2.3 BOOST电路分析
- 格式:pdf
- 大小:608.92 KB
- 文档页数:8
图一boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。
基本电路图见图一。
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。
下面要分充电和放电两个部分来说明这个电路充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
随着电感电流增加,电感里储存了一些能量。
放电过程图三如图三,这是当开关断开(三极管截止)时的等效电路。
当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。
升压完毕。
说起来升压过程就是一个电感的能量传递过程。
充电时,电感吸收能量,放电时电感放出能量。
如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。
如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。
一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上).1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联。
Boost电路学习笔记Boost电路基本框图:图1.1BOOST电路的基本工作方式:。
MOSFET Q导通时为电感采用恒频控制方式,占空比可调。
Q导通时间为TON充电过程,MOSFET Q关断时,为电感放电过程。
(1)MOSFETQ导通时,等效模型如图1.2。
输入电压Vdc流过电感L。
二极管D防止电容C对地放电。
由于输入是直流电,所以电感L上的电流以一定的比率线性增加,这个比率跟电感大小有关。
随着电感电流增加,电感里储存了一些能量。
图1.2MOSFETQ关断时,等效模型如图1.3。
由于电感L的电流不能突变的特性,流经电感的电流不会马上变为0,而是缓慢由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感L开始给电容C充电,电容两端电压升高,此时电压已经高于输入电压了。
升压完毕。
图1.3Boost电路波形分析:图1.4a I 大于0,BOOST 电路工作于连续模式,a I 等于0,BOOST 电路工作于不连续模式。
BOOST 调整器最好工作于不连续模式。
MOSFETQ 导通时,V D 点接地,(假设MOSFET 导通,压降为0)电压为0V ,因为输入电压恒定Vdc ,所以电感两端承受的电压为Vdc Vdc =-)0(为一个恒定值,因此流经电感的电流线性上升,其斜率为=∆∆t /I L /Vdc ,L 为电感量,此时电感内部的电流变化如图1.4(e )所示的上升斜坡,而MOSFET 内部的电流如图1.4(c )所示。
MOSFETQ 关断时,由于电感电流不能突变的特性,电感两端的电压极性颠倒,看作一个电源,和输入电压Vdc极性一致,这样,电路相当于两个电源串联,流经二极管D,给电容C充电。
因为两个串联电源的总电压必然高于其中一个电源输入电压Vdc高,以此输出电压便会升高,且高于输入电压Vdc。
二极管的电流变化如图1.4(d),电感电流的变化如图1.4(e)Boost电路三种工作模式:Boost电路有三种工作模式:(取决有BOOST电路中电感的工作模式)(1):连续工作模式(2):临界工作模式(3):不连续工作模式图(a)连续工作模式图(b)临界工作模式图(c)不连续工作模式电流从上一个周期的关断状态进入下一个周期的导通时,电图(a)电感IL感电流并未下降为0V,为连续工作模式;电流从上一个周期的关断状态进入下一个周期的导通时,电图(b)电感IL感电流恰好下降为0V,为临界工作模式;电流从上一个周期的关断状态进入下一个周期的导通之前,图(c)电感IL电感电流已经下降为0V,为不连续工作模式。
2 系统设计2. 1 Boost 升压电感的设计要想设计出性能优良的PFC 电路,除了IC外围电路各元件值选择合理外,还需特别认真选择Boost 升压储能电感器。
它的磁性材料不同,对PFC 电路的性能影响很大,甚至该电感器的接法不同,且会明显地影响电流波形;另外,驱动电路的激励脉冲波形上升沿与下降沿的滞后或振荡,都会影响主功率开关管的最佳工作状态。
