除尘器集尘极接地。
低压供电控制系统用来控制电磁振打锤、卸灰电极,输灰电极以及几个部件的温度。
静电除尘器的本体与工业锅炉的排气烟囱的烟道相连,含有粉尘的烟气从锅炉的排烟道进入除尘器的本体,粉尘被吸除在除尘器的集尘极,经过滤的气体从烟道经烟囱排出。
静电除尘器工作原理为:含尘气体从设备顶部进风口进入设备后,以高速经过旋风分离器,使含尘气体沿轴线调整螺旋向下旋转,利用离心力,除掉较粗颗粒的粉尘,有效的控制了进入电场的初始含尘浓度。
然后,气体经下灰斗进入电场工作,由于下灰斗截面积大于内管截积数倍,根据旋转矩不变原理,径向风速和轴向风速急剧降低产生零速界面而使内管中的重颗粒粉尘沉降于下灰斗内,降低了进入电场的粉尘浓度,低浓度含尘气体经电收尘而凝聚在阴阳极板上,经清灰振打而将收集的粉尘由锁风排灰装置输送走。
2静电除尘器的特点分析静电除尘器正极由几何形状各异的金属板构成,组成了集尘电极,一般来讲,粉尘性质、设备结构与烟气流速,会对静电除尘器各项性能产生较大影响。
静电除尘器电源主要由升压变压器与控制箱,包括整流器构成,如果电源锁输出电压过高,也会降低除尘效率,所以,静电除尘器的运行电压不宜超过 100kv,不宜低于 40kv。
提高静电除尘器效率的方法静电除尘器是一种常见的空气净化设备,能够有效地去除工业过程中产生的粉尘颗粒和其他污染物。
在实际使用中,除尘器的效率往往受到多种因素的影响,如环境条件、操作方式、电极结构和维护保养等。
为了提高静电除尘器的效率,需要在各个环节上加强管理和调优,下面分别进行详细介绍。
一、环境条件静电除尘器的效率很大程度上受到环境条件的影响。
如何创造适宜的操作环境,是提高除尘器效率的第一步。
1. 温度控制静电除尘器的效率受温度影响较大,在一定温度范围内工作效果最佳。
通常,工作温度在100℃到150℃之间时,效率较高。
当温度过高或过低时,除尘器的效率会下降,甚至无法正常工作。
需要控制好工作环境的温度,确保在适宜的温度范围内稳定运行。
2. 湿度控制除尘器的效率也与操作环境的湿度有关。
当湿度过高时,除尘器不仅会遇到阻力,而且湿度也会影响到污染物和电极之间的距离。
过低的湿度则会导致静电效应不足,影响电极的吸附效率。
需要控制好操作环境的湿度,确保在适宜的湿度范围内稳定运行。
二、电极结构除尘器的电极结构和电场分布对其效率影响较大。
不同的电极结构和电场分布会影响其除尘效率和能耗。
在除尘器设计和生产之前,需要充分考虑电极结构和电场分布的优化。
1. 电极材质电极材料是影响静电除尘器效率的一个重要因素之一。
常用的电极材料包括钢板、不锈钢、铜、铝等。
它们各有优缺点,应根据具体需求选择合适的电极材料。
还需注意电极表面的平整度和表面处理,保证正常的工作状态。
2. 电极间距和电极数量电极间距和电极数量对除尘器效率也有一定影响。
一般情况下,电极间距越小,电极数量越多,效率越高。
电极间距和电极数量越多,对能耗的消耗也越大。
在电极间距和电极数量的选择上,需要在效率和能耗之间寻找平衡点。
三、操作方式静电除尘器的操作方式也会影响其效率和维护难度。
1. 电极清洗和维护除尘器电极必须定期去除附着的污染物,以保证其效率。
为了方便清洗,应选择易于拆卸和清洗的电极结构,同时也应定期进行检查和维护,确保设备长期稳定运行。
影响静电除尘器除尘效果的因素分析简单介绍了BE型静电除尘器的工作原理,对影响除尘器除尘效果的因素进行了分析,并提出了减小影响的措施。
标签:除尘器除尘效果影响因素分析减小影响措施随着环境保护的日益迫切,锅炉排出的烟气经烟囱排入大气前需要净化防止大气被污染,已成为当今社会必不可少的重要环节。
BE型静电除尘器就是防止含尘气体污染大气的有效装置之一。
邯矿集团陶二电厂自2002年起逐渐引进6台BE型静电除尘器,投入使用以来,除尘效果非常好,为了促进电除尘器的更好运行,现就运行过程中发现的影响除尘效果的一些因素进行分析。
