大工13秋《水力学》辅导资料七
- 格式:doc
- 大小:356.50 KB
- 文档页数:10
水力学辅导材料一、是非题(正确的划“√”,错误的划“×)1、理想液体就是不考虑粘滞性的实际不存在的理想化的液体。
(√)2、图中矩形面板所受静水总压力的作用点与受压面的形心点O重合。
(×)3、园管中层流的雷诺数必然大于3000。
(×)4、明槽水流的急流和缓流是用Fr判别的,当Fr>1为急流。
(√)5、水流总是从压强大的地方向压强小的地方流动。
(×)6、水流总是从流速大的地方向流速小的地方流动。
(×)6、达西定律适用于所有的渗流。
(×)7、闸孔出流的流量与闸前水头的1/2次方成正比。
(√)8、渐变流过水断面上各点的测压管水头都相同。
(√)9、粘滞性是引起液流运动能量损失的根本原因。
(√)10、直立平板静水总压力的作用点就是平板的形心。
(×)11、层流的沿程水头损失系数仅与雷诺数有关。
(√)12、陡坡上出现均匀流必为急流,缓坡上出现均匀流必为缓流。
(√)13、在作用水头相同的条件下,孔口的流量系数比等直径的管嘴流量系数大。
(×)14、两条明渠的断面形状、尺寸、糙率和通过的流量完全相等,但底坡不同,因此它们的正常水深不等。
(√)15、直立平板静水总压力的作用点与平板的形心不重合。
(√)16、水力粗糙管道是表示管道的边壁比较粗糙。
(×)17、水头损失可以区分为沿程水头损失和局部水头损失。
(√)18、牛顿内摩擦定律适用于所有的液体。
(×)19、静止液体中同一点各方向的静水压强数值相等。
(√)20、明渠过流断面上各点的流速都是相等的。
(×)21、缓坡上可以出现均匀的急流。
(√)22、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50 kPa。
(√)24、满宁公式只能适用于紊流阻力平方区。
(√)25、水深相同的静止水面一定是等压面。
(√)26、恒定流一定是均匀流,层流也一定是均匀流。
(×)27、紊流光滑区的沿程水头损失系数仅与雷诺数有关。
名词解释(′′153×5=)1、压缩系数β是:液体相对压缩值VdV 与液体压强增量dp 的比值,即dpV dV /-=β。
2、黏滞性:液体具有运动状态下抵抗剪切变形的能力。
3、绝对压强:以设想的不存在任何气体的绝对真空状态作为计算零点的压强。
(已考过)4、相对压强:以当地的大气压作为计算零点的压强。
5、迹线:某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线。
(已考过)流线:某一瞬时,在流场中画出这样一条光滑曲线,这条曲线上任意一点在该瞬时的速度矢量在该点处与曲线相切,这条曲线称为该瞬时的一条流。
6、过水断面:与元流或总流的流线相垂直的横断面。
7、恒定流:流场中的任何空间点上的所有运动要素都不随时间而变化的流动。
沿程水头损失:在流动过程中,要克服沿程摩擦阻力就需要做功,单位质量液体由于沿程阻力做功引起的机械能损失。
8、局部水头损失:在急变流段上所产生的流动阻力称为局部阻力,相应的水头损失称为局部水头损失。
9、水力最优断面:当渠道的i 、n 及过水断面面积w 一定时,使渠道所通过的流量最大的断面形状。
10、渠道底坡i :为采用渠底的高差Z ∆与相应渠长L 的比值,即θsin =∆=LZ i 。
11、棱柱形明渠:为了使水流平顺以及施工方便,一般明渠横断面的形状和尺寸筑成沿程不变的。
12、允许流速:对渠身不会产生冲刷,也不会使水中悬浮的泥沙在渠道中发生淤积的断面平均流速。
13、壅水曲线:渐变流的水深可能沿流程增大而形成壅水,其水面线称为壅水曲线。
14、降水曲线:水深沿流程逐渐减小而形成降水,其水面线称为降水曲线。
15、水跃:明渠水流从急流转变到缓流时,水面突然升高的一种局部水力现象。
16、降水曲线:水深沿流程逐渐减小而形成降水,其水面线称为降水曲线。
17、水跃:明渠水流从急流转变到缓流时,水面突然升高的一种局部水力现象。
18、水跌:明渠缓流向急流过渡时,水面急剧下降的局部水力现象。