当增大输出功率到某个阶段时,还会出现输入电流波形发生畸变甚至出现死区等现象。
因此,在PFC 电路的设计中,合理选择Boost PFC 升压电感器的磁心与绕制电感量是非常重要的。
电感值的计算以低输入电压Uin(peak) 和对应的最大占空比Dmax时保证电感电流连续为依据,计算公式为:式中Uin(peak)———低输入交流电压对应的正弦峰值电压,VDmax———Uin(peak) 对应的最大占空比ΔI———纹波电流值,A; 计算时,假定为纹波电流的30%fs———开关频率,Hz占空比的计算公式为:若输入交流电压为220 V( 最低输入电压为85 V),输出直流电压为390 V,开关频率为fs =50 kHz,输出功率Po =350 W,则可计算得到Dmax =0. 78,纹波电流为1. 75 A,从而求得电感值L3 =713 μH,实际电感值取为1 mH。
由于升压电感工作于电流连续模式,需要能通过较大的直流电流而不饱和,并要有一定的电感量,即所选磁性材料应具有一定的直流安匝数。
设计中,升压电感器采用4 块EE55 铁氧体磁心复合而成,其中心柱截面气隙为1. 5 mm,Boost 储能电感器的绕组导线并不用常规的多股0. 47 mm漆包线卷绕,而是采用厚度为0. 2mm、宽度为33 mm 的薄红铜带叠合,压紧在可插4 块EE55 磁心的塑料骨架上,再接焊锡导线引出,用多层耐高压绝缘胶带扎紧包裹。
去消用薄铜带工艺绕制的Boost 储能电感,对减小高频集肤效应、改善Boost 变换器的开关调制波形、降低磁件温升均起重要作用。
BOOST 电路两种工作模式的比较整理者:王伟旭一、BOOST 电路两种工作模式效率的比较设BOOST 电路工作于临界状态时算出此时的电感值,当选用电感大于这个值时电路工作于CCM ,当选用电感小于这个值时电路工作于DCM 。
实际应用中,多让BOOST 电路工作于CCM ,主要是因为其效率高于DCM 。
对于BOOST 电路电路来说,其电路主要的损耗在于开关管切换过程中,闭合时流过的电流产生的能量。
比较CCM 与DCM 的效率就是看哪种模式下开关管消耗的能量多少,这个能量的比较进一步来讲就是比较其流过的电流有效值的大小。
通过计算电路两种模式下的开关管电流有效值大小,进行比较来决定这两种模式的效率高低。
开关管在开关开启的过程中才有电流流过,其值等于电感电流,这个电流在开启到关断这一时刻达到最大值,两种模式下的开关管电流波形分别如图1所示。
图1 开关管电流波形图首先计算DCM 下流过开关管电流的有效值:∫=ONT ONrms DCM dt t T I T I 020)()(1(1.1) 对式1.1化简可得:0)(3I D I rms DCM =,其中T T D ON = (1.2) 然后计算CCM 下流过开关管电流的有效值:21222102221)(3)(1I I I I D dt I t T I I T I ON T ON rms CCM ++⋅=+−=∫ (1.3) 对于同样的外部参数的两种模式BOOST 电路(输入、输出电压,功率相同),其输入与输出电流平均值是相等的。
通过这个关系我们可以得出I 0与I 1和I 2的关系,如式1.4所示。
210210)()(22I I I I I D I D U P I in avg in +=⎯→⎯+=== (1.4) 将式1.4关系带入式1.2可得:212221)(23I I I I D I rms DCM ++⋅= (1.5) 即可得到:)()(rms CCM rms DCM I I > (1.6)二、BOOST 电路两种模式电感感值的比较对于一个BOOST 电路,通过改变其电感的大小可以使其从DCM 过渡到CCM ,我们依据DCM 和CCM 两种模式下电感传递的能量是相等的这个概念来推证CCM 电感的感值大于DCM 电感的感值。
四种常用BOOST带软开关电路的分析与仿真 (图清晰)软开关的实质是什么?所谓软开关,就是利用电感电流不能突变这个特性,用电感来限制开关管开通过程的电流上升速率,实现零电流开通。
利用电容电压不能突变的特性,用电容来限制开关管关断过程的电压上升速率,实现零电压关断。
并且利用LC谐振回路的电流与电压存在相位差的特性,用电感电流给MOS结电容放电,从而实现零电压开通。
或是在管子关断之前,电流就已经过零,从而实现零电流关断。
软开关的拓扑结构非常多,每种基本的拓扑结构上都可以演变出多种的软开关拓扑。
我们在这里,仅对比较常用的,适用于APFC电路的BOOST结构的软开关作一个简单介绍并作仿真。
