供水管网设计计算
- 格式:doc
- 大小:43.78 KB
- 文档页数:4
前言水是人类生活、工农业生产和社会经济发展的重要资源,科学用水和排水是人类社会发展史上最重要的社会活动和生产活动内容之一。
特别是在近代历史中,随着人类居住和生产的程式化进程,给水排水工程已经发展成为城市建设和工业生产的重要基础设施,成为人类生命健康安全和工农业科技与生产发展的基础保障。
给水排水系统是为人们的生活、生产、和消防提供用水和排除废水的设施的总称。
它是人类文明进步和城市化聚集居住的产物,是现代化城市最重要的基础设施之一,是城市社会文明、经济发展和现代化水平的重要标志。
尤其是在面临全球水资源极其缺乏的今天,给排水管网的作用显得尤为重要。
由于城市给排水系统在新的时期赋予了新的内涵,与人们的生产和生活息息相关。
看似平凡的规划设计却有着不平凡的现实意义,在满足规范和其它技术要求的条件下,根据城市的具体情况,科学规划设计城市给排水管网系统是一个非常重要的课题。
课程设计是学习计划的一个重要的实践性学习环节,是对前期所学基础理论、基本技能及专业知识的综合应用。
通过课程设计调动了我们学习的积极性和主动性,培养我们分析和解决实际问题的能力,为我们走向实际工作岗位,走向社会打下良好的基础。
本设计为玉树囊谦县香达镇给排水管道工程设计。
整个设计包括三大部分:给水管网设计、排水管网设计。
给水管网的设计主要包括管网的定线、流量的设计计算、清水池容积的确定、管网的水力计算、管网平差和消防校核。
排水管网设计主要包括排水管网定线、设计流量计算和设计水力计算。
目录第一章设计任务书 (4)第二章给水管网设计说明与计算 (6)2.1给水管网的设计说明 (6)2.1.1 给水系统的类型 (6)2.1.2 给水管网布置的影响因素 (6)2.1.3 管网系统布置原则 (7)2.1.4 配水管网布置 (7)2.2给水管网设计计算 (8)2.2.1 设计用水量的组成 (8)2.2.2 设计用水量的计算 (8)2.2.3 管网水力计算 (12)2.3二级泵站的设计 (20)2.3.1 水泵选型的原则 (20)2.3.2 二级泵站流量计算 (21)2.3.3二级泵站扬程的确定 (21)2.3.4 水泵校核 (22)第三章排水管网设计说明与计算 (23)3.1排水系统的体制及其选择 (23)3.2排水系统的布置形式 (24)3.3污水管网的布置 (24)3.4污水管道系统的设计 (24)3.4.1 污水管道的定线 (24)3.4.2 控制点的确定 (25)3.4.3 污水管道系统设计参数 (25)3.4.4 污水管道上的主要构筑物 (26)3.5污水管道系统水力计算 (27)3.5.1 污水流量的计算 (27)3.5.2 集中流量计算 (27)3.5.3 污水干管设计流量计算 (27)3.5.4 污水管道水力计算 (29)3.6管道平面图及剖面图的绘制 (31)3.6.1 管道平面图的绘制 (34)3.6.2 管道剖面图的绘制 (35)结论 (35)总结与体会 (36)参考文献 (37)第一章设计任务书一、设计题目囊谦县香达镇给水排水管网工程设计。
村镇供水系统水泵选择及管网水力计算供水系统的组成5泵站设计5.0.1泵站位置应根据供水系统布局,以及地形、地质、防洪、电力、交通、施工和管理等条件综合确定。
5.0.2取水泵站和供水泵站的设计扬程和设计流量,应根据以下要求确定:1 向水厂内的净水构筑物(或净水器)抽送原水的取水泵站:1)设计扬程应满足净水构筑物的最高设计水位(或净水器的水压)要求。
2)设计流量应为最高日工作时平均取水量,可按公式(5.0.2-1)计算:Q1=W1/T1(5.0.2-1)式中Q1—泵站设计流量,m3/h;W1—最高日取水量,应为最高日用水量加水厂自用水量,m3;T1—日工作时间,与净水构筑物(或净水器)的设计净水时间相同,h。
2向调节构筑物抽送清水的泵站:1)设计扬程应满足调节构筑物的最高设计水位要求。
2)设计流量应为最高日工作时用水量,可按公式(5.0.2-2)计算:Q2=W2/T2(5.0.2-2)式中Q2—泵站设计流量,m3/h;W2—最高日用水量,m3;T2—日工作时间,应根据净水构筑物(或净水器)的设计净水时间、清水池的设计调节能力、高位水池(或水塔)的设计调节能力确定,h。
3直接向无调节构筑物的配水管网供水的泵站:1)设计扬程应满足配水管网中最不利用户接管点和消火栓设置处的最小服务水头要求。
2)设计流量应为最高日最高时用水量,可按公式(5.0.2-3)计算:Q3= K h W2/24 (5.0.2-3)式中Q3—泵站设计流量,m3/h;W2—最高日用水量,m3;K h—时变化系数。
5.0.3水泵机组的选择应根据泵站的功能、流量变化,进水含砂量、水位变化,以及出水管路的流量~扬程特性曲线等确定,并符合下列要求:1 水泵性能和水泵组合,应满足泵站在所有正常运行工况下对流量和扬程的要求,平均扬程时水泵机组在高效区运行,最高和最低扬程时水泵机组能安全、稳定运行。
2多种泵型可供选择时,应进行技术经济比较,尽可能选择效率高、高效区范围宽、机组尺寸小、日常管理和维护方便的水泵。
