利用Matlab求线性方程组的通解
- 格式:pdf
- 大小:67.44 KB
- 文档页数:1
西安科技大学MATLAB程序设计专业:信息与计算科学班级:1001班学号:1008060129姓名:刘仲能2012年6月27日实验一2.已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=76538773443412A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=723302131B 求下列表达式的值:(1)A+6*B 和A-B+I (其中I 为单位矩阵) (2)A*B 和A.*B (3)A^3和A.^3 (4)A/B 及B\A (5)[A,B]和[A([1,3],:);B^2]3.设有矩阵A 和B ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=25242322212019181716151413121110987654321A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=11134079423096171603B (1) 求它们的乘积C 。
(2) 将矩阵C 的右下角3×2子矩阵赋给D 。
(3) 查看MATLAB 工作空间的使用情况(1)(2)(3)4.完成下列操作(1)求[100,999]之间能被21整除的数的个数。
(2)建立一个字符串向量,删除其中的大写字母。
(1)(2)实验二3.建立一个5×5矩阵,求它的行列式值、迹、秩和范数。
运行截图:A 矩阵的行列式值、迹、秩分别如下:范数如下:4.已知 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=5881252018629A求A 的特征值及特征向量,并分析其数学意义。
运行截图:5.下面是一个线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡52.067.095.06/15/14/15/14/13/14/13/12/1321x x x (1) 求方程的解;(2) 将方程右边向量元素改为0.53,在求解,并比较的变化和解的相对变化;(3) 计算系数矩阵A 的条件数并分析结论。
(2)变大,其解中,相对未变化前的的解:x1变大,x2变小,x3变大。
(3)由于A 矩阵的条件数很大,故当线性方程组中的b 变大时,x也将发生很大的变化,即数值稳定性较差。
Matlab 解方程这里系统的介绍一下关于使用Matlab求解方程的一系列问题,网络上关于Matlab求解方程的文章数不胜数,但是我大体浏览了一下,感觉很多文章都只是零散的介绍了一点,都只给出了一部分Matlab函数例子,以至于刚接触的人面对不同文章中的不同函数一脸茫然,都搞不清楚这些函数各自的用途,也不知道在什么样的情况下该选择哪个函数来求解方程,在使用Matlab解方程时会很纠结。
不知道读者是否有这样的感觉,反正我刚开始接触时就是这样的感觉,面对网络搜索到一系列函数都好想知道他们之间是个什么关系。
所谓的方程就是含有未知数的等式,解方程就是找出使得等式成立时的未知数的数值。
求方程的解可以转换成不同形式,比如求函数的零点、多项式的根。
方程分类很多,按照未知数个数分为一元、二元、多元方程;按照未知数组合形式分为线性方程和非线性方程;按照非零项次数是否一致分为齐次方程和非齐次方程。
线性方程就是方程中未知数次数是一次的,未知数之间不存在指、对、2及以上幂次的关系,线性方程又分为一元线性方程,也就是一元一次方程;多元线性方程,也就是多元一次方程,多以线性方程组的形式出现(包括齐次线性方程组和非齐次线性方程组)。
在Matlab中求解方程的函数主要有roots、solve、fzero、和fsolve函数等,接下来详细的介绍一下各个Matlab函数的使用方法和使用场合。
一、直接求解法(线性方程组)直接求解法不需要借助任何的Matlab函数,主要用于求解线性方程组,也就是未知数次数是一次的方程组,包括齐次线性方程组合非齐次线性方程组。
当然既然可以求解方程组自然也就可以求解单个方程。
主要针对A x=b形式的方程,其中A是未知数系数矩阵,x是未知数列向量,b是常数列向量,当b=0时就是齐次线性方程组,b ≠0时是非齐次线性方程组。
用左除法,x=A\b例:求解线性方程组的解12341242341234251357926640x x x x x x x x x x x x x x +-+=⎧⎪-+=-⎪⎨+-=⎪⎪+--=⎩解:即直接利用b 左除以A 。
设有n个变量,m个方程,方程组的系数矩阵为A,常数项列向量为b,则A为m×n矩阵,b为m×l矩阵,方程组可写为Ax=b其中x为n个变量构成的列向量,若rank(A)=m,且m=n,则方程有唯一解,称为恰定方程组;设B=(A|b)为增广矩阵,且若rank (A)≠rank(B),则方程组无解,称为超定方程组;rank(A)=rank (B)=r<m,则方程有无穷多组解,称为欠定方程组。
若b中元素全为0,称方程组为齐次线性方程组。
齐次线性方程组的求解对于齐次线性方程组Ax=0,由线性代数知识知,它至少有一零解,若rank(A)<m,则它有无穷多组解。
在MATLAB中有一个非常有用的函数B=null(A),它返回了矩阵A的零空间的标准正交基组成的矩阵B,使得BTxB=E,B的列数等于矩阵A的零空间的维数,即B 的列向量构成了线性方程组的一组标准正交基础解系。
例:解方程组:在MATLAB中输入:因而,原方程组的通解为其中k1与k2为任意常数。
例5.2.2 求方阵A的含有最多零元素个数的解。
在例5.2.1求解后,运行:则有故方程组的通解为恰定方程组的求解恰定方程组Ax=b的求解比较简单。
