平方差公式因式分解教案
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 平方差公式的定义和特点。
2. 平方差公式的记忆方法。
3. 运用平方差公式进行因式分解的方法和步骤。
三、教学重点:1. 平方差公式的记忆和应用。
2. 运用平方差公式进行因式分解的方法和技巧。
四、教学难点:1. 平方差公式的灵活运用。
2. 因式分解中的特殊情况的处理。
五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。
3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。
一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。
第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解 【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止. 【类型三】 利用因式分解整体代换求值 已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可. 解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000. 方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底。
因式分解教案四篇因式分解教案篇1一、运用平方差公式分解因式教学目标1、使学生了解运用公式来分解因式的意义。
2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。
3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)重点运用平方差公式分解因式难点灵活运用平方差公式分解因式教学方法比照发现法课型新授课教具投影仪教师活动学生活动情景设置:同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?(学生或许还有其他不同的解决方法,教师要给予充分的肯定) 新课讲解:从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?首先我们来做下面两题:(投影)1.计算以下各式:(1)(a+2)(a-2)=;(2)(a+b)(a-b)=;(3)(3a+2b)(3a-2b)=.2.下面请你根据上面的算式填空:(1)a2-4=;(2)a2-b2=;(3)9a2-4b2=;请同学们比照以上两题,你发现什么呢?事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。
(投影)比方:a2–16=a2–42=(a+4)(a–4)例题1:把以下各式分解因式;(投影)(1)36–25x2;(2)16a2–9b2;(3)9(a+b)2–4(a–b)2.(让学生弄清平方差公式的形式和特点并会运用)例题2:如图,求圆环形绿化区的面积练习:第87页练一练第1、2、3题小结:这节课你学到了什么知识,掌握什么方法?教学素材:A组题:1.填空:81x2-=(9x+y)(9x-y);=利用因式分解计算:=。
2、以下多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把以下各式分解因式(1)1-16a2(2)9a2x2-b2y2(3).49(a-b)2-16(a+b)2B组题:1分解因式81a4-b4=2假设a+b=1,a2+b2=1,那么ab=;3假设26+28+2n是一个完全平方数,那么n=.由学生自己先做(或互相讨论),然后答复,假设有答不全的,教师(或其他学生)补充.学生答复1:992-1=99某99-1=9801-1=9800学生答复2:992-1就是(99+1)(99-1)即100某98学生答复:平方差公式学生答复:(1):a2-4(2):a2-b2(3):9a2-4b2学生轻松口答(a+2)(a-2)(a+b)(a-b)(3a+2b)(3a-2b)学生答复:把乘法公式(a+b)(a-b)=a2-b2反过来就得到a2-b2=(a+b)(a-b)学生上台板演:36–25x2=62–(5x)2=(6+5x)(6–5x)16a2–9b2=(4a)2–(3b)2=(4a+3b)(4a–3b)9(a+b)2–4(a–b)2=[3(a+b)]2–[2(a–b)]2=[3(a+b)+2(a–b)][3(a+b)–2(a–b)]=(5a+b)(a+5b)解:352π–152π=π(352–152)=(35+15)(35–15)π=50某20π=1000π(m2)这个绿化区的面积是1000πm2学生归纳总结因式分解教案篇2教学目标1、会运用因式分解进行简单的多项式除法。
