工程材料力学性能-腐蚀
- 格式:ppt
- 大小:1.86 MB
- 文档页数:31
第一章1.应力-应变曲线(拉伸力-伸长曲线)。
拉伸力在Fe以下阶段,为弹性变形阶段,到达Fa后,试样开始发生塑性变形,最初试样局部区域产生不均匀屈服塑形变形,曲线上出现平台或锯齿,直至C点结束。
继而进入均匀塑形变形阶段。
达到最大拉伸Fb时,试样在此产生不均匀塑形变形,在局部区域产生缩颈。
最终,在拉伸力Fk处,试样断裂。
2.弹性变形现象及指标弹性变形:是可逆性变形,是金属晶格中原子自平衡位置产生可逆位移的反映。
弹性变形指标:①弹性模量,是产生100%弹性变形所需应力。
②弹性比功(弹性比能、应变比能),表示金属吸收弹性变形功的能力。
③滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
④循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
3.塑性变形现象及指标金属材料常见塑性变形方式主要为滑移和孪生。
滑移:金属材料在切应力作用下位错沿滑移面和滑移方向运动而进行切变得过程。
孪生:金属材料在切应力作用下沿特定晶面和特性晶向进行的塑性变形。
塑性变形特点:①各晶粒变形的不同时性和均匀性;②各晶粒变形的相互协调性。
塑性变形指标:⑴屈服强度,屈服强度及金属材料拉伸时,试样在外力不增加(保持恒定)仍能继续伸长时的应力。
屈服现象:金属材料开始产生宏观塑形变形的标志。
屈服现象相关因素:①材料变形前可动位错密度很小;②随塑性变形的发生,位错能快速增殖;③位错的运动速率与外加应力有强烈的依存关系。
屈服现象指标:规定非比例伸长应力;规定残余伸长应力;规定总伸长应力。
影响屈服强度因素:①内在因素:金属本性和晶格类型;晶粒的大小和亚结构;溶质元素;第二相。
②外在因素:温度、应变速率、应力状态。
⑵应变硬化:金属材料阻止继续塑形变形的能力,塑性变形是硬化的原因,硬化是结果。
⑶缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,是应变硬化与截面减小共同作用的结果。
抗拉强度:韧性金属试样拉断过程中最大力所对应的应力。
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为 b 的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生 100%弹性变所需的应力。
(2)σr 规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
【应力腐蚀产生的条件:应力、化学介质、金属材料】【磨损类型:粘着磨损、磨粒磨损、冲蚀磨损、疲劳磨损、腐蚀磨损、微动磨损。
】【磨损三阶段:跑合阶段、稳定磨损阶段、剧烈磨损阶段。
】【氢脆几种形式:氢蚀、白点、氢化物致脆、氢致延滞断裂】【细晶强化:能强化金属又不降低塑性。
】【测得t k:拉伸>扭转缺口静弯曲<缺口冲击弯曲光滑试样拉伸<缺口试样拉伸】蠕变极限的两种表达方式:①σtέ:在规定温度(t)下,使试样在规定时间内产生的稳态蠕变速率()不超过规定值的最大应力。
例如:σ6001X10-5=60MPa:表示温度为600的条件下,稳态速率为1x10-5%/h的蠕变极限为60MPa。
②σtδ/τ:在规定温度(t)下和规定的试验时间()内,使试样产生的蠕变总伸长率()不超过规定值的最大应力。
例如:σ5001/105 =100MPa,表示材料在500温度下,105h后总伸长率为1%的蠕变极限为100MPa。
σtτ:金属材料的持久强度极限,是在规定温度(t)下,达到规定的持续时间()而不发生断裂的最大应力。
例如:某高温合金的7003=30MPa,表示该合金在700、1000h的持久强度极限为1X1030MPa。
蠕变:金属在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。
蠕变极限:在高温长时间载荷作用下不致产生过量塑性变形的抗力指标。
该指标与常温下的屈服强度相似。
