羧酸及羧酸衍生物地重要反应及重要反应机理
- 格式:doc
- 大小:1018.00 KB
- 文档页数:30
羧酸及其衍生物的性质实验报告西安文理学院化学工程学院实验报告实验编号: 2014 年 4 月 23 日化学类专业13级1班实验名称:羧酸及其衍生物的性质姓名:秦阳成绩:同组人: 指导老师:实验目的:1. 验证羧酸及其衍生物的性质;2了解肥皂的制备原理及其性质。
实验步骤1.羧酸的性质(1)酸性的试验将甲酸、乙酸各5滴及草酸0.2 g分别溶于2 mL 水中。
然后用洗净的玻璃棒分别蘸取相应的酸液在同一条刚果红试纸上画线,比较各线条的颜色和深浅程度。
现象:刚果红试纸变蓝,且颜色深浅顺序为:草酸>甲酸>乙酸解释:酸性强弱:草酸>甲酸>乙酸刚果红适用于作酸性物质的指示剂,变色范围pH为3~5。
(强酸)蓝色~蓝黑色(弱酸) ~(碱)红刚果红与弱酸作用显蓝黑色与强酸作用显稳定的蓝色,遇碱则又变红。
(2)成盐反应取0.2 g苯甲酸晶体放入盛有1 mL水的试管中,加入10%的氢氧化钠溶液数滴,振荡并观察现象。
接着再加数滴10%的盐酸,振荡并观察所发生的变化。
现象:苯甲酸晶体由不溶到溶解再到析出苯甲酸是白色结晶,微溶于水,易升华,能随水蒸气一起蒸出,其钠盐是温和的防腐剂。
(3)加热分解作用将甲酸和冰醋酸各1 mL及草酸1 g分别放入3支带导管的小试管中,导管的末端分别伸入3支各自盛有1~2 mL石灰水的试管中(导管要插入石灰水中!)。
加热试样,当有连续气泡发生时观察现象。
现象:甲酸无现象,冰醋酸使石灰水变浑浊,草酸使石灰水产生絮状沉淀解释:不同的羧酸失去羧基的难易并不相同,除甲酸外,乙酸的同系物直接加热都不容易脱去羧基(失去CO2),但在特殊条件下也可以发生脱羧反应,一元羧酸的α-碳原子上有强拉电子基团时,使得羧酸变得不稳定,当加热到100~200℃时,容易发生脱羧反应。
一般情况下二元羧酸可以发生羧基所具有的一切反应,但某些反应取决于两个羧基间的距离。
各种二元羧酸受热后,由于两个羧基的位置不同,有时发生失水反应,有时发生脱羧反应。
羧酸衍生物知识点羧酸衍生物是一类化合物,它们在化学反应和有机合成中有着广泛的应用。
羧酸衍生物的结构中包含一个羧酸基团,它们的化学性质也与羧酸有关。
本文将从羧酸衍生物的性质、合成和应用三个方面进行阐述。
一、羧酸衍生物的性质羧酸衍生物中含有一个羧酸基团(-COOH),这个基团可以参与许多化学反应。
例如,在碱性条件下,羧酸基团会失去一个质子,形成相应的负离子,即羧酸盐,这种反应叫做羧化反应。
除此之外,羧酸衍生物还能与醇、胺等反应,生成相应的酯、酰胺等衍生物。
二、羧酸衍生物的合成羧酸衍生物的合成方法非常多,下面介绍两种常用的方法:1.羧化反应羧化反应是一种重要的合成羧酸衍生物的方法。
在这种反应中,通常使用羧酸和一定量的碱反应,生成相应的羧酸盐。
羧酸盐再与酸反应,失去一个水分子,形成相应的酯。
这种反应常用的催化剂有酸性离子交换树脂、三氧化硫等。
2.加成反应加成反应是另一种合成羧酸衍生物的方法。
在这种反应中,羧酸衍生物的反应物通常是烯烃或炔烃。
它们与羧酸在催化剂的存在下发生加成反应,生成相应的羧酸衍生物。
加成反应的催化剂有酸性离子交换树脂、钯等。
三、羧酸衍生物的应用羧酸衍生物在有机合成、材料科学、生物化学等领域有着广泛的应用。