因式分解教案6篇因式分解教案篇1教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x24和y225学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2b2=(a+b)(ab)如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2=()2②b2=()2③0.16a4=()2④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2例2:下列多项式能否用平方差公式进行因式分解①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2解答:①1.21a2+0.01b2能用②4a2+625b2不能用③16x549y4不能用④4x236y2不能用因式分解教案篇2知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。
习题类型以填空题为多,也有选择题和解答题。
平方差公式因式分解的教学案例一、教学目标:1、理解运用平方差公式进行因式分解的意义。
2、能正确运用提公因式法和平方差公式进行较复杂的因式分解。
二、教学重点:用平方差公式进行因式分解。
三、教学难点:把多项式进行必要的变形,灵活运用平方差公式分解因式。
四、教学过程:1、复习引入:师:我们学习了整式乘法中的平方差公式是什么样的?生1:两个数的和与这两个数的差的积等于两数的平方差。
师:用字母怎么表示平方差公式?生2:(a + b)(a – b)= a2– b2师:我们把平方差公式反过来就是怎么样的?生3:两数的平方差等于两个数的和与这两个数的差的积即:a2– b2 =(a + b)(a – b)2、合作探究:(1)师生共同研究书本上116页例3分析:先观察多项式的各项,不能直接运用平方差公式因式分解时,根据公式的特征,把各项改写整式的平方的形式,在运用平方差公式因式分解。
(2)书上116页例4因式分解时,先观察多项式各项有无公因式,如有先提公因式,再进一步因式分解。
3、基础巩固:(1)下列多项式可以用平方差公式因式分解吗?①x2-y2 ②x2+y2 ③-x2+y2 ④-x2-y2 ⑤64-a2 ⑥4x2-9y2根据平方差公式的特点:两数平方的差,来做判断,进一步巩固运用平方差公式因式分解。
(2)因式分解:①x2-4y2 ②-9a2+4b2③x4-1 ④-0.25a2+9学生演板后,请学生订正。
因式分解一定要分解每个因式不能再分解为止。
4、能力提升:(1)因式分解:①2x2 -32 ②-x4+x2 y2③(a+b) 2 -4a2④16(a-b) 2 -9(a+b) 2归纳:因式分解时,先观察多项式能否提公因式,如有,能提先提,再明确公式中的a,b具体题目中分别代表什么,最后套用公式。
(2)在实数范围内分解因式:①4x2 -3 ②x4-4注意:因式分解一定要分解每个因式不能再分解为止。
5、课堂小结:今天学习了因式分解的什么方法?有什么收获?通过课堂小结,回顾本节新课学习内容及方法。
平方差公式因式分解【教学目标】知识与技能:1、会用平方差公式因式分解。
2、能熟练应用提公因式法、套平方差公式因式分解。
过程与方法:通过复习平方差公式,逆向思维归纳出利用平方差公式因式分解的方法,初步掌握一提二套的方法、步骤。
情感、态度与价值观:体会平方差公式的特点及应用于整式的因式分解,从而进一步认识数学的严谨性与灵活性,感受观察、分析是获取知识的先导和解决问题的关键。
【教学重点】用平方差公式因式分解【教学难点】把多项式适当变形后套平方差公式因式分解【易错点】公式a2-b2中a ,b 易找错,如a2-4=(a+4)(a-4)中对应公式中的b 为2。