第零章绪论0.1水力学的任务与研究对象(了解)水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学.0.2液体的粘滞性(理想液体与实际液体最大的差别)粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力.0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即.0.4牛顿内摩擦定律的另一种表述(了解)P70.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的)0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3)0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑)0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化)0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象.0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,50.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质)0.12把液体看作连续介质的意义如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.0.13理想液体所谓理想液体,就是把液体看作绝对不可压缩,不能膨胀,没有粘滞性,没有表面张力的连续介质.0.14表面力和质量力表面力表面力是作用于液体的表面,并于受作用的的表面面积成比例的力.质量力质量力是指通过所研究液体的每一部分质量而作用与液体的,其大小和液体的质量成比例的力(质量力又称体积力)课后习题0.2第一章水静力学1.1液体在平衡状态下.没有内摩擦力的存在,因此理想液体和实际液体都是一样的,故在静水中没有区分的必要.1.2静水压力静止(或处于平衡状态)的液体作用在与之接触的表面上的水压力称为静水压力,常以表示.1.3静水压强取微小面积,令作用在上的静水压力为,则面上单位面积上所受的平均静水压力为称为面上的平均静水压强,当无限趋近与一点时,比值的极限值定义为该点的静水压强.1.4静水压强的两个重要特性⑴静水压强的方向与受压面垂直并指向受压面(若不垂直,则必存在一个与液面平行的分力,这样必会破坏液体的平衡状态;静水压强若不指向受压面而是背向受压面,则必会受到拉力,同样不能保持平衡状态)⑵作用在同一点上的静水压强相等(推导过程:在平衡液体内分割出一块无限小的四面体,倾斜面的方向任意选取,为简单起见,建立如图所示的坐标系,让四面体的三个棱边与坐标轴平行,并让轴与重力方向平行,各棱边长为,四面体四个表面上受有周围液体的静水压力,因四个作用面的方向各不相同,如果能够证明微小四面体无限缩小至一点时,四个作用面上的静水压强都相等即可.令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力.又假定作用在四面体上单位质量力在三个坐标方向的投影为,则总质量力在三个坐标方向的投影分别为…因为液体处于平衡状态,由力的平衡条件得:+若…以分别表示四面体四个面的面积,则…将上式都除以,并且有化简可得,上式中分别表示面上的平均静水压强, ,如果微小四面体无限缩小至一点时,均趋近于0,对上式取极限有,同理可证,故作用在同一点上的静水压强相等)1.5等压面在平衡液体中可以找到这样一些点,他们具有相同的静水压力,这些点连成的面称为等压面(对于静止的液体其等压面是水平面,对于处于相对平衡的液体,其等压面与自由液面平行,例如称有液体的圆柱形容器绕桶轴做等角速度旋转,其等压面就是抛物面)1.6等压面的两个性质⑴在平衡液体中等压面即为等势面.⑵等压面与质量力正交.1.7绝对压强和相对压强绝对压强以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强.