1 BE型静电除尘器的工作原理如上图所示,图中的电晕极(细金属线)的一端用绝缘子,悬挂在接地的收尘板中间,并在其上施加负性高电压,当电压达到一定值时,电晕极上会出现放电现象,此时给除尘器通入含尘气体,气体在高压电场中产生电离,电离后所生成的阴离子和阳离子吸附在通过电场的粉尘上,而使粉尘获得电荷,绝大多数荷电粉尘粒子便向收尘板运动而沉积,当沉积在收尘板上的粉尘达到一定厚度后,借助于振打机构使粉尘落入下部灰斗,净化后的气体便从除尘器排出。
2 影响除尘器除尘效果的因素陶二电厂安装的是板式除尘器,收尘板由若干块平板组成,针刺式电晕线安装在每排收尘板构成的通道中间,根据投运以来的运行情况看,除尘器的除尘效果与许多因素有关,如烟气的温度、流速,以及除尘器的密封状态、收尘板间距等。
2.1 烟气的温度烟气的温度过高,电晕始发电压、起晕时电晕极表面的电场温度、火花放电电压等均降低,影响除尘效率。
烟气的温度过低,容易造成绝缘部件因结露而爬电;金属件被腐蚀,并且燃煤发电排出的烟气中含有SO2,其腐蚀程度更为严重;灰斗内粉尘结块影响排灰,该厂曾因灰斗长期积灰,使收尘板、电晕线埋于积灰中而将收尘板烧变形,断裂,电晕线烧断。
2.2 烟气的流速过高烟气的流速不能过高,因为粉尘在电场中荷电后沉积岛收尘极上需要有一定的时间,如果烟气风速过高,核电粉尘来不及沉降就被气流带出,同时烟气的流速过高容易使已沉积在收尘板上的粉尘产生二次飞扬,特别是振打落灰时更容易产生二次飞扬。
静电除尘器标准
静电除尘器通常按照以下标准进行制定和评估:
1. 效能标准:衡量静电除尘器的效能的主要指标是除尘效率。
该值表示静电除尘器能够去除空气中的颗粒物的能力。
效率值通常以百分比表示,越高表示除尘能力越强。
2. 功率消耗:静电除尘器使用电能来产生静电场以去除颗粒物,因此功率消耗是评估其能源效率的重要指标。
低功率消耗意味着更高的能源利用率。
3. 电击风险:静电除尘器产生高电压以吸引和捕获颗粒物,因此评估其电击风险是必要的。
静电除尘器应符合相关的安全标准,确保其使用过程中对人体无害。
4. 可靠性和耐久性:静电除尘器需要长时间运行以保持高效率的除尘效果。
因此,其可靠性和耐久性是评估标准的重要方面。
耐久性测试通常包括使用寿命测试和环境适应性测试。
5. 噪音水平:静电除尘器工作时可能会产生噪音。
以确保工作环境的安静和舒适,评估其噪音水平是必要的。
静电除尘器应符合相关的噪音限制标准。
除了以上标准,根据具体应用领域和产品要求,静电除尘器可能还需要符合其他特定标准,例如防爆标准、防水标准等。
制定和评估静电除尘器的标准是确保其质量和性能的重要步骤,有助于指导消费者选择合适的产品。
一、静电除尘器的工作原理一、静电除尘器的工作原理1.气体电离和电晕放电由于辐射摩擦等原因,空气中含有少量的自由离子,单靠这些自由离子是不可能使含尘空气中的尘粒充分荷电的。
因此,要利用静电使粉尘分离须具备两个基本条件,一是存在使粉尘荷电的电场;二是存在使荷电粉尘颗粒分离的电场。
一般的静电除尘器采用荷电电场和分离电场合一的方法,如图5-7-1所示的高压电场,放电极接高压直流电源的负极,集尘极接地为正极,集尘极可以采用平板,也可以采用圆管。
图5-7-1静电除尘器的工作原理在电场作用下,空气中的自由离子要向两极移动,电压愈高、电场强度愈高,离子的运动速度愈快。
由于离子的运动,极间形成了电流。
开始时,空气中的自由离子少,电流较少。
电压升高到一定数值后,放电极附近的离子获得了较高的能量和速度,它们撞击空气中的中性原子时,中性原子会分解成正、负离子,这种现象称为空气电离。
空气电离后,由于联锁反应,在极间运动的离子数大大增加,表现为极间的电流(称之为电晕电流)急剧增加,空气成了导体。
放电极周围的空气全部电离后,在放电极周围可以看见一圈淡蓝色的光环,这个光环称为电晕。
因此,这个放电的导线被称为电晕极。
在离电晕极较远的地方,电场强度小,离子的运动速度也较小,那里的空气还没有被电离。