一、用水量计算1 最高日用水量1.1最高日生活用水量基本数据:由原始资料知该城市位于二分区,在设计年限内人口数6.0万,查《室外给水设计规范》(GB 50013-2006)可知该城市为中小城市。
最高日综合活用水定额生:150~240 L/(cap•d)。
根据资料显示人口数,选取q=240 L/(cap•d)。
城市的未预见水量和管网漏失水量按最高日用水量的20%计算。
=∑qNf/1000根据公式 Q1―—城市最高日生活用水,m³/d;Q1q――城市最高综合生活用水量定额,取240 L/(cap•d);N――城市设计年限内计划用水人口数(cap);f――城市自来水普及率,采用f=100%则该城市最高日生活用水量为:=(240×6.0×104×100%)/1000=14400 m³/d=166.67 L/sQ11.2工业企业职工的生活用水和沐浴用水量工业企业职工的生活用水量和淋浴用水量,可按《工业企业设计卫生标准》确定。
选取如下数据:职工生活用水量:冷车间按每人每班25升计,热车间按每人每班35升计;职工淋浴用水量:均按每人每班50升计。
则企业甲职工的生活用水和沐浴用水量为:=(25×3×1200+35×3×900)/1000+(50×600×3)/1000=274.50 m³/d Q21企业乙职工的生活用水和沐浴用水量为:=(25×2×1000+35×2×800)/1000+(50×800×2)/1000=239.00 m³/d Q22所以工业企业职工的生活用水和沐浴用水量为:=274.50+239.00=513.5 m³/d =5.94 L/sQ21.3浇洒道路大面积绿化所需的水量洒道路用水量为每平方米路面每次1-1.5L,大面积绿化用水量可采用1.5-2.0L/(d·m²)。
给水排水管道系统课程设计计算书一、用水量计算1、居民生活用水量Q1:设计城市人口10万,自来水普及率按100%计算,居民综合用水定额310L/(人·d),Q1=100000×0.31=31000m3每小时用水量用最高日用水量乘以该小时占全天用水量的百分比。
2、工业区用水量Q2(1)工业区一用水量Q2a高温车间生活用水量:高温车间三班的总人数为0.9万,用水定额取35L/(人•班),Q`2a=9000×35/1000=315m3,然后分成三班,用每班的用水量乘以小时的变化数即得该小时的用水量。
一般车间生活用水量:一般车间的总人数为0.6万,用水定额取25/(人•班),Q``2a=6000×25/1000=150m3,然后分成三班,用每班的用水量乘以小时的变化数即得该小时的用水量。
淋浴用水量:分为两部分,高温车间淋浴用水量取60L/(人•班),高温车间100%淋浴,一般车间的淋浴用水量取40L/(人•班),一般车间60%,所以Q```2a =9000×60/1000×100%+6000×40/1000×60%=684m3,然后分为三班,每班的淋浴用水量为228m3,且淋浴时间分别在0~1、8~9、16~17.生产用水量Q````2a为21000m3,每小时的生产用水量用总生产用水量除以24工业一区的用水量Q2a=Q`2a+Q``2a+Q```2a+Q````2a(2)工业区二的用水量Q2b高温车间生活用水量:高温车间三班的总人数为0.9万,用水定额取35L/(人•班),Q`2b=9000×35/1000=315m3,然后分成三班,用每班的用水量乘以小时的变化数即得该小时的用水量。
一般车间生活用水量:一般车间的总人数为0.9万,用水定额取25/(人•班),Q``2b =9000×25/1000=225m3,然后分成三班,用每班的用水量乘以小时的变化数即得该小时的用水量。
给水管网课程设计计算书一、用水量计算1. 居民区生活用水量计算按街道建筑层次及卫生设备情况,根据规范采用最高日每人每日综合生活用水,计算出居民区的每人每日用水量,并应用下列公式计算出居民区的最高时流量Q 1Q 1=k h14.8611ii N q ×f 1 K h1—时变化系数q 1i —最高日每人每日综合生活用水定额,L/(cap ·d) N 1i —设计年限内城市各用水区的计划用水人口数,cap f 1—用水普及率1 N 1=362人/公顷×17.183公顷=6154人K h1=1.48 f 1=80% 2.工业企业用水量2Q工厂作为集中流量,根据所提供的最高日平均流量及工作班次,变化系数,确定单位最大秒流量。
3.市政用水量3Q 、浇洒道路用水:9803m /d ;绿地用水:10003m /d 3Q = 980 m3/d +1000 m3/d = 1980 m3/d 4.未预见用水量4Q4Q =(1107.72+3485+1980)×0.20=1314.54 m3/d5.水厂供应 7886.86×5.0%×1000÷3600=109.54 L/S 其余由高位水池供应 168-109.54=58.460 L/S二、选择给水系统及输水管定线1.根据县城平面图、地形、水体、街坊布置情况,绘制等高线;2.采用水厂与高位水池联合供水方式;3.进行管网及输水管定线,对管段、节点进行编号,并将管网模型化。