相对压强把当地大气压作为零点剂量的压强,称为相对压强.1.8P29图1.11中各字母表示的含义1.9真空及真空度真空当液体中某点的绝对压强小于当地大气压强,即相对压强为负值时,就称该点存在真空.真空度真空度是指该点绝对压强小于当地大气压强的数值.(例题1.4 1.5 .16) 1.10压强的液柱表示法1.11水头与单位势能1.12液体的平衡微分方程式(欧拉平衡微分方程式)的推导过程P20,以及重力作用下静水压强的基本公式的推导过程P24.1.13压强的测量(各种压差计的计算)计算中找等压面须注意:①若为连续液体,高度相等的面即为等压面.②若为不连续液体(如液体被阀门隔开或者一个水平面穿过了不同介质,则高度相等的面不是等压面③两种液体的接触面是等压面.1.14作用于矩形平面上的静水总压力,为压强分布图面积.(压力中心的位置:当压强为三角形分布时, 压力中心离底部距离为当压强分布为梯形分布时,压力中心离底部距离为)1.15作用于曲面上的静水总压力分为水平方向和竖直方向计算,水平方向方法同作用于矩形平面上的静水总压力(将曲面投影在方向的图形即为矩形,则=为形心点处的压强),竖直方向需画出压力体(压力体包括六个面:曲面本身,自由液面或者其延长面,曲面四个边延长至自由液面的四个面.这里注意自由液面必须是只受到大气压强作用的液面),则,其中为压力体的体积.1.16几种质量力同时作用下的液体平衡1.17作用于物体上的静水总压力,潜体与浮力的平衡及其稳定性第二章液体运动的流束理论2.1描述液体运动的两种方法(拉格朗日法和欧拉法)P632.2流线和迹线迹线某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即迹线就是液体质点运动时所走过的轨迹线流线它是某一瞬时在流场中绘出的一条曲线,在该曲线上所有点的速度向量都与该曲线相切,所以流线表示除了瞬间的流动方向.流线的基本特性P672.3恒定流与非恒定流恒定流如果在流场中所有的运动要素都不随时间而改变,这种水流称为恒定流(也就是说,在恒定流的情况下,任一空间点上,无论哪个液体质点通过,其运动要素都是不变的.运动要素仅仅是空间坐标的函数,而与时间无关)非恒定流如果在流场中所有的运动要素都是随时间而改变的这种水流称为非恒定流.注:本章只研究恒定流.2.4流管在水流中任意取一微分面积,通过该面积周界上的每一给点,均可以作一根直线,这样就构成了一个封闭的管状曲面,称为流管.2.5微小流束充满以流管为边界的一束液流称为微小流束(按照流线不能相交的特性,微小流束内的液体不会穿过流管的管壁向外流动,流管外的液体也不会穿过流管的管壁向流束内流动,当水流为恒定流时,微小流束的形状和位置不会随时间而改变,在非恒定流中,微小流束的形状和位置将随时间而改变.微小流束的很横断面积是很小的,一般在其横断面上各点的流速或动水压强可看作是相等的)2.6总流任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流(总流可以看作由无限多个微小流束所组成)2.7过水断面与微小流束或总流的流线成正交的横断面称为过水断面.2.8流量2.9均匀流与非均匀流均匀流当水流的流线为相互平行的直线时,该水流称为均匀流(直径不变的管道中的水流就是均匀流的典型例子)非均匀流若水流的流线不是相互平行的直线时,该水流称为非均匀流.如果流线虽然相互平行但不是直线(如管径不变的弯管中的水流)或者流线虽直线但不相互平行(如管径沿程缓慢均匀扩散或收缩的渐变管中的水流)都属于非均匀流.2.10均匀流的特性⑴均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变⑵均匀流中,同一流线上不同点的流速相等⑶均匀流过水断面上的动水压强分布规律与静水压分布规律相同2.11均匀流过水断面上的动水压强分布规律与静水压分布规律相同的推导过程2.12渐变流和急变流渐变流当水流的流线虽然不是相互平行的直线,但几乎近于平行直线称为渐变流急变流若水流的流线之间夹角很大或者流线的曲率半径很小,这话水流称为急变流.2.13恒定总流连续性方程的推导P712.14理想液体恒定流微小流束能量方程的推导P722.15实际液体恒定总流的能量方程的推导P782.15恒定总流动量方程的推导P94第三章液流形态及水头损失3.1沿程水头损失和局部水头损失沿程水头损失在固体边界平直且无障碍物的水道中,单位重量的液体自一断面流至另一断面所损失的机械能叫做沿程水头损失,常用表示.