反常积分审敛法判定
- 格式:ppt
- 大小:640.00 KB
- 文档页数:33
反常积分判敛的三种方法反常积分在数学中有着重要的地位,但有的反常积分发散,有的反常积分收敛。
那么,如何判断反常积分是否收敛呢?本文介绍三种判断反常积分是否收敛的方法。
一、比较判别法比较判别法是判断反常积分是否收敛的基本方法之一。
对于形如$\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若存在一个正函数 $g(x)$,使得当 $x \geq a$ 时有 $f(x) \leq g(x)$,且$\int_{a}^{+\infty}g(x)\text{d}x$ 收敛,则原积分收敛;若$\int_{a}^{+\infty}g(x)\text{d}x$ 发散,则原积分也发散。
同理,对于形如 $\int_{-\infty}^{a}f(x)\text{d}x$ 的反常积分,只需将“$x \geq a$” 替换为“$x \leq a$”,“$\leq$” 替换为“$\geq$” 即可。
二、极限判别法极限判别法是另一种判断反常积分是否收敛的方法。
对于形如$\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若极限 $\lim_{x \rightarrow +\infty} xf(x) = A$ 存在且有限,则积分收敛;若极限不存在或为无穷大,则积分发散。
对于形如 $\int_{-\infty}^{a}f(x)\text{d}x$ 的反常积分,则需将“$x \rightarrow +\infty$” 替换为“$x \rightarrow -\infty$”。
三、绝对收敛判别法绝对收敛判别法是在比较判别法的基础上引出的判定方法。
对于形如 $\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若$\int_{a}^{+\infty}|f(x)|\text{d}x$ 收敛,则原积分绝对收敛;反之,若 $\int_{a}^{+\infty}|f(x)|\text{d}x$ 发散,则原积分发散。
两种反常积分敛散性的判别方法反常积分是指在规定的区间上,被积函数无界,或者积分区间为无穷区间的情况下,计算积分时出现的问题。
判断反常积分的收敛性或发散性是数学分析中的一项重要内容。
下面将介绍两种常见的反常积分的收敛性判别方法。
一、比较判别法比较判别法是反常积分判别方法中最常用的一种方法。
主要思想是通过比较待求反常积分与已知收敛或发散的积分之间的大小关系来判断待求反常积分的收敛性或发散性。
1.比较判别法之比较审敛准则a.比较审敛准则:若对于一个正值函数f(x)及一个非负函数g(x),在其中一点x0附近有f(x)≤g(x),则在该点附近函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
b.比较审敛准则的推广:若对于一个正值函数f(x)及一个非负函数g(x),在其中一区间上有f(x)≤g(x),则在该区间上函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
2.比较判别法之极限审敛准则a. 极限审敛准则:若在其中一点x0附近,存在一个正数A,使得lim[f(x)/g(x)] = A,则在该点附近函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
b. 极限审敛准则的推广:若在其中一区间上,存在一个正数A,使得lim[f(x)/g(x)] = A,则在该区间上函数f(x)的反常积分收敛则函数g(x)的反常积分也收敛。
比较判别法的优点是简单易用,但需要找到合适的比较函数,有时可能比较困难。
二、绝对收敛性判别法绝对收敛性判别法是反常积分收敛性判别方法中的另一种重要方法。
主要思想是通过研究被积函数的绝对值函数的收敛性来判断原函数的收敛性。
1. 绝对收敛性判别法之Dirichlet判别法a. Dirichlet判别法:若被积函数f(x)在区间[a,b]上满足以下两个条件:i.f(x)在[a,b]上的每个有限区间上是单调函数;ii. f(x)在[a,b]上仅有有限个间断点则f(x)的反常积分在区间[a,b]上绝对收敛。
反常积分的审敛法反常积分是数学中的一个重要概念,它在计算学科中有着广泛的应用。
本文将介绍反常积分的审敛法,包括其定义、性质以及常用的审敛法。
一、反常积分的定义反常积分是对于某些函数在某个区间上积分不存在或者无穷大的情况下的一种积分方法。
对于函数f(x),在区间[a, b]上的反常积分定义如下:∫[a, b] f(x)dx = lim┬(n→∞)〖∫[a, b] f(x)dx〗其中,lim表示极限,n表示一个趋向于无穷大的数列。
二、反常积分的性质1. 线性性质:对于函数f(x)和g(x),以及常数k,有如下性质:∫[a, b] (f(x)+g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx ∫[a, b] k·f(x)dx = k·∫[a, b] f(x)dx2. 区间可加性:对于函数f(x),在区间[a, b]和[b, c]上的反常积分分别存在,则有:∫[a, c] f(x)dx = ∫[a, b] f(x)dx + ∫[b, c] f(x)dx3. 非负性:对于函数f(x),如果在区间[a, b]上f(x)≥0,则有:∫[a, b] f(x)dx ≥ 0反常积分的审敛法是判断反常积分是否收敛的一种方法。