各管段长度与配水长度注:由于此县采用地下水作为给水水源,所以可以将清水池及水厂同建于管网的节点(1)处,输水管段非常短视其长度为零不计损失。
其余管段配水长度确定原则为:两侧无用水的输水管,配水长度为零;单侧用水管段的配水长度取其实际长度的50%,只有部分管长配水的管段按实际比例确定配水长度;两侧全部配水的管段配水长度等于实际长度。
(三)计算最高时工况下节点流量、管段设计流量、确定管段直径 1.计算比流量q s =∑-ih lQ Q 2== 0.0261L/(s.m)2.计算沿线流量 i s mi l q q ⨯=3.计算节点流量:集中流量可以直接加到所处节点上;沿线流量将一分为二,分别加到两端节点上;供水泵站或高位水池的供水流量也应从节点处进入管网系统,其方向与用水流量方向不同,应作为负流量。
为了向更多的用户供水,在给水工程上往往将许多管路组成管网。
管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。
管网内各管段的管径是根据流量Q和速度v来决定的,由于Q Av (d2/4)v所以管径d .. 4Q/ v 1.13 Q/v。
但是,仅依靠这个公式还不能完全解决问题,因为在流量Q一定的条件下,管径还随着流速v的变化而变化。
如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。
反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。
图1管网的形状(a)枝状管网;(b)环状管网因此,在确定管径时,应该作综合评价。
在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。
应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。
但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为:--- 当直径d= 100~400mm 经济流速v= -1.0ms ;--- 当直径d>400mm经济流速v=~1.4m/s。
一、枝状管网枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。
它的特点是管网内任一点只能由一个方向供水。
若在管网内某一点断流,则该点之后的各管段供水就有问题。
因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。
技状管网的水力计算•可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。
1 •新建给水系统的设计对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。
给水管网计算管网计算:第一章例题1.某城市位于江苏北部,城市近期规划人口20万人,规划工业产值为32亿元/年。
根据调查,该市的自来水用水普及率为85%,工业万元产值用水量为95m3(这里包括了企业内生活用水量),工业用水量的日变化系数为1.15,城市道路面积为185hm2,绿地面积为235hm2。
试计算该城市的近期最高日供水量至少为多少?2.某城市最高日每小时供水流量的典型数据如表1-1所列。
试绘出最高日供水量变化曲线,并求出时变化系数。
3.有一座小城市,设计供水规模24000m3/d,不同时段用水量、二级泵站供水量如表1-2,供水量与用水量差额由管网高位水池调节,则高位调节水池的调蓄水量为多少?表1-2 不同时段用水量、二级泵站供水量关系表4. 某城市最高日用水量为27000m3/d,其各小时用水量如下表所示,管网中设有水塔,二级泵站分两级供水,从前一日22点到清晨6点为一级,从6点到22点为另一级,每级供水量等于其供水时段用水量平均值。
试进行以下项目计算:1)时变化系数;5.某城市最高日设计用水量为12万m3/d,清水池调节容积取最高日用水量的15%,室外消防一次灭火用水量为55L/s,同一时间内发生火灾的次数为2次,火灾持续时间按2h计,水厂自用水量在清水池中的贮存量按1500m3计,安全贮量取5000m3,则清水池的有效容积为多少?第三章【例题】某城市最高时总用水量为260L/s,其中集中供应的工业用水量120 L/s(分别在节点2、3、4集中出流40 L/s)。
各管段长度(单位为m)和节点编号见图。
管段1-5、2-3、3-4为一侧供水,其余为双侧供水。
试求:(1)比流量;(2)各管段的沿线流量;(3)各节点流量。
【例题】某城市供水区用水人口5万人,最高日用水量定额为150L/(人·d),要求最小服务水头为157kPa(15.7m)。
节点4接某工厂,工业用水量为400m3/d,两班制,均匀使用。
供水管网设计计算
1. 最高日设计水量
《室外给水设计规范》(GB50013-2006)中规定,在缺乏实际用水资料情况下,最高日城市综合用水的时变化系数宜采用 1.2~1.6 ;日变化系数宜采用 1.1~1.5 。
本设计采用时变化系数K h 取1.4,日变化系数K d 取1.35.