1.有机合成羧酸衍生物是有机合成中常用的反应物和中间体。
它们可以通过羧化反应、加成反应等多种方法进行合成。
羧酸衍生物可以与醇、胺等反应,生成相应的酯、酰胺等衍生物。
2.材料科学羧酸衍生物可以与金属离子、聚合物等反应,形成新的材料。
例如,聚丙烯酸可以与铁离子反应,生成Fe3O4/聚丙烯酸复合材料。
这种材料具有磁性,可以应用于磁性材料、制备催化剂等领域。
3.生物化学羧酸衍生物在生物化学中也有着重要的应用。
例如,羧酸基团是许多生物分子的一部分,例如脂肪酸、氨基酸等。
羧酸衍生物还可以用于制备生物活性分子,例如药物、抗生素等。
羧酸衍生物是一类重要的化合物,在化学反应和有机合成中有着广泛的应用。
通过羧化反应、加成反应等方法可以合成羧酸衍生物。
第十章羧酸及其衍生物【教学重点】羧酸及其衍生物的化学性质、丙二酸二乙酯和乙酰乙酸乙酯在合成上的应用。
【教学难点】诱导效应、酰基上的亲核取代反应机理。
【教学基本内容】羧酸的结构;羧酸的制备方法;羧酸及其衍生物的物理性质;羧酸的化学性质——羧酸的酸性及影响酸性强度的因素(诱导效应、共轭效应和场效应);羧酸衍生物的生成;羧基的还原反应;脱羧反应;α-氢原子的卤代反应。
羟基酸的制备方法(卤代酸水解、羟基腈水解、Refomatsky反应)、羟基酸的化学性质——酸性、脱水反应、α-羟基酸的分解。
羧酸衍生物的化学性质——酰基上的亲核取代反应(水解、醇解、氨解)及其反应机理;还原反应;与Grignard反应;酰胺氮原子上的反应(酰胺的酸碱性、脱水反应、Hofmann降解反应)。
乙酰乙酸乙酯的制备方法(Claisen酯缩合);乙酰乙酸乙酯的化学性质——酮式-烯醇式互变异构、酸式分解和酮式分解;乙酰乙酸乙酯在合成上的应用。
丙二酸二乙酯的制备及在合成上的应用。
Ⅰ目的要求羧酸是含有羧基(—COOH)的含氧有机化合物,我们平常所说的有机酸就是指的这类化合物。
所谓羧酸衍生物,包括的化合物种类很多,诸如羧酸盐类、酰卤类、酯类(包括内酯、交酯、聚酯等)、酸酐类、酰胺类(包括酰亚胺、内酰胺)等都是羧酸衍生物,有人甚至把腈类也包括在羧酸衍生物的范围之内。
其实,比较常见的而又比较重要的是酰卤、酸酐、酯和酰胺这四类化合物。
羧酸盐与一般无机酸盐在键价类型上没大区别,不作专门介绍。
至于腈类,将放在含氮化合物中加以介绍。
这四类化合物都是羧酸分子中,因酰基转移而产生的衍生物,所以又叫羧酸的酰基衍生物。
羧酸及其衍生物RCOL(L:-OH、-X、-OOCR′、-OR′、-NH2)在许多重要天然产物的构成以及在生物代谢过程中均占有重要地位。
本章将以饱和一元脂肪酸为重点,讨论羧酸及其衍生物的结构和性质。
鉴于乙酰乙酸乙酯和丙二酸二乙酯在有机合成上的重要地位,本章作概括介绍。
羧酸聚合反应机理
羧酸聚合反应是通过羧酸分子的缩合聚合过程形成多酸或聚酯的反应。
以下是典型的羧酸聚合反应机理的简要描述:
1. 酸催化步骤:羧酸聚合反应通常需要酸催化剂的存在。
在反应开始时,酸催化剂会负责提供质子(H+),使得羧酸分子中的羟基(-OH)离子化形成羧酸阴离子(-COO-)。
2. 缩合反应:羧酸阴离子之间的缩合反应是羧酸聚合反应的关键步骤。
两个羧酸分子的羧酸阴离子部分会发生核心攻击反应,形成酸状物种,同时释放出一个水分子(H2O)。