【教学过程】一:探究新知活动1:忆一忆1、下列各式中能用平方差公式计算的是 ( B )A 、(2a+b )(a-b)B 、(-2a+b)(-2a-b)C 、(2a+b)(-2a-b)D 、(2a+b) (a-2b)2、填空:25x2=(5x)2, 162m =(4m )20.09a2b4=(0.3ab2)2, 0.49(x+y)2=[0.7(x+y)]2活动2:想一想同学们,你能很快得出992-1是100的倍数吗?你是怎么想出来的?答案:利用平方差公式得992-1=100×98,是100的倍数,这就是我们今天所要学习的内容。
二:新知梳理知识点:用平方差公式因式分解公式(a+b )(a-b)= a2-b2 叫做平方差公式,把这个公式从右至左使用,可把某些多项式因式分解,即两个数的平方差等于这两个数的和与这两个数的差的积。
三:应用示例例1:把25x2-4y2因式分解分析:25x2=(5x)2,4y2=(2y)2,25x2-4y2=(5x)2-(2y)2,原式即可以用平方差公式进行因式分解。
解:25x2-4y2=(5x)2-(2y)2=(5x+2y )(5x-2y )例2:把(x+y )2-(x-y )2因式分解。
分析:将(x+y )看成a,(x-y )看成b ,原式即可用平方差公式进行因式分解。
因式分解教案四篇因式分解教案篇1课型复习课教法讲练结合教学目标(学问、力量、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步进展同学观看、归纳、类比、概括等力量,进展有条理的思索及语言表达力量教学重点把握用提取公因式法、公式法分解因式教学难点依据题目的形式和特征恰当选择方法进行分解,以提高综合解题力量。
教学媒体学案教学过程一:【课前预习】(一):【学问梳理】1.分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:假如一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ;完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,假如有公因式,肯定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保存中括号形式,还能连续分解等(二):【课前练习】1.以下各组多项式中没有公因式的是( )A.3x-2与 6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与 nynxD.aba c与 abbc2. 以下各题中,分解因式错误的选项是( )3. 列多项式能用平方差公式分解因式的是()4. 分解因式:x2+2xy+y2-4 =_____5. 分解因式:(1) ;(2) ;(3) ;(4) ;(5)以上三题用了公式二:【经典考题剖析】1. 分解因式:(1) ;(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。
用平方差公式因式分解公开课教案一、教学目标1. 让学生掌握平方差公式的概念和运用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决问题的能力和对数学的兴趣。
二、教学内容1. 平方差公式的介绍和记忆。
2. 平方差公式的运用和因式分解。
3. 例题讲解和练习。
三、教学方法1. 采用讲解法,引导学生理解和记忆平方差公式。
2. 采用示例法,展示平方差公式的运用和因式分解的过程。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入新课,介绍平方差公式的概念。
2. 讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 通过示例,展示平方差公式的运用和因式分解的过程。
4. 布置练习题,让学生独立完成,并进行讲解和点评。
五、教学评价1. 课后收集学生的练习册,进行批改和评价。
2. 在课堂上,对学生的练习进行点评和指导。
3. 关注学生在课堂上的参与度和对平方差公式的掌握程度。
六、教学资源1. 教学PPT,展示平方差公式的推导过程和示例。
2. 练习题,供学生进行练习和巩固。
七、教学时间1课时八、教学拓展1. 引导学生思考:平方差公式在实际生活中的应用。
2. 布置课后作业,让学生进一步巩固平方差公式的运用和因式分解的能力。