局部水头损失当固体边界发生改变或液体遇到障碍物时,由于边界或障碍物的作用使液体质点相对运动加强,内摩擦增加,产生较大的能量损失,这种发生在局部范围之内的能量损失叫做局部水头损失,常用表示.(就液体内部的物理作用来说,水头损失不论其产生的外因如何,都是因为液体内部质点之间有相对运动,因粘滞性的作用产生切应力的结果)当固体边界发生改变或液体遇到障碍物时,为什么会产生局部水头损失(了解)P1203.2影响水头损失的液流边界条件3.2.1横向条件(过水段面积,湿周和水力半径)湿周液流过水断面与固体边界接触的周界线叫做湿周,常用表示.(当过水段面积相等时,周长不一定相等,水与固体边界的接触要长些,故湿周对水损会产生影响,同样,当湿周相等时, 过水段面积不一定相等,通过同样大小的流量水损也不一定相等,故用水力半径来表征过水断面的水力特征)水力半径过水段面积与湿周的比值称为水力半径,即 .3.2.2纵向条件P1233.3均匀流时无局部水头损失,非均匀渐变流时局部水头损失可以忽略不计,非均匀急变流时两种水头损失均有(知道).3.4均匀流沿程水头损失与切应力的关系,以及半径为r处的(圆管中)切应力计算公式的推导P1323.5计算均匀流沿程水头损失的基本公式——达西公式对圆管来说,水力半径 ,故达西公式也可以写做达西公式的推导过程应该不会考3.6层流和紊流层流当留速较小时,各流层的液体质点是有条不紊的运动,互不混杂,这种形态的流动叫层流.紊流当流速较大时,各流层的液体质点形成涡体,在流动过程中,相互混杂,这种形态的流动叫紊流.3.7雷诺试验雷诺试验数据图形(两点三段.两点即上临界流速—水流从层流刚刚进入到紊流状态的速度和下临界流速—水流从紊流刚刚进入到层流状态的速度.三段即层流,过渡区,紊流所对应的曲线段.)P1293.8根据雷诺实验的结果,层流时雷诺试验图形为一条直线,即沿程水损v呈线性的一次方关系,但是由达西公式知与v是平方关系,试解释其原因.P1323.9雷诺数的物理意义(为什么雷诺数可以判别液流形态)P1313.10为什么采用下临界雷诺数而不采用上临界雷诺数来判断水流的型态这是因为经大量试验证明,圆管中下临界雷诺数是一个比较稳定的数值,其值一般维持在2000左右,但上临界雷诺数是一个不稳定数值(一般在12000-2000),在个别情况下也有高达40000-50000.这要看液体的平静程度和来流有扰动而定,凡雷诺数大于下临界雷诺数的,即使液流原为层流,只要有任何微小的扰动就可以是层流变为紊流.在实际工程中扰动总是存在的,所以上下临界雷诺数之间的液流是极不稳定的,都可以看作紊流,因此判别液流型态以下临界雷诺数为标准:实际雷诺数大于下临界雷诺数的是紊流,小于下临界雷诺数的是层流.3.11雷诺实验虽然都是以圆管液流为研究对象,但其结论对其他边界条件下的液流也是适用的.只是边界条件不同,下临界雷诺数的数值不同而已.例如明渠的雷诺数,其中R为水力半径(知道).3.12紊流的特征P133(4点,后两个特点很重要)3.13粘性底层在紊流中并不是整个液流都是紊流,在紧靠固体边界表面有一层极薄的层流存在该层流层叫粘性底层.3.14沿程阻力系数的变化规律⑴即液体处于层流状态,只与雷诺数有关,而与相对光滑度无关,且⑵即液体处于从层流进入紊流的过渡区,只与雷诺数有关,而与相对光滑度无关.因其范围很窄,实际意义不大.⑶即液流进入紊流状态,这时决定于粘性底层厚度和绝对粗糙度的关系:①当较小时粘性底层较厚,可以淹没,抵消管壁粗糙度对水流的影响,从而只与雷诺数有关,而与相对光滑度无关.②继续增大, 粘性底层厚度相应减薄,一直不能完全淹没, 管壁粗糙度对水流产生影响, 从而既与雷诺数有关,又与相对光滑度有关.③当增大到一定程度时, 粘性底层厚度已经变得很薄,已经不能再抵消管壁粗糙度对水流的影响,这时管壁粗糙度对起主要作用,从而只与相对光滑度有关,而与雷诺数无关.