这个缩合反应可以形成羧酸二聚体。
3. 继续缩合:形成的羧酸二聚体可以继续与其他羧酸阴离子或酸分子发生进一步的缩合反应,逐渐增长聚合度,形成更长的聚合物链。
4. 聚合结束:羧酸聚合反应可以一直进行到达到所需的聚合度。
聚合结束时,通常需要通过加入醇类分子或者其他适当的反应条件来中和酸催化剂,并进一步处理得到所需的
聚合产物。
需要注意的是,羧酸聚合反应的具体机理可能根据不同的羧酸类型和反应条件而有所不同。
此外,羧酸聚合反应还可以通过其他方法,如酯交换反应和酐化反应等进行。
具体的反应机理需要结合具体的反应条件和化合物进行详细的研究和分析。
有机化学基础知识点整理羧酸的性质与反应羧酸是一类重要的有机化合物,在有机化学领域中起着至关重要的作用。
本文将对羧酸的性质及其常见的反应进行整理,并探讨其在化学反应中的应用。
1. 羧酸的性质羧酸是由羰基和羟基或氨基组成的一类化合物。
羰基的存在赋予了羧酸许多特殊的化学性质。
(1)酸性:羧酸具有较强的酸性,可以和碱反应生成相应的盐和水。
羧酸的酸性来源于羧基上的羟基或氨基,它们可以与碱中的氢离子发生酸碱中和反应。
(2)溶解性:羧酸可以溶于许多极性溶剂中,如水、醇和酮等。
但在非极性溶剂中溶解度较低。
(3)氢键:由于羧基上的氢原子和含氧的孤对电子形成氢键,羧酸分子之间存在较强的相互作用力。
这种氢键能增加羧酸的熔点和沸点,并影响其化学性质。
2. 羧酸的反应(1)酸碱反应:羧酸可以与碱发生酸碱反应,生成相应的盐和水。
反应的例子如下:RCOOH + NaOH → RCOONa + H2O(2)酯化反应:羧酸与醇反应可以生成相应的酯。
这是一种重要的羧酸衍生物合成方法。
反应的示例如下:RCOOH + R'OH → RCOOR' + H2O(3)酰氯化反应:羧酸可以和无水氯化物反应,生成相应的酰氯。
酰氯是一种活泼的羧酸衍生物,可进一步参与其他反应。
反应的表达式如下:RCOOH + SOCl2 → RCOCl + SO2 + HCl(4)酰亚胺化反应:羧酸与胺反应可以生成相应的酰亚胺。
这种反应在有机化学合成中非常常见。
反应的示例如下:RCOOH + NH2R' → RCONHR' + H2O(5)还原反应:羧酸可以在适当条件下被还原为醛或醇。
具体的还原剂取决于羧酸的结构及反应条件。
(6)烷化反应:羧酸可以与碳亲核试剂(如Grignard试剂)反应,生成相应的烷化产物。
反应的示例如下:RCOOH + RMgX → RCH2OH + MgXOR3. 羧酸的应用羧酸广泛应用于有机合成和材料科学等领域。
《羧酸羧酸衍生物》学历案一、学习目标1、掌握羧酸和羧酸衍生物的结构特点。
2、理解羧酸和羧酸衍生物的化学性质。
3、学会羧酸和羧酸衍生物之间的相互转化。
4、能够运用所学知识解决实际问题。
二、学习重难点1、重点(1)羧酸和羧酸衍生物的结构与性质。
(2)羧酸和羧酸衍生物的化学反应。
2、难点(1)羧酸衍生物的水解反应和醇解反应机理。
(2)羧酸和羧酸衍生物之间的相互转化条件及应用。
三、知识回顾在学习羧酸和羧酸衍生物之前,我们先来回顾一下有机化合物中官能团的概念以及一些常见的官能团,如羟基(OH)、醛基(CHO)、酮基()等。
四、羧酸1、羧酸的定义羧酸是由烃基与羧基()相连构成的有机化合物。