九、教学反思2. 根据学生的反馈,调整教学方法和策略,以便更好地引导学生理解和运用平方差公式。
十、教学预案1. 针对学生的不同程度,准备不同难度的练习题,以满足不同学生的需求。
2. 在课堂上,关注学生的疑问,及时进行解答和指导。
六、教学活动1. 课堂互动:邀请学生上台演示平方差公式的运用和因式分解的过程,鼓励其他学生提问和参与讨论。
2. 小组活动:学生分组进行练习,互相讲解和讨论解题方法,促进合作学习。
七、学习任务1. 学生通过课堂讲解和练习,掌握平方差公式的运用和因式分解的方法。
2. 学生能够独立解决相关问题,并能够解释解题过程。
八、学习评估1. 课堂练习:学生当场完成练习题,教师及时进行点评和指导。
用平方差公式因式分解公开课教案一、教学目标1. 知识与技能:(1)让学生掌握平方差公式的推导过程;(2)培养学生运用平方差公式进行因式分解的能力。
2. 过程与方法:(1)通过探究平方差公式的特点,引导学生发现规律;(2)利用平方差公式,将多项式进行因式分解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习热情;(2)培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:(1)平方差公式的推导过程;(2)运用平方差公式进行因式分解的方法。
2. 教学难点:(1)平方差公式的灵活运用;(2)因式分解过程中,找出合适的平方差公式。
三、教学准备1. 教师准备:(1)平方差公式的相关知识;(2)例题及练习题;(3)多媒体教学设备。
2. 学生准备:(1)预习平方差公式;(2)准备笔记本,记录重点知识。
四、教学过程1. 导入新课(1)回顾上节课内容,引导学生复习平方差公式;(2)提问:平方差公式是什么?它能解决哪些问题?2. 探究新知(1)引导学生发现平方差公式的特点,推导出平方差公式;(2)讲解平方差公式的内涵和外延;(3)举例说明如何运用平方差公式进行因式分解。
3. 课堂练习(1)出示例题,引导学生独立完成;(2)讲解答案,分析解题过程;(3)布置课后练习题,巩固所学知识。
五、教学反思1. 课堂表现:(1)学生参与度;(2)学生对平方差公式的掌握程度;(3)教学方法的适用性。
2. 改进措施:(1)针对学生掌握不足的地方,进行针对性讲解;(2)调整教学方法,提高学生学习兴趣;(3)关注学生个体差异,给予不同程度的学生更多关爱和支持。
六、教学延伸1. 拓展知识:(1)介绍平方差公式的应用领域,如物理学、工程学等;(2)引导学生思考:还有哪些类似的公式可以进行因式分解?2. 小组讨论:(1)让学生分组讨论,分享各自发现的类似平方差公式的应用;(2)每组选代表进行汇报,总结小组讨论成果。
有关因式分解教案四篇因式分解教案篇1教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:应用平方差公式分解因式.教学难点:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学过程:一、复习准备导入新课1、什么是因式分解?判断下列变形过程,哪个是因式分解?①(x+2)(x-2)= ②③2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2xa2b-ab3、根据乘法公式进行计算:(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=二、合作探究学习新知(一) 猜一猜:你能将下面的多项式分解因式吗?(1)= (2)= (3)=(二)想一想,议一议: 观察下面的公式:=(a+b)(a—b)(这个公式左边的多项式有什么特征:_____________________________________公式右边是_______________________________________________________ ___这个公式你能用语言来描述吗?_______________________________________(三)练一练:1、下列多项式能否用平方差公式来分解因式?为什么?①②③④2、你能把下列的数或式写成幂的形式吗?(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2(四)做一做:例3 分解因式:(1) 4x2- 9 (2) (x+p)2- (x+q)2(五)试一试:例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