如果进一步提高电压,空气电离(电晕)的范围逐渐扩大,最后极间空气全部电离,这种现象称为电场击穿。
电场击穿时,发生火花放电,电话短路,电除尘器停止工作。
为了保证电除尘器的正常运动,电晕的范围不宜过大,一般应局限于电晕极附近。
如果电场内各点的电场强度是不相等的,这个电场称为不均匀电场。
电场内各点的电场强度都是相等的电场称为均匀电场。
例如,用两块平板组成的电场就是均匀电场,在均匀电场内,只要某一点的空气被电离,极间空气便会部电离,电除尘器发生击穿。
因此电除尘器内必须设置非均匀电场。
开始产生电晕放电的电压称为起晕电压。
对于集尘极为圆管的管式电除尘器在放电极表面上的起晕电压按下式计算:V(5-7-1)式中 m——放电线表面粗糙度系数,对于光滑表面m=1,对于实际的放电线,表面较为粗糙,m=0.5~0.9;R1——放电导线半径,m;R2——集尘圆管的半径,m;δ——相对空气密度。
一、影响静电除尘器性能的因素影响静电除尘器性能有诸多因素,可大致归纳为三个方面:烟尘性质、设备状况和操作条件。
各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这三个环节,而最后结果表现为除尘效率的高低。
1、烟尘性质对除尘效率的影响(1)粉尘的比电阻适用于静电除尘器的比电阻值为104~1011Ω·cm。
比电阻值小于104Ω·cm的粉尘其导电性能好,在除尘器电场内被收集时,到达收坐极板表面后会快速释放其电荷,变为与收尘极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出。
相反,比电阻大于104Ω·cm以上的粉尘,在到达收尘极以后不易释放其电荷,使粉尘层与极板之间可能形成电场,产生反电晕放电,导致电能消耗增加,除尘性能恶化,甚至无法工作。
对于高比电阻粉尘可以通过特殊方法进行静电除尘器除尘,以达到气体净化。
这些方法是:气体调质;采用脉冲供电;改变除尘器本体结构——拉宽电极间距并结合变更电气条件。
(2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样温度条件下,烟气中所含水分越大,其比电阻越小。
粉尘颗粒吸附了水分子,粉尘层的导电性增大。
由于湿度增大,击穿电压上升,这就允许在更高的电场电压下运行。
随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现。
对于这种静电除尘器来说是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行。
电场强度的增高会使除尘效果显著改善。
(3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能。
表面比电阻随温度上升而增加(这只在低温区段);到达一定温度值之后,体积比电阻相反,随着温度上升而下降。
在这温度交界处有一段过渡区:表面和体积比电阻的共同作用区。
电除尘工作温度可由粉尘比电气体温度关系曲线来选定。
烟气温度影响还表现在对气体黏滞性的影响。
气体黏滞性随着上升而增大,这将影响驱进速度的下降。
气体温度越高,其密度越低,电离效应加强,击穿电压下降,火花放电电压也下降。
总的来看,气体温度对静电除尘器的影响是负面的,如果有可能,还是在较低温度条件下运行较好。
所以,通常在烟气进入静电除尘器之前先要进行气体冷却,降温既能提高净化效率,又可利用烟气余热。
然而,对于含湿量较高和有SO3之类成分的烟气,其温度一定要保持在露点温度20~30℃以上作为安全余量,以避免冷凝结露,发生糊板、腐蚀和破坏绝缘。
(4)烟气成分烟气成分对负电晕放电特性影响很大,烟气成分不同,在电晕放电中电荷载体的有效迁移也不同。
在电场中电子和中性气体分子相撞而形成负离子的概率在很大程度上取决于烟气成分。
据统计,其差别是很大的:氨、氢分子不产生负电晕;·氯与二氧化硫分子能产生较强的负电晕;其他气体互有区别。