常用的审敛法有以下几种:1. 比较审敛法:对于函数f(x)和g(x),如果在某个区间[a, b]上f(x)≤g(x),且∫[a, b] g(x)dx收敛,则有∫[a, b] f(x)dx也收敛;反之,如果∫[a, b] f(x)dx发散,则有∫[a, b] g(x)dx也发散。
2. 极限审敛法:对于函数f(x),如果存在极限lim┬(x→a)(x-a)·f(x)=L,则有∫[a, b] f(x)dx收敛,其中a为积分区间的一个端点,b为另一个端点。
3. 部分和审敛法:对于函数f(x),如果存在数列{S_n},使得lim┬(n→∞)S_n=L,则有∫[a, b] f(x)dx收敛,其中S_n表示函数f(x)在区间[a, b]上的部分和。
反常积分判敛的方法在数学中,积分是一种非常重要的概念,而对于一些特殊的积分,我们需要进行判敛来确定其是否收敛。
在处理反常积分时,有一些特殊的方法可以帮助我们进行判敛,本文将介绍一些常用的反常积分判敛方法。
一、无穷积分的判敛方法对于形如$\int_{a}^{+\infty}f(x)dx$的无穷积分,我们可以通过比较判别法来确定其是否收敛。
比较判别法主要包括以下几种情况: 1. 若存在常数$M>0$和$a$,使得对充分大的$x$有$|f(x)|\leqM\cdot g(x)$,其中$\int_{a}^{+\infty}g(x)dx$收敛,则$\int_{a}^{+\infty}f(x)dx$也收敛。
2. 若存在常数$a$,使得对充分大的$x$有$0\leq f(x)\leqg(x)$,其中$\int_{a}^{+\infty}g(x)dx$发散,则$\int_{a}^{+\infty}f(x)dx$也发散。
通过比较判别法,我们可以对无穷积分的收敛性进行初步的判断。
二、无界函数积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,如果被积函数在区间$(a,b)$上无界,我们可以通过以下方法进行判敛:1. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以将积分区间分割成多个小区间,分别处理每个小区间上的积分。
2. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以通过换元积分的方法将无界函数转化为有界函数,然后再进行积分计算。
通过以上方法,我们可以处理一些在有界区间上无界的函数积分,从而判断其收敛性。
三、奇异点附近积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,在奇异点附近积分时,我们可以通过留数定理来判断其收敛性。
留数定理是一种处理奇异点的有效方法,可以帮助我们求解一些复杂的积分。
在处理奇异点附近积分时,我们需要注意以下几点:1. 确定奇异点的类型,包括可去奇点、极点和本性奇点。
反常积分的比较判别法
反常积分的比较判别法,即判断反常积分的敛散是极限的存在性与无穷小或无穷大的比阶问题。
如下:
1、第一类无穷限
而言,当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛。
2、第二类无界函数
而言,当x→a+时,f(x)必为无穷大。
且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。
反常积分的快速判断
首先如果积分限出现∞,便知道该积分是反常积分。
其次如果积分区间有限,则需判断积分在该区间是否存在瑕点。
第一要看基本函数(l n x,a r c t an x等,注意这些函数的瑕点);第二要看分母,如果分母存在0点,通过求极限判断是否属于无穷间断点。
内蒙古财经大学本科学年论文反常积分敛散性的判定方法作者陈志强学院统计与数学学院专业数学与应用数学年级2012级学号122094102指导教师魏运导师职称教授最终成绩75分目录摘要..............................................................。
(1)关键词………………………………………………。
.……。
….…………。
.1引言-—--—-———-———--——----—---————-------——-—--———-—-—-—--—---—--—-—-—-----————-—--————--—--—2一、预备知识......................................。
...。
. (2)1.无穷限反常积分…………………………。
.…….…。
…………….。
22.瑕积分........................。
..........。
(3)3。
反常积分的性质........................。
...........。
(3)二、反常积分的收敛判别法.....................................。
.. (4)1无穷积分的收敛判别 (4)(1)。
定义判别法......................。
......。
...................。
(4)(2)。
比较判别法.....................。
............................。
(4)(3)。
柯西判别法.....................。
.. (5)(4)阿贝尔判别法。
…………………..……。
…。
……………。
6(5)。
狄利克雷判别法.............................。
. (7)2瑕积分的收敛判别......................。
........................... ...。