运用平方差公式因式分解一、教学目标(一)知识与技能:会应用平方差公式进行因式分解,发展学生推理能力.(二)过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.(三)情感态度与价值观:培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.二、教学重点、难点重点:利用平方差公式分解因式.难点:领会因式分解的解题步骤和分解因式的彻底性.三、教学过程知识回顾平方差公式(α+b)(a-b)=a2-b2两个数的和与这两个数的差的积,等于这两个数的平方差.填一填:(1)(x+5)(χ-5)=(2)(3x+y)(3x-y)=(3)(l+3a)(l-3a)=比一比,看谁算得快(1)982-22=(2)己知α+从4,a~b=2f则a2-l>2=你能说说算得快的原因吗?把整式乘法的平方差公式U+W(a-b)=a2-b2的等号两边互换位置,就得到运用平方差公式因式分解a2-b2=(a^b)(a~b)t两个数的平方差,等于这两个数的和与这两个数的差的积.辨一辨下列多项式能否用平方差公式来分解因式?为什么?⑴X2+/ ( ) (2)x2-y2( ) ;⑶-JC2+y2( ) (4)-χ2-y2( )例3分解因式:(1)4X2-9(2)(x+p)2-(X+q)2分析:在(1)中,4x2=(2x)2,9=32,4X2-9=(2X)2-32;在(2)中,把Cr+p)和(x+q)各看成一个整体,设x+片小,x+q=n,则原式化为序-〃2.解:⑴4Λ2-9=(2X)2-32=(2X+3)(2X-3)(2)(x+p)2-(χ+q)2=[(χ+p)+(χ+q)][(χ+p)-(x+q)]=(2x+p+g)(pp)例4分解因式:(1)√-/ (2)a3b-ab分析:对于(1),f-y4可以写成(f)2γy2)2的形式,这样就可以用平方差公式进行因式分解了;对于(2),苏6必有公因式应先提出公因式,再进一步分解.解:⑴产卢(x2+y2)Cr2-y2)=(f+y2)(x+y)(x~y)(2)a3b-ab=ab(a2-l)=ab(a+∖)(α-1)分解因式,必须进行到每一个多项式因式都不能再分解为止.练习2.分解因式:(1)cτ~—b2(2)9a2~4h2(3)x2∖'~4y(4)一/+1625解:(1)cr~—h2=(Λ+-h)(a--b)25 5 5(2)9a2~4b2=(3a+2b)(3a~2b)(3)√r4y=y(√-4)=j(x+2)(x-2)(4)-Λ4+16=16-a4=(4+α2)(4-<J2)=(4+α2)(2+«)(2-a)课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底.最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.。
第十四章整式的乘法与因式分解·14.3因式分解·第二课时平方差公式教案班级:课时:课型:一、学情分析平方差公式是最基本、用途最广泛的公式之一,它在整式乘法、因式分解、分式运算及其他代数式的变形中起十分重要的作用.但是这一阶段的学生抽象思维能力还不够完整,需要在教师的引导下进行探索.二、教学目标1.探索并运用平方差公式进行因式分解,体会转化思想;2.会综合运用提公因式法和平方差公式对多项式进行因式分解.三、重点难点【教学重点】运用平方差公式分解因式.【教学难点】综合运用提公因式法与平方差公式来分解因式.四、教学过程设计第一环节【复习旧知引入新课】1.师:因式分解的定义?生:把一个多项式分解成几个整式的积的形式.2.师:提公因式法的定义?生:在一个多项式中,若各项都含有公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.3.5ab3+20ab2的公因式是什么?(答案)5ab2(b+4).4.x2-1和4m2-n2可以用提公因式法分解吗?设计意图:通过师生互动共同回顾上节课所学知识,避免学生遗忘知识,同时为这节课所学知识做铺垫.第二环节【合作交流探索新知】1.观察多项式x2-1和4m2-n2,试着用已经学过的知识找出他们之间有什么特点?