不同的气体成分对静电除尘器的伏安特性及火花放电电压影响甚大。
尤其是在含有硫酸酐时,气体对电除尘器运行效果有很大影响。
(5)烟气压力有经验公式表明,当其他条件确定以后,起晕电压随烟气密度而变化,温度和压力是影响烟气密度的主要因素。
烟气密度对除尘器的放电特性和除尘性能都有一定影响。
如果只考虑烟气压力的影响,则放电电压与气体压力保持一次线性(正比)关系。
在其他条件相同的情况下,净化高压煤气时静电除尘器的压力比净化常压煤气时要高。
电压高,其除尘效率也高。
(6)粉尘浓度静电除尘器对所净化气体的含尘浓度有一定的适应范围,如果超过一定范围,除尘效果会降低,甚至中止除尘过程。
因为在静电除尘器正常运行时,电晕电流是由气体离子和荷电尘粒(离子)两部分组成的,但前者的驱进速度约为后者的数百倍(气体离子平均速度为60~100m/s;粉尘速度大体在60cm/s以下),一般粉尘离子形成的电晕电流仅占总电晕电流1%~2%。
粉尘质量比气体分子大得多,而离子流作用在荷电尘粒上所产生的运动速度远不如气体离子上所运动速度高。
烟气中所含粉尘浓度越大,尘粒离子也越多,然而单位体积中的总空间电荷不变,所以粉尘离子越多,气体离子所形成的空间电荷必然相应减少,于是电场内驱进速度降低,电晕电流下降。
当含尘浓度达到某一极限值时,通过电场的电流趋近于零,发生电晕闭塞,除尘效率显著下降。
所以静电除尘器净化烟气时,其气体含尘浓度应有一定的允许界限。
静电除尘器效率与允许的最高含尘粉尘的粒径质量组成有关,如中位径为24.7um的粉尘,入口质量浓度大于30g/m3时,电晕电流下降不明显;而对中位径为3.2um的粉尘,入口质量浓度大于8g/m3的吹氧平炉粉尘,电晕电流比通烟尘之前下降80%以上。
有资料认为粒径为1um左右的粉尘对电除尘效率的影响尤为严重。
克服因烟气含尘量过大引起静电除尘器效率下降的较好办法是设置预级除尘器。
先降低烟气的含尘浓度,使之符合要求后再进入静电除尘器。
也有人认为,预级除尘会使粉尘凝聚,因而降低静电除尘器效率。
(7)粉尘粒径分布试验证明,带电粉尘向收尘极移动的速度与粉尘颗粒半径成正比。
粒径越大,除尘效率越高,尺寸增至20~25um之前基本如此,尺寸至20~40um阶段,可能出现效率最大值;再增大粒径,其除尘效率下降。
原因是大尘粒的非均匀性,具有较大导电性,容易发生二次扬尘和外携。
也有资料指出,粒径在0.2~0.5um之间,由于捕集机理不同,会出现效率最低值(带电粒子移动速度最低值)。
(8)粉尘密度、黏附力粉尘的烟气在电场内的最佳流速与二次扬尘有密切关系。
尤其是堆积密度小的粉尘,由于体积内的孔隙率高,更容易形成二次扬尘,从而降低除尘效率。
粉尘黏附力是由粉尘与粉尘之间,或粉尘颗粒与极板表面之间接触时的机械作用力、电气作用力等综合作用的结果。
附着力大的不易振打清除,附着力小的又容易产生二次扬尘。
机械附着力小、电阻低、电气附着力也小的粉尘容易发生反复跳跃,影响静电除尘器效率。
粉尘黏附力与颗粒的物质成分有一定关系。
矿渣粉、氧化铝粉、黏土熟料等粉尘的黏附力就小、水泥粉尘、无烟煤粉尘等,通常有很大的黏附力。
黏附力与其他条件,如粒径大小、含湿量高低等也有密切关系。
二、设备状况对除尘效率的影响(1)电极几何因素影响板式静电除尘器电气性能的几何因素包括极板间距、电晕线间距、电晕线的半径,电晕线的粗糙度和每台供电装置所担负的极板面积等,这些因素各自对电气性能产生不同的影响。
①极板间距。
当作用电压、电晕线的间距和半径相同,加大极板间距会影响电晕线临近区所产生离子电流的分布,以及增大表面积上的电位差,将导致电晕外区电密度、电场强度和空间电荷度的降低。
②电晕线间距。
当作用电压、电晕线半径和极板间距相同,增大电晕线的间距所产生的影响是增大电晕电流密度和电场强度分布的不均匀性。
但是,电晕线的间距有一个最大电晕电流的最佳值。
若电晕线间距小于这最佳值会导致由于电晕线附近电场的相互屏蔽作用而使电晕电流减少。