1)城市最高日综合生活用水量(包括公共设施生活用水量)为:
∑
=1000
111
q N
Q i
i
(m 3/d)
式中 q 1i -----城市各用水分区的最高日综合生活用水量定额[L/(cap ·d)],【根据大名县城市总体规划(2012-2030年)供水规划,为180 L/(cap ·d)】
N 1i -----设计年限内城市各用水分区的计划人口数(cap ),规划确定2030年中心城区人口规模约为45万人。
1000
450000
*1801
=
Q =81000 m 3/d=937.5L/s
2)工业企业用水量 面粉厂:3200 m 3/d 化工厂:3500 m 3/d 食品厂:1600 m 3/d
总用水量Q 2=3200+3500+1600=8300 m 3/d 3)浇洒道路和绿化用水量
)/1000
m q 3
343
333
d N
q f N Q b
b
a
a
(+=
式中 q 3a -----城市浇洒道路用水量定额[L/(m 2·次)],本设计采用1.0 L/(m 2·次);
q 3b -----城市绿化用水定额[L/(m 2·d)],本设计采用1.5 L/(m 2·d);
N 3b -----城市最高日浇洒道路面积 (m 2),规划确定道路与交通设施用地为
9264000m 2;
F 3-----城市最高日浇洒道路次数,本设计采用2次;
N 3b -----城市最高日绿化用水面积 (m 2),规划确定绿化用地为7235800m 2;
)/(293821000
7235800*5.12*9264000*0.13
3
d m Q
=+=
4)管网漏失水量:
)
/%12~%10m Q 3
3
2
1
4
d Q Q Q )()((++= )
/(1186929382830081000*%103
4
Q
d m =++=)(
5)未预见水量
)
/%12~%8m Q Q
3
4
3
2
1
5
d Q Q Q )()((+++=
)
/(130551186929382830081000*%103
5
Q
d m =+++=)(
6)消防用水量 )
(L/s f 6
6
6
q Q = 式中 q 6-----消防用水量定额(L/s ),见《建筑设计防火规范》(GB50016-2014)表8.2.1;
F 6-----同时火灾次数,见《建筑设计防火规范》(GB50016-2014)表8.2.1;
)
(L/s 2253*756
==Q
7)最高日设计用水量:
)/m Q Q
3
5
4
3
2
1
7
d Q Q Q Q (++++=
)/143606130551186929382830081000m Q
3
7
d (=++++=
2.供水管网设计流量
本设计为多水源给水管网系统,由于有多个泵站,水泵工作组合方案多,供水调节能力比较强,一般不需要在管网中设置水塔或高位水池进行用水量调节,设计时直接使各个水源供水泵站的设计流量之和最高时用水量。
供水管网最高日最高时设计用水量,
)/(4
.86s
s L Q
K Q Q
d
h
h
=
=
式中 Q s -----设计供水总流量(L/s )。
)/(95.23264
.86143606
*4.1s
s L Q Q
h
==
=
3.清水池容积的计算
1)本次设计为多水源供水,不设水塔,故清水池调节容积为
式中 W 1-----清水池调节容积(m 3)
W 2-----消防备用水量(m 3),按2h 室外消防用水量计算
W 3-----给水处理系统生产自用水量(m 3),一般取最高日用水量的5%~10% W 4-----安全贮备水量(m 3) 2)清水池调节计算如下表
清水池调节容积计算
3)清水池调节容积W1=10.41%Q d=10.41%*143606=14949.5m3 3 消防贮备数量W2=75*3600/1000*2=540m3
给水处理系统生产自用水量W3=8%* Q d=8%*143606=11488.5m3,取11489m3 安全贮备水量W4=10%* Q d=10%*143606=14360.6m3,取14361m3
所以清水池设计有效容积为W=W1+W2+W3+W4
=14950+540+11489+14361=41340m3。