学生通过因式分解发现x2-1可以变成(x-1)(x+1),4m2-n2可以变成(2m-n)(2m-n),老师引出平方差概念.(答案)都可以写成a2-b2(两个数的平方差)的形式.x2-1=x2-12和4m2-n2=(2m)2-n2.2.师:你能将a2-b2分解因式吗?学生思考后将其变成(a-b)(a+b),老师给出互逆过程,给出相关概念.两个数的平方差,等于这两个数的和与这两个数的差的积.这种分解因式的方法称为公式法.3.下列多项式能用平方差公式法进行因式分解吗?x2-1=4m2-n2=-4m2-9=x2-(x+y)2=(答案)x2-1=(x+1)(x-1)4m2-n2=(2m)2-n2=(2m+n)(2m-n)-4m2-9不能转变为平方差形式x2-(x+y)2=[x+(x+y)][x-(x+y)]=-y(2x+y)4.老师带领学生进行知识归纳,让学生印象更加深刻.因式分解的平方差公式:公式中的ɑ,b可以是单独的数字、字母,也可以是单项式、多项式.5.师:多项式2x2-8y2怎么分解?老师强调:如果多项式的各项含有公因式,那么先提公因式,且必须分解到不能分解为止.设计意图:通过观察两个多项式运用因式分解引出平方差的概念,再由特殊到一般总结规律.通过几道习题让学生能够熟悉的运用公式法进行因式分解,让学生更清楚哪些式子是不能用平方差公式法.第三环节【应用迁移巩固提高】例1:(1) 4x2-9;(2)(x+p)2-(x+q)2 .例2.把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.例3.分解因式:(1)x4-y4;(2)ɑ3b-ɑb.设计意图:本环节通过三道例题的练习,考察学生对平方差公式法运用的熟练程度,巩固基础.【答案】例1.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式= [(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).例2.(1)解:原式= [3(m+n)]2-(m-n)2=(4m+2n)(2m+4n)= 4(2m+n)(m+2n);(2)原式= 2x(x2-4)= 2x(x+2)(x-2).例3.(1)解:原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y);(2)原式=ɑb(ɑ2-1)=ɑb(ɑ+1)(ɑ-1).第四环节 【随堂练习 巩固新知】1.下列多项式不能用平方差公式分解因式的是( )A.-ɑ2+b 2B.16m 2-25m 4C.2x 2-21y 2D.-4x 2-92.下列各式能用平方差公式分解因式的是( )A .2x 2+y 2B .-x 2+y 2C .-x 2-y 2D .x 3+(-y )23.将(ɑ-1)2-1 分解因式,结果正确的是( )A.ɑ(ɑ-1)B.ɑ(ɑ-2)C.(ɑ-2)(ɑ-1)D.(ɑ-2)(ɑ+1)4.分解因式:x 2y 2-49 = ;5.分解因式:-25ɑ2+9b 2 = .设计意图:本环节在于夯实基础,通过解答简单练习让学生在习题中找到学习的乐趣,增强学生学习的主动性.【答案】1.D2. B3.B4.(xy+7)(xy-7)5.(3b+5ɑ)(3b-5ɑ)第五环节【当堂检测及时反馈】1.(2019秋•乳山市期末)下列多项式,不能用平方差公式分解因式的是()A.a2b2-1 B.4-0.25a2C.-x2+1 D.-a2-b22.(2019•贺州)把多项式4a2-1 分解因式,结果正确的是()A.(4a+1)(4a-1)B.(2a+1)(2a-1)C.(2a-1)2D.(2a+1)23.把ɑ3-4ɑ分解因式,结果正确的是()A.ɑ(ɑ2-4)B.(ɑ+2)(ɑ-2)C.ɑ(ɑ+2)(ɑ-2)D.ɑ(ɑ+4)(ɑ-4)4.(2019春•金坛区期中)已知x-y= 3,y-z= 2,x+z= 4,则代数式x2-z2的值是()A.9 B.18 C.20 D.245.下列分解因式正确的是()A.ɑ2-2b2=(ɑ+2b)(ɑ-2b)B.-x2+y2=(-x+y)(x-y)C.-ɑ2+9b2=-(ɑ+9b)(ɑ-9b)D.4x2-0.01y2=(2x+0.1y)(2x-0.1y)6.(珠海·中考)因式分解:ɑx2-ɑy2=.7.(2020•哈尔滨模拟)分解因式:-(a+2)2+16(a-1)2=.8.(2020秋•广西期中)运用公式“a2-b2=(a+b)(a-b)”计算:9992-1 =,99982=.9.