2、羧酸的分类(1)根据烃基的不同,羧酸可以分为脂肪酸(如乙酸、硬脂酸)和芳香酸(如苯甲酸)。
(2)根据羧基的数目,羧酸可以分为一元羧酸(如甲酸)、二元羧酸(如草酸)和多元羧酸。
3、羧酸的物理性质(1)低级饱和一元羧酸一般为具有强烈刺激性气味的液体,可溶于水。
(2)随着碳原子数的增加,羧酸的溶解性逐渐降低,高级脂肪酸为蜡状固体,难溶于水。
4、羧酸的化学性质(1)酸性羧酸具有酸性,能与碱发生中和反应。
例如,乙酸与氢氧化钠反应:CH₃COOH +NaOH → CH₃COONa + H₂O。
(2)酯化反应羧酸与醇在一定条件下发生酯化反应,生成酯和水。
例如,乙酸与乙醇的酯化反应:CH₃COOH + C₂H₅OH CH₃COOC₂H₅+ H₂O。
五、羧酸衍生物1、羧酸衍生物的定义羧酸分子中羧基上的羟基被其他原子或原子团取代后的产物称为羧酸衍生物,常见的羧酸衍生物有酰卤、酸酐、酯和酰胺。
2、酰卤(1)定义:羧酸中的羟基被卤原子取代后的产物。
(2)常见的酰卤:乙酰氯(CH₃COCl)、苯甲酰氯()。
3、酸酐(1)定义:由两个羧酸分子脱去一分子水形成的化合物。
(2)常见的酸酐:乙酸酐()。
4、酯(1)定义:羧酸与醇发生酯化反应生成的产物。
羧酸和酯的合成和反应机制羧酸和酯是有机化学中常见的官能团,它们在生物化学、药物合成和有机合成等领域具有广泛的应用。
本文将介绍羧酸和酯的合成方法以及它们的反应机制。
一、羧酸的合成和反应机制1. 直接羧化直接羧化是一种常见的合成羧酸的方法,常用于合成芳香羧酸。
该反应通常使用氧化剂,如高锰酸钾(KMnO4)或铬酸钾(K2Cr2O7),将芳香烃氧化为羧酸。
反应机制中,氧化剂将芳香烃氧化为羟基化合物,然后通过酸性条件下的羟化反应生成羧酸。
2. 羰基化反应羰基化反应也是一种常见的羧酸合成方法,特别适用于合成脂肪酸。
该反应通过氧化还原反应将醛或酮转化为羧酸。
反应机制中,醛或酮先被氧化为羧酸衍生物,然后通过水解生成羧酸。
3. 核磁共振(NMR)探测法除了直接合成羧酸的方法外,核磁共振技术也可以用于羧酸的合成。
通过利用NMR技术检测酸性条件下的醇或酯的信号强度变化,可以确定反应是否发生,并确定羧酸的生成。
二、酯的合成和反应机制1. 酸催化酯化反应酸催化酯化反应是最常用的合成酯的方法之一。
该反应通过酸催化下醇和羧酸(或羧酸衍生物)的缩合反应来合成酯。
反应机制中,酸催化剂(如硫酸、磷酸等)使醇和羧酸发生缩合反应,生成酯和水。
2. 酯水解反应酯水解反应是酯的常见反应之一。
该反应通过水的作用将酯分解为相应的醇和羧酸。
反应机制中,酯中的羰基碳与水发生亲核加成反应,生成过渡态,然后通过质子转移生成产物。
3. 酯加成反应酯加成反应指的是将酯与其他化合物发生反应,生成新的化合物。
这类反应包括酯的氧化、还原、置换等反应。
总结:羧酸的合成方法主要有直接羧化和羰基化反应等,而酯的合成方法主要包括酸催化酯化反应和酯水解反应。
这些合成方法都可以根据特定的实验条件和需求进行选择。
在反应机制方面,羧酸和酯的反应通常涉及亲核加成、氧化还原等基本的有机反应。
羧酸和酯的合成和反应机制是有机化学领域的重要研究内容,对于有机化学的进一步发展和应用具有重要意义。
第六章羧酸及羧酸衍生物的性质及重要反应机理一、羧酸的化学性质1.酸性羧酸具有酸性,诱导、共轭、场效应等对酸性强弱有影响。