(因这时与v是平方关系,故该区又叫做阻力平方区)3.15谢齐公式和曼宁公式谢齐公式 ,其中J为水力坡度,/l ,R水力半径.曼宁公式 ,其中n为粗糙系数,简称糙率.第四章有压管中的恒定流4.1简单管道简单管道管道直径不变且无分支的管道.4.2自由出流和淹没出流自由出流管道出口水流流入大气,水股四周都受大气压强的作用,称为自由出流淹没出流管道出口如果淹没在水下,则称为淹没出流4.3短管和长管短管管道中若存在较大的局部水头损失,它在总水损中占的比重较大,不能忽略不计的管道称为短管.长管若管道较长,局部水损和流速水头可以忽略不计,这样的管道叫做长管. 4.4简单管道的水力计算(以下均属于连续性方程和能量方程的具体应用)总原则首先确定按长管还是短管计算.若按短管计算,则沿程损失,局损和流速水头都要计算;若按长管计算,只需计算沿程损失, 局部水损和流速水头可以忽略不计;在没有把握估计局损的影响程度时,均按短管计算.(先按短管计算,求出具体的沿程损失和局损数值,比较后可确定到底如何计算,若无法确定具体数值一般的,给水管道按长管计算,虹吸管按短管计算,水泵吸水管按短管计算,压水管根据情况而定.4.4.1自由出流和淹没出流的水力计算自由出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果以忽略不计,即公式中的).淹没出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果时可以忽略不计,即公式中的). 下游也存在一个流速水头,但由于管道的过水断面积很小,而下游过水断面积很大,水流速度在下游已经变得很小,可以忽略,不需计入能量方程.4.4.2几种基本类型4.4.3虹吸管和水泵装置的水力计算4.4.4串联管道整个管道的水头损失等于各支管水损之和.4.4.5并联管道并联管道一般按长管计算,各支管的水损相等(各支管的水损相等,只表明通过每一并联支管的单位重量液体的机械能损失相等;但各支管的长度,直径及粗糙系数可能不同,因此其流量也不同,股通过各并联支管的总机械能损失是不相等的)4.4.6分叉管道在分叉处分为若干个串联管道进行计算.4.5沿程均匀泄流的水力计算本章的水力计算题均是围绕这能量方程来设计的,所以熟练掌握能量方程的应用,加上对各个类型的管道特点的了解,不用背繁琐的公式也可以解决本章的计算题,当然背下来更好第五章明渠恒定均匀流5.1明渠恒定均匀流(知道)明渠恒定均匀流当明渠水流的运动要素不随时间而变化时,称为明渠恒定流.否则称为明渠非恒定流.明渠恒定流中,如果流线是一簇相互平行的直线,则水深,断面平均流速和流速分布沿程不变,称为明渠恒定均流,否则称为明渠恒定非均匀流.(明渠均匀流中,摩阻力与重力沿水流方向的分力相平衡)5.2矩形,梯形横断面水力要素的计算梯形中,为梯形与水平面的夹角.5.3底坡明渠渠底的纵向倾斜程度称为明渠的底坡, 以符号表示.且,其中为渠底线与水平面的夹角.5.4顺坡,水平和逆坡明渠当明渠渠底沿程降低时,称为顺坡明渠;沿程不变时称为水平明渠;沿程升高时称为逆坡明渠.(在水平明渠中,由于故在其流动过程中,只存在摩阻力;在逆坡明渠中,摩阻力与重力沿水流方向的分力方向一致,因此这两种情况都不可能产生明渠均匀流;只有在顺坡渠道中才可能产生明渠均匀流)5.5明渠恒定均匀流的特性及其产生条件5.6明渠均匀流的计算公式(连续性方程和谢齐公式, 谢齐系数采用曼宁公式) 5.7矩形和梯形水力最佳断面的推导过程5.8允许流速不冲允许流速能够避免渠道遭受冲刷的流速.不於流速能够保证水中悬浮的泥沙不淤积在渠槽的流速.5.9明渠均匀流的水力计算第六章明渠恒定非均匀流6.1明渠非均匀渐变流和明渠非均匀急变流(知道)在明渠非均匀流中,若流线是接近于相互平行的直线,或流线间的夹角很小,流线的曲率半径很大,这种水流称为明渠非均匀渐变流.反之为明渠非均匀急变流.(本章着重研究明渠非均匀渐变流的基本特性及其水力要素沿程变化的规律) 6.2正常水深(知道)因明渠非均匀流的水深沿流程是变化的,为了不致引起混乱,把明渠均匀流的水深称为正常水深.