③电晕线半径。
增大电晕线的半径会导致在开始产生电晕时,使电晕始发电压升高,而使电晕线表面的电场强度降低。
若给定的电压超过电晕始发电压,则电晕电流会随电晕线半径的加大而减少。
电晕线表面粗糙度对电气性能的影响是由于始发电晕线表面的电场强度以及电晕线附近空间电荷密度的影响。
④极板面积。
每台供电装置所负担的极板面积是确定静电除尘电气特性的又一重要因素,因为它影响火花放电电压。
n根电晕线的火花率与1根电晕线火花率是相同的,因为n根电晕线中的任何一根产生火花都将引起所有电晕线上的电压瞬时下降。
为了使电除尘获得最佳的性能,一台单独供电装置所担负的极板面积应足够小。
(2)气流分布程度静电除尘器内气流分布不均对静电除尘器除尘效率的影响是比较明显的,主要有以下几方面原因。
①在气流速度不同的区域内所捕集的粉尘不是一样。
即气流速度低的地方可能除尘效率高,捕集粉尘量多;气流速度高,除尘效率低,可能捕集的粉尘量少。
但因风速低而增大粉尘捕集并不能弥补由于风速过高而减少的粉尘捕集量。
②局部气流速度高的地方会出现冲刷现象,将已沉积在收尘极板上和灰斗内的粉尘二次大量扬起。
③除尘器进口的含尘不均匀,导致除尘器内某些部位堆积过多的粉尘,若在管道、弯头、导向板和分布板等处存积大量粉尘,会进一步破坏气流的均匀性。
静电除尘器内气流不均与导向板的形状和安装位置、气流分布板的形式和安装位置、管道设计以及除尘器与风机的连接形式等因有关。
因此对气流分布要予以重视。
(3)漏风除尘器一般多用于负压操作,如果壳体的连接处和法兰处等密封不严,就会从外部漏入冷空气,使通过电除尘的风速增大。
烟气温度降低,这二者都会使烟气露点发生变化,其结果是粉尘比电阻增高,使除尘性能下降。
尤其在除尘器入口管道的漏风,使除尘效果更为恶化。
静电除尘器捕集的粉尘一般都比较细,如果从灰斗或排灰装置漏入空气,将会造成收下的粉尘飞扬,除尘效率降低,还会使灰斗受潮、黏附灰斗造成卸灰斗不流畅,甚至产生堵灰。
若从检查门、烟道、伸缩节、烟道阀门、绝缘套管等处漏入气体,不仅会增加除尘器的烟气处理量,而且会由于温度下降出现冷凝水,引起电晕线肥大、绝缘套管爬电和腐蚀等后果。
(4)气流旁路气流旁路是指在静电除尘器的气流不通过收尘区,而是从收尘极板的顶部、底部和极板左右最外边与壳体壁形成的道中通过。
产生气体旁路现象的主要原因是由于气流通过除尘器时产生气体压力降,气流分布在某些情况下则是由于抽吸作用所致。
防止气流旁路措施是用阻流板迫使旁路气流通过除尘区,将除尘区分成几个串联的电场,以及使进入除尘器和从除尘器出来的气流保持设计的状态等;否则,只要有5%的气流气体旁路,除尘效率就不能大于95%。
对于要求高效率的除尘器来说,气流旁路是一个特别严重的问题,只要有1%~2%的气体旁路,就达不到所要的除尘效率。
装有阻流板,就能使旁路气流与部分主气流重新混合。
因此,气流旁路对除尘效率的影响取决于设阻流板的区数和每个阻流的旁路气流量以及旁路气流重新混合的程度。
气流旁路在灰斗内部和顶部产生蜗流,会使灰斗的大量集灰和振打时粉尘重返气流。
因此,阻流板应予合理设计和布置。
(5)设备的安装质量如果电极线的粗细不匀,则在细线上发生电晕时,粗线上还不能发生电晕;为了使粗线发生电晕而提高电压,又可能导致细线发生击穿。
如果极板(或线)的安装没有对好中心,则在极板间距较小处的击穿可能比其他地方开始稳定的电晕还会提前发生。
电晕线与沉淀极板之间即一个地方过近,都必然会降低电除尘器的电压,因为这里有击穿危险。
同样,任何偶然的尖刺、不平和卷边等也会有影响三、操作条件对除尘效率的影响(1)气流速度气流速度的大小与所需电除尘器的尺寸成反比关系。
为了节省投资,除尘器就应设计的紧凑、尺寸小。
这样,气流速度必然大,粉尘颗粒在除尘器电场内的逗留时间就短。
气流速度增大的结果是气体紊流度增大,二次扬尘和粉尘外携的概率增大。
气流速度对尘粒的驱进速度有一定影响,其有一个相应的最佳流速。