利用羧酸的酸性可以制备羧酸酯和羧酸盐。
2.亲核取代反应这是羧酸在一定条件下转变成羧酸生物的反应。
大多数亲核取代反应是通过加成-消除历程完成的。
3.还原反应羧酸能被LiAlH4和B2H6还原成相应的伯醇。
4.α-H的卤化(Hell-Volhard-Zelinsky反应)通过控制卤素的用量可以制备一元或多元的卤代羧酸,并进一步制备羟基酸和氨基酸。
5.脱羧反应羧酸在适当的条件下,一般都能发生脱羧反应,这是缩短碳链的反应。
通常的脱羧反应表示如下:A为-COOH、-CN、-(C=O)R、-NO2、-CX3、-C=O、C6H5-等吸电子基团时,脱羧反应相当容易进行。
此外还有一些特殊的脱羧方法。
二元羧酸的脱羧规律是:乙二酸、丙二酸、加热失羧,丁二酸、戊二酸加热是水生成分子酸酐,己二酸、庚二酸加热是水、失羧生成环酮。
根据以上反应可以得出一个结论,在有机反应中有成环可能时,一般易形成五元环或六元环。
这称为布朗克(Blanc)规则。
二、羧酸衍生物的化学性质1.亲核取代反应这是羧酸衍生物的转换反应。
转换的活性顺序为:RCOX>CRCOOOCR>RCOOR′>RCONR2酸和碱都能催化反应。
2.与有机金属化合物的反应选用空阻大的酰卤,反应能控制在酮的阶段。
选用甲酸酯,可以制备对称二级醇。
选用碳酸酯,可制备三个烃基相同的三级醇。
二元酸的环状酸酐可用来制备酮酸。
酰胺氮上有活泼氢,一般不宜使用。
3.还原反应一般还原反应归纳于下表:反应物还原剂NaBH4LiAlH4催化氢化B2H6RCOCl Rosenmund法RCHO+ + RCH2OHRCOOOCR + + + + 2RCH2OHRCOOR′+ +特殊催化剂+ RCH2OHR′OHRCONH2+ +特殊催化剂+ RCH2NH2RCN + + RCH2NH2其他重要反应如:Claison缩合、Reformatsky反应、Darzens反映、Perkin反应、Bouveault-Blanc 反应、酮醇反应、酯的热裂等见重要反应机理。
三、羧酸和羧酸衍生物的制备1.羧酸的制备2.(1)氧化法甲基方庭、一级醇、醛经氧化生成和原料化合物碳原子数相同的羧酸。
烯、炔、芳甲位有氢的侧链芳烃(芳甲位不含氢原子的侧链不被氧化)二级醇、三级醇、铜经氧化生成比原料化合物碳原子数少的羧酸。
(2)水解法羧酸衍生物和腈均产生相应的羧酸(三级卤代烃,新戊级卤不能经腈来制备相应的羧酸)。
(3)有机金属化合物制备法格氏试剂和有机锂试剂均能与二氧化碳反应生成增加一个碳原子的相应的羧酸。
2 酰卤的制备3.酸酐的制备(1)混合酸酐法(2)羧酸脱水法(制备单纯的酸酐)(3)芳烃的氧化(4)乙酸酐的特殊制法4.酯的制备(1)酯化反应(2)羧酸衍生物的醇解(3)羧酸盐与卤代烷反应(指适应于一级卤代烃和活泼卤代烃)(4)羧酸与重氮甲烷的反应(5)羧酸对烯和炔的加成5.酰胺的制备(1)羧酸铵盐的失水(2)腈的控制水解(3)羧酸衍生物的胺(氨)解6.腈的制备(1)酰胺失水(2)用卤代烃与氰化钠反应四、重要反应的反应机理(一)羧酸衍生物的转换反应反应式:反应机理:碱催化反应机理酸催化反应机理:(二)酯化反应反应式:反应机理:1.加成-消除反应机理(大多数酯化反应按此机理进行)2.碳正离子机理(SN1)(三级醇的酯化反应按此机理进行)3.酰基正离子反应机理(S N1)(仅有少数空阻大的羧酸按此反应机理进行):(三)、酯的水解反应反应式:反应机理1.碱性水解(皂化反应)机理2.酸性水解机理3.三级醇酯水解反应机理(四)Claison酯缩合反应反应式:反应机理:用乙醇钠作催化剂,酯必须提供两个α-H,乙醇钠的用量要大于1摩尔,才能有利于平衡向缩合方向移动。