把下列各式分解因式:(1)(a-1)+a2(1-a);(2)x5-16x.10.已知4m+n= 40,2m-3n= 5.求(m+2n)2-(3m-n)2的值.设计意图:通过本环节的练习,深化学生对平方差公式的运用,同时让学生体会到公式法的优越性.【答案】1.D2.B3.C4.C5.D6.ɑ(x+y)(x-y)7.3(5a-2)(a-2)8.998000;999600049.解:(1)原式=(a-1)-a2(a-1)=(a-1)(1-a2)=(a-1)(1+a)(1-a)=-(a-1)2(1+a);(2)原式=x(x4-16)=x[(x2)2-42]=x(x2+4)(x2-4)=x(x2+4)(x+2)(x-2).10.解:(m+2n)2-(3m-n)2=(m+2n+3m-n)(m+2n-3m+n)=(4m+n)(3n-2m)=-(4m+n)(2m-3n),当4m+n= 40,2m-3n= 5 时,原式=-40×5 =-200.第六环节【拓展延伸能力提升】1.利用因式分解计算:1002-992+982-972+962-952+…+22-12.2.已知乘法公式a5+b5=(a+b)(a4-a3b+a2b2-ab3+b4);a5-b5=(a-b)(a4+a3b+a2b2+ab3+b4).利用或者不利用上述公式,分解因式:x8+x6+x4+x2+1.设计意图:本环节习题在于考察学生能够灵活的运用公式法求解,对式子的转化能力要求较高.【答案】1.解:原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)= 100+99+98+97+…+2+1= 5050.2.解:x 10-1=(x 5)2-1=(x 2)5-1=(x 2-1)(x 8+x 6+x 4+x 2+1),则有x 8+x 6+x 4+x 2+1=11210--x x =()()()()111155-+-+x x x x= (x 4+x 3+x 2+x +1)(x 4-x 3+x 2-x +1).第七环节 【总结反思 知识内化】课堂小结:1.利用平方差公式分解因式: ɑ2-b 2 = (ɑ+b )(ɑ-b ).2.因式分解的步骤是:首先提取公因式,然后考虑用公式法.3.因式分解应进行到每一个因式不能分解为止.4.将因式分解应用到计算中,简化计算.设计意图:通过知识小结,使学生梳理本节课所学内容,理解本课核心知识,提高学习质量.第八环节 【布置作业 夯实基础】。
初中数学因式分解教案初中数学因式分解教案(5篇)作为一名优秀的教育工作者,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。
如何把教案做到重点突出呢?下面是小编帮大家整理的初中数学因式分解教案,欢迎阅读,希望大家能够喜欢。
初中数学因式分解教案1教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).初中数学因式分解教案2教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的'思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
一、教案基本信息1. 教材版本:人教版八年级数学下册2. 课时安排:2课时3. 教学目标:(1) 让学生掌握平方差公式的推导过程及应用;(2) 培养学生运用平方差公式进行因式分解的能力;(3) 提高学生解决实际问题的能力。
二、教学内容1. 平方差公式的推导:(1) 引导学生回顾完全平方公式,即(a±b)²= a²±2ab+b²;(2) 让学生观察平方差与完全平方公式的关系,发现(a²-b²) 可以表示为(a+b)(a-b);(3) 引导学生推导出平方差公式:a²-b²= (a+b)(a-b)。
2. 平方差公式的应用:(1) 让学生练习运用平方差公式进行因式分解,如:x²-9、4²-36 等;(2) 引导学生总结平方差公式的应用规律,即两平方项符号相反时才能运用平方差公式。
三、教学过程1. 导入新课:(1) 复习完全平方公式;(2) 提问:同学们,你们能发现完全平方公式与平方差公式之间的关系吗?2. 自主学习:(1) 让学生尝试推导平方差公式;(2) 学生展示推导过程,教师点评并总结。
3. 课堂讲解:(1) 讲解平方差公式的推导过程;(2) 举例讲解平方差公式的应用,引导学生总结规律。