我们先看看基本的BOOST电路存在的问题,下图是最典型的BOOST电路:假设电感电流处于连续模式,驱动信号占空比为D。
那么根据稳态时,磁芯的正向励磁伏秒积和反向励磁伏秒积相同这个关系,可以得到下式:VIN×D=(VOUT-VIN)(1-D),那么可以知道:VOUT=VIN/(1-D)那么对于BOOST电路来说,最大的特点就是输出电压比输入电压高,这也就是这个拓扑叫做BOOST电路的原因。
另外,BOOST电路也有另外一个名称:upconverter,此乃题外话,暂且按下不表。
对于传统的BOOST电路,这个电路存在的问题在哪里呢?我们知道,电力电子的功率器件,并不是理想的器件。
在基本的BOOST电路中:1、当MOS管开通时,由于MOS管存在结电容,那么开通的时候,结电容COSS储存的能量几乎完全以热的方式消耗在MOS的导通过程。
其损耗功率为COSSV2fS/2,fS是开关频率。
V为结电容上的电压,在此处V=VOUT。
(注意:结电容与静电容有些不一样,是和MOS 上承受的电压相关的。
)2、当MOS管开通时,升压二极管在由正向导通向反偏截止的过程中,存在一个反向恢复过程,在这个过程中,会有很大的电流尖峰流过二极管与MOS管,从而导致功率损耗。
目录一. Boost主电路设计: (2)1.1占空比D计算 (2)1.2临界电感L计算 (2)1.3临界电容C计算(取纹波Vpp<2.2V) (2)1.4输出电阻阻值 (3)二. Boost变换器开环分析 (3)2.1 PSIM仿真 (3)2.2 Matlab仿真频域特性 (5)三. Boost闭环控制设计 (7)3.1闭环控制原理 (7)3.2 补偿网络的设计(使用SISOTOOL确定参数) (8)3.3 计算补偿网络的参数 (10)四.修正后电路PSIM仿真 (10)五.设计体会 (14)Boost变换器性能指标:输入电压:标准直流电压Vin=48V输出电压:直流电压Vo=220V 参考电压 Vref=5V输出功率:Pout=5Kw输出电压纹波:Vpp=2.2V Vm=4V电流纹波: 0.25A开关频率:fs=100kHz相位裕度:60幅值裕度:10dB一. Boost主电路设计:1.1占空比D计算根据Boost变换器输入输出电压之间的关系求出占空比D的变化范围。
1.2临界电感L计算选取L>Lc,在此选L=4uH1.3临界电容C计算(取纹波Vpp<2.2V)选取C>Cc,在此选C=100uF1.4输出电阻阻值Boost主电路传递函数Gvd(s)占空比d(t)到输出电压Vo(t)的传递函数为:(二. Boost变换器开环分析2.1 PSIM仿真电压仿真波形如下图电压稳定时间大约1.5毫秒,稳定在220V左右电压稳定后的纹波如下图电压稳定后的纹波大约为2.2V电流仿真波形如下图电流稳定时间大约2毫秒,稳定在22A左右电流稳定后的纹波如下图2.2 Matlab仿真频域特性设定参考电压为5V,则,系统的开环传递函数为,其中,由上图可得,Gvd(s)的低频增益为-60dB,截止频率fc=196KHz,相位裕度--84.4,相位裕度过小,高频段是-20dB/dec。
系统不稳定,需要加控制电路调整。
一种实用的BOOST电路0 引言在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的D C/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。
考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。
UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boo st拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。
1 UC3842芯片的特点UC3842工作电压为16~30V,工作电流约15mA。
芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。
另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。
由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。