若酯只有一个α-H,则需要用更强的碱如Ph3CNa作催化剂。
该反应可用来制备β-酮酸酯。
二元酸酯可以发生分子的酯缩合反应,产物为环状β-酮酸酯,这称为Dieckmann缩合反应。
(五)酯缩合的逆反应、酮式分解和酸式分解酯缩合的逆反应:酮式分解:酸式分解:(六)Reformatsky反应反应式:反应机理:(七)Darzens反应反应式:反应机理:(八)Perkin反应反应式:反应机理:(九)Bouveault-Blanc还原(酯的单分子还原)反应式:反应机理:(十)酮醇反应(或偶姻(acyloin)反应)(酯的双分子还原)反应式:反应机理:(十一)Hell-Volhard-Zelinsky反应反应式:去除第一步和最后一步,则为酰卤α-H卤化的反应机理。
(十二)脱羧反应反应式:反应机理:1 环状过渡态机理:当α-碳与不饱和键相连时(如β-羰基酸),一般都通过环状过渡态机理失羧。
2 羧酸负离子机理失羧酸性很强的羧酸易通过负离子机理失羧。
(十三)酯的热裂反应机理:(十四)Hofmann降解反应反应式:反应机理:例题1完成反应式:解:[1]本题为酯的水解反应,因为酯基部分为空阻大的三级醇,三级碳又与乙烯基和苯基相连,容易形成稳定的碳正离子,所以,本题以S N1机理发生酯的水解。
18O连在醇羟基上。
[2]烯丙型碳原子是共振杂化体,具有两位反应性能。
碳正离子呈平面结构,与H2O18结合时可以得到两种结构。
例题2试为下述反应建议合理的、可能的、分步的反应机理解:[说明]本题是酯胺解和羟醛缩合型反应的混合,因为反应物中有多种官能团,在反应类型及反应部位的确定方面需要做出正确的判断。
例题2试为下述反应加以合理的、可能的、分步的反应机理。
解:[说明]本题涉及构象、酮酯缩合、逆向酯缩合、分子的S N2反应、酸碱反应等知识点,题目比较灵活。
例题3 完成下列方程式,并写出反应③的反应机理。
解:③的反应机理:例题4 完成反应式,并为下述反应提出合理的、可能的、分步的反应机理。
解:反应机理:这是负离子失羧机理。
首先通过电子转移,形成氧正离子。
然后,在正离子的吸电子作用下,羧酸电离,羧酸根离子失羧,并恢复萘环的芳香结构。
反应机理:这是六元环状过渡态失羧机理。
首先是醇羟基形成锌盐,然后失水成烯。
Β,γ-不饱和烯酸经六元环状过渡态失羧,双键移位。
例题5 请为下述反应提出合理的、可能的、分步的反应机理,简述实验操作顺序并阐明理由。
解:该成酯反应是按照酰基正离子反应机理进行的。
实验操作顺序:先将浓硫酸和羧酸混合,然后将混合液倒入相应的醇中。
(实验操作不能反过来,否则,醇遇浓硫酸会失水。
例题6 请为下述反应提出合理的反应机理。
解:本体是芳香亲电取代与负离子脱羧交叉组合型的反应机理。
例题7 完成下列反应,并为这些反应提供合理的、可能的、分步的反应机理。
解:反应机理:反应式按酰氧键断裂的机理进行的,所以反应后醇的构型保持不变。
反应机理:反应式按烷氧键断裂的机理进行的,所以氧的同位素18O保留在酯分子中。