应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂叫应力腐蚀。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。
磨损:机件表面相接触并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。
材料力学性能讲义材料力学性能讲义绪论:一、材料:无机材料、有机材料金属材料、非金属材料高分子材料:塑料、橡胶、合成纤维陶瓷材料复合材料天然材料工程结构材料、功能材料信息、生物技术、新材料、环保金属:良导电、热性,光泽,良好的延展性。
自由电子、金属键(无方向性)二、性能:力学性能,物理、化学性能,加工工艺性能力学性能:金属材料在一定环境中在外力作用下所表现出来的抵抗行为。
分弹性性能与塑性性能。
力学性能指标:金属材料在外力作用下表现出来的抵抗变形及断裂的能力。
分应力、应变;强度指标、塑性指标及综合力学性能指标。
金属材料的失效形式:变形、断裂(含疲劳断裂)、磨损、腐蚀,以及加工失误三、研究内容:1)各种力学现象及行为、意义、本质概念的相互关系。
2)各种力学性能指标的概念、本质、意义,力学行为及其影响因素。
3)各种宏观失效方式的本质、机理、原因,各力学性能指标之间的相互关系及失效判据。
4)各种力学性能指标的测试技术及实际应用。
第一章:金属在单向静拉伸载荷下的力学性能单向应力、静拉伸§1-1 应力应变曲线拉伸曲线:P-ΔL 曲线ζ-ε曲线ζ= P/F0ε= ΔL/L0 = (L-L0)/L0横坐标:ΔL、ε;纵坐标:P、ζ应力应变曲线的几个阶段:弹性变形、均匀塑变(弹塑性变形)、集中塑变(缩颈)、断裂§1-2 弹性变形弹性变形的力学性能指标一、弹性变形的定义及特点:1、特点:①变形可逆②应力-应变保持直线关系③变形总量较小2、产生机理:原子间作用力原子间具有一定间距→原子间距,也即是原子半径的两倍(指同类原子),原子间作用力:吸引力、相斥力。
其性质估且不论吸引力:原子核中质子(正离子)与其它原子的电子云之间的作用力相斥力:离子之间及电子之间的作用力二者均与原子间距(2r)有关:P A A r o2r2 r4前者为引力项,后者为斥力顶。
r=r O时 P=O;r>r O时为引力;r<r O时为斥力r>r O时P> 0,为引力,两原子间有拉进的趋势;r<r O时P< 0,为斥力,两原子间有推远的趋势;r=r O时 P = 0,为平衡状态,两原子间保持距离。
《工程材料力学性能》课后答案第一章材料单向静拉伸载荷下的力学性能滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
(1)应力状态软性系数—材料最大切应力与最大正应力的比值,记为α。
(2)缺口效应——缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。
(3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。
(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
(5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度。
(6)维氏硬度——以两相对面夹角为136。
的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
(7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。
(8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。
(9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。
工程材料力学性能第一章退火低碳钢在拉伸力作用下的变形过程可分为如下五个阶段:1、弹性变形;2、不均匀屈服塑性变形(屈服阶段)3、均匀塑性变形阶段;4、不均匀集中塑性变形;5、断裂。
弹性变形:是一种可逆变形,实质:晶格中原子自平衡位置产生可逆位移的反映。
弹性变形物理本质:原子间距几何参数随外力的可逆变化。