这种电流型控制电路的主要特点是:1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率;2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率;3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作;4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。
BOOST 升压电路工作原理图文分析将直流电能转换为另一种固定电压或电压可调的直流电能的电路称为直流斩波电路。
它利用电力开关器件周期性的开通与关断来改变输出电压的大小,因此也称为开关型DC/DC 变换电路或直流斩波电路。
直流斩波电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因素校正,逆变器以及其他领域的交直流电源等。
测试电路如下图4.1所示,测量输入与输出关系。
通道2:输出直流电压信号u o +-(a)BOOST 测试电路 (b)输出波形图4.1 BOOST 升压电路(multisim)一、直流斩波电路的基本原理基本的直流变换电路原理如图4.2所示,T 为全控型开关管,R 为纯电阻性负载。
当开关T 在时间T on 开通时,电流流经负载电阻R ,R 两端就有电压;开关T 在时间T off 关断时,R 中电流为零,电压也就变为零。
直流变换电路的负载电压波形如图4.2(b)。
s(a) 直流斩波原理图 (b)输出波形图4.2直流斩波原理示意图定义上述电路中脉冲的占空比:on on s on offT T D T T T ==+。
其中T s 为为开关管T 的工作周期,T on 为开关管T 的导通时间。
由图5.3(b)的波形可知,输出电压的平均值为:01s T on O d d d s ST U U dt U DU T T ===⎰ 此式说明,控制开关管的导通与关断来控制就可以达到控制输出电压。
二、BOOST 升压过程直流输出电压的平均值高于输入电压的变换电路为升压变换电路,又称为Boost 电路。
电路如图5.2所示。
图中Q2为开关管, D1是快恢复二极管,XFG1为频率和占空比都可调的函数发生器, 用于产生驱动开关器件Q1所需的脉冲信号。
假设输入电源电压为U d ,输出负载电压为U o ,流过电感的电流为I L 。
当Q1在出发信号作用下导通时,电路处于T on 工作器件,D 承受反向电压而截止。
BOOST升压电路案例分析BOOST升压电路是一种常见的电源电路,用于将输入电压提升到更高的输出电压。
它通常由一个开关管、一个电感、一个二极管和一个输出电容组成。
BOOST升压电路具有简单、高效、可靠等特点,在很多领域得到广泛应用,比如电子设备、通信设备、医疗设备等。
BOOST升压电路的工作原理是通过周期性地开关控制开关管,让电感储存能量,在每个开关周期中释放能量到输出电容上,从而提升输出电压。
在BOOST升压电路中,电感和输出电容起到了能量存储和滤波的作用,二极管则起到了防止反向电流的作用。
以下是一个BOOST升压电路的案例分析:我们以一个输入电压为5V,输出电压为12V的BOOST升压电路为例进行分析。
该BOOST升压电路的参数如下:- 输入电压(Vin):5V- 输出电压(Vout):12V- 输出电流(Iout):500mA- 开关频率(fs):100kHz-开关管(Vf):0.7V-电感(L):10uH- 输出电容(Cout):100uF- 输出电流限制电阻:Rsense=0.1ohm首先我们需要根据电路参数计算BOOST升压电路的工作状态,计算出电路中的各个元件的工作电压、电流等参数。
根据BOOST升压电路的工作原理,可以得到以下计算公式:1.输出电压与输入电压的关系Vout = (Vin * (1 - D))/(1 - D - Vf)其中D为占空比,Vf为二极管的导通压降。
由于输出电压为12V,输入电压为5V,二极管导通压降为0.7V,带入公式得到占空比D约为0.582.开关管的导通时间和关断时间Ton = D / fsToff = (1 - D) / fs计算得到开关管的导通时间Ton约为5.8us,关断时间Toff约为4.2us。
3.电感和输出电容的工作电压和电流根据电路中电感和输出电容的工作原理,可以得到以下计算公式:Vl = Vin + Vin * DIl = Vl * (Ton / L)Delta_Il = Il * Toff / L其中Vl为电感的工作电压,Il为电感的工作电流,Delta_Il为电感的电流波动。