例题8 请为下列反应提出合理的反应机理。
解:本题在写酯化反应机理时要考虑立体化学。
如果羧甲基和羟甲基处于反式,反应不能进行。
本题为酯化反应和酯热裂消除反应的组合,在酯热裂消除反应中,应生成E型烯烃。
例题9 CH2=CHCH(CH3)COOH在酸的作用下得到两种产物。
请写出两种产物的结构,哪一种产物是主要的?为什么?解:两种产物分别是γ-丁酯和β-丙酯。
反应过程如下:从碳正离子的稳定性看,(Ⅱ)〉(Ⅰ),而从酯的稳定性来讲,γ-丁酯〉β-丙酯,由于各步反应都是可逆的,所以平衡移动的最后结果是大部分产物转变为稳定的γ-丁酯。
例题10 酰卤氨解时会产生一部分氢卤酸,因此氨解反应通常是在有其他碱存在的体系中进行的。
请回答通常选用什么碱性体系,为什么?解:能溶于水的酰卤氨解时常选用吡啶、三乙胺、N,N二甲苯胺等有机碱。
不溶于水的酰卤氨解时,可用NaOH水溶液。
因为溶于水的酰卤水解速率会比不溶于水的酰卤快,为了抑制副反应,所以选用有机碱体系。
不溶于水的酰卤水解速率很慢,而反应时产生的氢卤酸会迅速进入水相与碱反应,所以可以选用NaOH水溶液。
例题11 完成反应式,并写出合理的反应机理解:反应机理:本题为酯的水解反应,因为是3º醇酯的水解反应,所以反应按烷氧键断裂的机理进行。
例题12 CH3COOR′在盐酸中,于25℃时水解的相对速率:请解释上述实验事实。
解:酯的酸性水解可以按照烷氧键断裂的机理进行,也可以按照酰氧键断裂的机理进行。
当R′为C(CH3)3时,反应按照烷氧键断裂的机理进行。
这是一个单分子反应,速率较双分子反应快得多。
当R′为CH3、C2H5、CH(CH3)2时,反应按照酰氧键断裂的机理进行。
反应关键的一步是形成四面体中间体,当R′为CH3、C2H5、CH(CH3)2时,空阻逐渐增大,羰基碳的电正性逐渐降低,所以反应速率逐渐降低。
例题13 写出反应产物,并为下述反应提出合理的反应机理:解:在酸性条件下,胺成盐,所以酸酐只能发生醇解,生成(A)后,体系转入碱性,胺又游离出来,此时酯发生胺解。
反应机理:本题为酰胺二次醇解和分子亲核取代反应交叉组合的反应机理。
例题14 请为下述反应提出合理的反应机理。
解:先发生酯缩合的逆反应,再发生酯缩合。
先发生酮酯缩合反应,再发生酯缩合的逆反应。
本题为β-二羰基化合物的烷基化反应和酯缩合逆反应的组合。
本题为环氧化合物的碱性开环和分子酯交,换的组合。
碱性条件下,试剂进攻环氧化合物空阻小的地方,酯交换时,发生酰氧键断裂,所以,在整个反应过程中,不对称碳原子的构型保持不变。
本题为亲核取代、酯的水解、失羧、酯化反应组合在一起的反应。
例题15 为下述反应提出合理的反应机理。
解:本题为Hofmann重排型反应,反应条件有了一些改动,用乙醇钠的乙醇溶液代替了氢氧化钠水溶液,因此产物也有了相应的变化,在氢氧化钠水溶液中反应,得到不稳定的氨基甲酸,然后,失羧得胺。
在乙醇钠的乙醇溶液中反应,得到的是相对稳定的氨基甲酸酯。
本题为酯的双分子还原。
本题为亲核加成、分子SN2、消除反应组合型的反应机理。
本题为二苯乙醇酸重排反应。
因为该反应用乙醇钠乙醇溶液代替了氢氧化钠水溶液,所以,产物也有了相应的变化。
本题为酯水解、脱羧、分子S N2、互变异构、半缩酮形成五种反应的组合。