4. 练习巩固:(1) 让学生独立完成练习题,如:x²-9、4²-36 等;(2) 教师点评答案,讲解错误原因。
5. 拓展提升:(1) 让学生尝试解决实际问题,如:已知一个正方形的面积比一个矩形的面积少36平方厘米,求正方形的边长;(2) 学生展示解题过程,教师点评并讲解。
四、课后作业(1) x²-9;(2) 4²-36;(3) 12²-5²。
2. 已知一个正方形的面积比一个矩形的面积少36平方厘米,求正方形的边长。
五、教学反思1. 学生对平方差公式的掌握程度;2. 学生在实际问题中的应用能力;3. 针对学生的掌握情况,调整教学策略,提高教学效果。
平方差公式因式分解
君山区采桑湖镇中心学校 何秋元
【教学目标】
知识与技能:1、会用平方差公式因式分解。
2、能熟练应用提公因式法、套平方差公式因式分解。
过程与方法:通过复习平方差公式,逆向思维归纳出利用平方差公式因式分解的方法,初步掌握一提二套的方法、步骤。
情感、态度与价值观:体会平方差公式的特点及应用于整式的因式分解,从而进一步认识数学的严谨性与灵活性,感受观察、分析是获取知识的先导和解决问题的关键。
【教学重点】
用平方差公式因式分解
【教学难点】
把多项式适当变形后套平方差公式因式分解
【易错点】
公式a2-b2中a ,b 易找错,如a2-4=(a+4)(a-4)中对应公式中的b 为2。
【教学过程】
一:探究新知
活动1:忆一忆
1、下列各式中能用平方差公式计算的是 ( B )
A 、(2a+b )(a-b)
B 、(-2a+b)(-2a-b)
C 、(2a+b)(-2a-b)
D 、(2a+b) (a-2b)
2、填空:25x2=(5x)2, 162
m =(4m )2
0.09a2b4=(0.3ab2)2, 0.49(x+y)2=[0.7(x+y)]2
活动2:想一想
同学们,你能很快得出992-1是100的倍数吗?你是怎么想出来的?
答案:利用平方差公式得992-1=100×98,是100的倍数,这就是我们今天所要学习的内容。
二:新知梳理
知识点:用平方差公式因式分解
公式(a+b )(a-b)= a2-b2 叫做平方差公式,把这个公式从右至左使用,可把某些多项式因式分解,即两个数的平方差等于这两个数的和与这两个数的差的积。
三:应用示例
例1:把25x2-4y2因式分解
分析:25x2=(5x)2,4y2=(2y)2,25x2-4y2=(5x)2-(2y)2,原式即可以用平方差公式进行因式分解。
解:25x2-4y2
=(5x)2-(2y)2
=(5x+2y )(5x-2y )
例2:把(x+y )2-(x-y )2因式分解。
分析:将(x+y )看成a,(x-y )看成b ,原式即可用平方差公式进行因式分解。
解(x+y )2-(x-y )2
=[(x+y )+(x-y )][ (x+y )-(x-y )]
=2x*2y
=4xy
点评:一个多项式,如果可以写成两个整体的平方的形式,且两个整体的符号相反,那么这个多项多则可以利用平方差公式因式分解。
例3:把x4-y4因式分解
解x4-y4
=(x2)2-(y2)2
=(x2+y2)(x2-y2)
=(x2+y2)(x+y)(x-y)
点评:在因式分解时,必须进行到每一个因式都不能分解为止。
例4:把x3y2-x5因式分解
分析:x3y2-x5有公因式x3,应先提出公因式,再进一步进行因式分解。
解x3y2-x5
=x3(y2-x2)
=x3(y+x )(y-x )
点评:1、本题关键是把多项式变形(提公因式),使之能用公式法进行因式分解。
2、要注意解答过程中正确地添括号和去括号,防止因符号错误而导致结果错误;
四:课堂小结
1、运用平方差公式,可以把形式是平方差的多项式因式分解,即a2,b2前面的符号必须是异号,且项数是两项,不符合这两点的不能套公式。
2、用平方差公式因式分解的步骤:一提:有公因式的要先提出公因式;二变:将原式变成平方差公式的模型;三套:直接套用平方差公式 ;四计算:有的括号能合并同类项的必须合并同类项。
五: 学生练习
填空:
(1)9y2=( )2 (2)2536
x2=( )2
(3)49
t2=( )2
2、把下列多项式因式分解:
(1)9y2-4x2 (2)1-25x2
(3)259
m2-16n2 (4)(x+y)2-(x-y)2
(5)x4-16 (6)9x4-36y2
(7)a3-ab2
六:作业
习题:P66习题3.3A 组1题。