弹性模量:弹性模量是产生100%弹性变形所需的应力。
物理意义:表征金属材料对弹性变形的抗力,其值大小反映了金属弹性变形的难易程度。
其值越大,表示在相同应力下产生的弹性变形就越小。
影响因素——主要取决于金属原子本性和晶格类型(原子间作用力)。
金属的弹性模量是一个组织不敏感的力学性能指标,合金化、热处理(显微组织)、冷塑性变形对E值影响不大。
弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力(即材料吸收变形功而不发生永久变形的能力,是一个韧度指标。
)。
物理意义:试样或实际机器零件的体积越大,则可吸收的弹性功越多,可储备的弹性能越多。
滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。
循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性,也叫做金属的内耗、消振性。
包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,弹性极限和屈服强度就会升高;如果反向加载,弹性极限和屈服强度都下降,这种现象叫做包申格效应。
包申格效应的消除:预先进行较大的塑性变形,或在第二次反向受力之前使金属材料于回复或再结晶温度下退火。
塑性变形:外力移去后不能恢复的变形。
金属材料常见的塑性变形方式为滑移和孪生。
滑移系越多,塑性越好,但滑移系的数量不是决定塑性的唯一因素。
如fcc金属滑移系比bcc 金属少,但因前者晶格阻力低,位错容易运动,故塑性却优于后者。
塑性变形具有一些特点:1.各晶粒变形的不同时性和不均匀性:(a)材料表面优先(b)与切应力取向最佳的滑移系优先2.各晶粒变形的相互协调性:(a)晶粒间塑性变形的相互制约(b)晶粒间塑性变形的相互协调(c)晶粒内不同滑移系滑移的相互协调屈服现象与下述三个因素有关:①材料在变形前可动位错密度很小(或虽有大量位错但被钉扎住,如钢中的位错被杂质原子或第二相质点所订扎);②随塑性变形发生,位错能快速增殖;③位错运动速率与外加应力有强烈依存关系。
强度:材料在外力作用下抵抗变形和断裂的能力。
硬度:反映材料软硬程度的一种性能指标,它表示材料表面局部内抵抗变形或破裂的能力。
塑性:材料在外力作用下产生塑性变形而不断裂的能力。
冲击韧性:在一定温度下,材料在冲击载荷作用下抵抗破坏的能力。
断裂韧性:材料抵抗裂纹失稳扩展断裂的能力。
腐蚀作用:金属材料的化学性质相对活泼,容易受到环境介质的腐蚀作用。
分为化学腐蚀(直接发生化学反应,不产生电流)�电化腐蚀(金属与电解质接触发生电化学反应)�物理腐蚀(由于单纯的物理溶解而产生的腐蚀)。
磨损:零件在摩擦过程中其表面发生尺寸变化和物质损耗的现象。
老化:高分子材料在加工�储存和使用过程中,由于受各种坏境因素的作用导致性能逐渐变坏,以致丧失使用价值的现象。
比刚度:材料的弹性模量E与其密度ρ的比值(E�ρ)称为比刚度。
比强度:材料的强度指标与其密度的比值称为比强度。
晶体:内部的原子在三维空间呈周期性规则排列的物质称为晶体。
晶体结构,晶体中原子规则排列的具体方式称为晶体结构。
金属晶体包括三种晶格:体心立方�面心立方�密排六方。
组元:组成合金的独立的�最基本的单元。
相:在合金中具有一定化学成分且晶体结构相同,具有相同的物理和化学性能,与其他部分有明显分界的均匀的组成部分。
相图:相图即是状态图或平衡图。
是用图解的方法表示不同温度�压力及成分下合金系中各相的平衡关系。
显微组织:是指用金相显微镜�电子显微镜所观察到得金属�合金及陶瓷内部有关晶体�晶粒或组元相的集合状态。
晶胞:组成晶格的、能反映晶格特征的最基本的几何单元称为晶胞。
晶格:描述原子在晶格中排列形成的空间格子,通常称为晶格。
共析反应:在一定温度下由一种固相转变成完全不同的两种固相的反应称为共析反应,生成的产物为共析组织。
共晶反应:匀晶反应:粉末冶金:是指有几种金属粉末或金属与非金属粉末经混合(并常加一定成形剂等添加剂),在钢模内压制成形,并经烧结而获得的材料。
塑性变形:金属在外力作用下产生了变形,当外力除去后不能恢复的变形。