并以表示.6.3明渠水流的三种形态一般明渠水流有三种形态,即缓流,临界流和急流.6.4明渠水流三种形态的判别方法(5种:微波波速法,比能曲线法,Fr法,临界水深法,临界底坡法)6.4.1微波波速法微波波速的描述(了解)P216当 v<,水流为缓流,干扰波能向上游传播;v=,水流为临界流,干扰波恰不能向上游传播;v>,水流为急流,干扰波不能向上游传播.要判别流态,必须首先确定微波传播的相对速度,相对速度的推导过程(了解)P217(如图6.3,对平静断面1-1和波峰所在断面2-2列连续性方程和能量方程.1-1断面流速为,2-2断面流速为,最后令即可得出=,这就是矩形明渠静水中微波传播的相对速度公式.如果明渠为任意形状时,则有=.式中为断面平均水深,A为断面面积,B为水面宽度.在实际工程中水流都是流动的,设水流断面平均流速为v,则微波传播的绝对速度应是静水中的相对波速与水流速度的代数和,即,正号为顺水方向,负号为逆水方向)6.4.2 Fr法当 Fr<1,水流为缓流;Fr=1,水流为临界流;Fr>1,水流为急流.对临界流来说,断面平均流速恰好等于微波相对波速,即,该式可改写为,其中称为弗劳德数,用符号Fr表示.弗劳德数的两个物理意义P2186.4.3比能曲线法断面比能把基准面选在渠底,所计算的单位液体所具有的能量称为断面比能,并以表示.则,在实际应用上,因一般坡底较小,,故常采用 .比能曲线当流量Q和过水断面的形状及尺寸一定时, 断面比能仅仅是水深的函数,按照此函数可以绘出断面比能随水深变化的关系曲线,该曲线称为比能曲线.比能曲线上存在可以使断面比能取最小值的K点.K点把曲线分成上下两支,上支即为缓流所对应的曲线,下支即为急流所对应的曲线.(比能曲线见P220图6.5)比能曲线与弗劳德数的联系()及其推导过程(了解)P2216.4.4临界水深法临界水深相应于断面比能最小值的水深称为临界水深,以表示.当 h> ,Fr<1,水流为缓流;h= ,Fr=1,水流为临界流;h< ,Fr>1,水流为急流.临界水深的计算在矩形断面明渠中,临界流的流速水头是临界水深的1/2,而临界水深则是最小断面比能的2/3.(原题)P221(将.对水深h求导,并令其等于0.得,规定对应于临界水深的水利要素以脚标K,则.对于矩形断面明渠, ,代入得 ,即临界流的流速水头是临界水深的1/2.再代入 ,得,即临界水深是最小断面比能的2/3.断面为任意形状时,临界水深的计算(了解)见P222(试算法和图解法)重要例题:例题6.16.4.5临界底坡法(只适用于均匀流)第七章水跃7.1水跃当明渠中的水流又急流状态过渡到缓流状态时,会产生一种水面突然跃起的特殊局部水力现象,即在较短的渠道内水深从小于临界水深急剧的跃到大于临界水深.这种特殊的局部水力现象称为水跃.跃高跃后水深与跃前水深之差跃长跃前断面至跃后断面的水平距离完全水跃有表面旋滚的水跃。
水力学题库资料《水力学》习题、试题库一、名词解释1.有压流2.无压流3.流线4.迹线5.渐变流:6.急变流7.水力最优断面8.粘滞性9.膨胀性10.压缩性11.质量力12.表面力13.均匀流14.非均匀流15.佛汝德数16.雷诺数17.棱柱形渠道18.非棱柱形渠道19.理想液体20.圆柱形外管嘴21.长管22.短管23.孔口24.临界水深25.正常水深26.局部水头损失27.沿程水头损失28.连续介质29.恒定流30.非恒流31.基本量纲32.紊流33.层流34.流管35.元流36.总流37.过水断面38.流量39.当地加速度40.迁移加速度41.水力坡度J42.测压管坡度Jp43.正坡44.平坡45.负坡46.逆坡47.临界流48.急流49.缓流50.平均水深h m51.临界坡度i k52.不冲允许流速53.不淤允许流速54.断面比能55. 自由出流56. 淹没出流二、简答题1.请简述“连续介质假设”的内容及其对研究液体运动的意义。
2.什么是均匀流?明渠均匀流有哪些水力特征?3.什么是水力最优断面?4.什么是“佛汝德数”,其物理意义表示什么?5. 什么是理想液体?6. 什么是迹线?7. 什么是棱柱形渠道?8. 什么是“雷诺数”,其物理意义表示什么?9. 什么是圆柱形外管嘴?管嘴的形成条件。
10.简述牛顿内摩擦定律的内容及其物理意义。