一般可用两种方法:一种是利用逆矩阵求解:x=inv(A)b;另一种是用除法求解x=A\b。
两种方法的异同点是:算法上都采用Guass消去法,但用除法求解时,无需求A的逆,这样可以很好地保证求解时的计算精度,还能节省大量的计算时间。
当然也可以用Cramer法则求解方程组。
比较多种形式求解恰定方程组:结果为:由结果可知,用除法耗时最少,大约只有逆矩阵法的1/3,而Cramer 法则约是它的85倍;而从误差分析来看,仍然是除法最精确。
可见,用除法求解恰定方程组,既省时又精确。
值得注意的是,利用逆矩阵inv(A)求解时,若A不是方阵,则要用广义逆pinv(A)来求。
超定方程组的求解由于超定方程组无解,而在实际应用中,能求得其最小二乘解也是有意义的,这时,方程组的求解仍可用除法和广义逆矩阵法,不过这样求得的解不会满足Ax=b,而是其最小二乘意义下的解,即解x=inv (ATA)ATb。
《MATLAB语言》课成论文利用MATLAB求线性方程组姓名:郭亚兰学号:12010245331专业:通信工程班级:2010级通信工程一班指导老师:汤全武学院:物电学院完成日期:2011年12月17日利用MATLAB求解线性方程组(郭亚兰 12010245331 2010 级通信一班)【摘要】在高等数学及线性代数中涉及许多的数值问题,未知数的求解,微积分,不定积分,线性方程组的求解等对其手工求解都是比较复杂,而MATLAB语言正是处理线性方程组的求解的很好工具。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
【关键字】线性代数MATLAB语言秩矩阵解一、基本概念1、N级行列式A:A等于所有取自不同性不同列的n个元素的积的代数和。
2、矩阵B:矩阵的概念是很直观的,可以说是一张表。
3、线性无关:一向量组(a1,a2,…,an)不线性相关,既没有不全为零的数k1,k2,………kn使得:k1*a1+k2*a2+………+kn*an=04、秩:向量组的极在线性无关组所含向量的个数成为这个向量组的秩。
5、矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。
记:R(B)6、一般线性方程组是指形式:⎪⎪⎩⎪⎪⎨⎧=+++=+++=*+++ssn s s n n n n b a x a x a b x a x a x a b x a x a x n 22112222212111212111x ********a 二、基本理论三种基本变换:1,用一非零的数乘某一方程;2,把一个方程的倍数加到另一方程;3,互换两个方程的位置。
习题六(Matlab数值计算)课后习题1、利⽤MATLAB 提供的randn 函数⽣成符合正态分布的10×5随机矩阵A,进⾏如下操作:(1)A 各列元素的均值和标准⽅差。
(2)A 的最⼤元素和最⼩元素。
(3)求A 每⾏元素的和以及全部元素之和。
(4)分别对A 的每列元素按升序、每⾏元素按降序排序。
A=randn(10,5);disp('各列元素的均值:');mean(A)disp('各列元素的标准⽅差:');std(A)disp('A 的最⼤元素:');max(max(A))disp('A 的最⼩元素:');min(min(A))disp('A 每⾏元素之和:');sum(A,2)disp('全部元素之和:');sum(sum(A))disp('每列元素按升序:');Y=sort(A)disp('每⾏元素按降序:');Y=sort(A,2,'descend')各列元素的均值:ans =-0.1095 0.1282 -0.2646 0.3030 -0.2464各列元素的标准⽅差:ans =0.9264 1.2631 0.8129 0.8842 1.3151A 的最⼤元素:ans =2.5855A 的最⼩元素:ans =-1.9330A 每⾏元素之和:ans =-2.29701.25450.06615.0489-0.69881.1002-2.9310-2.0595-1.68780.3112全部元素之和:ans =-1.8932每列元素按升序:Y =-1.2141 -1.4916 -1.4224 -1.1658 -1.9330-1.1135 -1.0891 -1.4023 -0.8045 -1.7947-0.8637 -1.0616 -0.7648 -0.2437 -1.1480-0.7697 -0.7423 -0.6156 0.1978 -0.6669-0.2256 0.0326 -0.1961 0.2157 -0.4390-0.0068 0.0859 -0.1924 0.2916 -0.08250.0774 0.5525 -0.1774 0.6966 0.10490.3714 1.1006 0.4882 0.8351 0.18731.1174 1.5442 0.7481 1.4193 0.72231.53262.3505 0.8886 1.5877 2.5855每⾏元素按降序:Y =1.4193 -0.6156 -0.8637 -1.0891 -1.14800.7481 0.2916 0.1049 0.0774 0.03260.7223 0.5525 0.1978 -0.1924 -1.21412.5855 1.5877 1.1006 0.8886 -1.11351.5442 -0.0068 -0.6669 -0.7648 -0.80451.5326 0.6966 0.1873 0.0859 -1.40230.8351 -0.0825 -0.7697 -1.4224 -1.49160.4882 0.3714 -0.2437 -0.7423 -1.93300.2157 -0.1774 -0.2256 -0.4390 -1.06162.3505 1.1174 -0.1961 -1.1658 -1.79472、按要求对指定函数进⾏插值和拟合。