11.简述静水压强的特性。
12.简述帕斯卡定律的内容。
13.什么是等压面?它有何性质?14.什么是流线?它有何特点?15.简述明渠均匀流的形成条件。
16.何谓渐变流,渐变流有哪些重要性质?17.雷诺数与哪些因数有关?其物理意义是什么?当管道流量一定时,随管径的加大,雷诺数是增大还是减小?18.欧拉数与韦伯数的物理意义是什么?三、判断题1.恒定流时,流线与迹线重合。
()2.在相同的水头作用下,孔口的流量比管嘴的流量大。
()3.相对压强可以大于、等于或小于零。
()4.等压面不一定与质量力正交。
水力学复习资料一、选择题:(1)在缓坡明渠中不可以发生的流动是( B )。
a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。
(2)在平衡液体中,质量力与等压面(D )a、重合;b、平行c、相交;d、正交。
(3)闸孔出流的流量Q与闸前水头的H( D )成正比。
a、1次方b、2次方c、3/2次方d、1/2次方(4)液体中某点的绝对压强为100kN/m2,则该点的相对压强为(B)a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2(5)水力学中的一维流动是指(D )a、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。
(6)有压管道的管径d与管流水力半径的比值d /R=( B )a、8;b、4;c、2;d、1。
(7)渗流研究的对象是( A )的运动规律。
a、重力水;b、毛细水;c、气态水;d、薄膜水。
(8)已知液体流动的沿程水力摩擦系数与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于(C)a、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区(9)突然完全关闭管道末端的阀门,产生直接水击。
已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为(C)a、1.54m b 、2.0m c 、2.45m d、3.22m(10)测量水槽中某点水流流速的仪器有(B)a、文丘里计b、毕托管c、测压管d、薄壁堰(11)在明渠中不可以发生的流动是( C )a、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。
(12)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为(D)a、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ =100000。
二、判断题:(1)任意受压面上的平均压强等于该受压面形心处的压强。
第一章 绪 论一、 学习指导水力学主要研究液体的受力平衡和机械运动规律及其在实际工程中应用。
液体的基本特性,特别是液体的受力特性是本章重点内容之一,它是液体平衡和运动的基础;液体的粘滞性也是本章重点内容,它是运动液体产生能量损失的根本原因。
本章的难点是连续介质的概念,它是水力学研究对象的基本假设,要正确理解其意义。
液体的粘滞性也是本章的难点,必须掌握粘滞性的概念、粘滞力的大小和粘性系数的变化规律。
液体的其它力学性质及量度,如惯性、质量与重量、密度与重度、压缩性与膨胀性等,相对比较简单,易于理解和掌握。
表面张力在水力学和水利工程计算中一般可以不予考虑,只是在实验室测量中有时需注意毛细现象的影响。
二、 内容提要1、连续介质假定 液体都是由分子组成的,分子间有间隙,分子在不停的随机运动,因此,从微观角度讲,以分子作为研究对象,液体随着时间和空间都是不连续的。
如果假定液体是由许多质点(微团)组成,这些质点之间没有间隙,也没有微观运动,连续分布在液体所占据的空间内,就可以认为液体是一种无间隙地充满所在空间的连续介质,从宏观来看,表征液体的所有物理量都可以看作是时间和空间的连续函数。
2、水的受力特性水(液体)可以承受压力、不能承受拉力。
液体受到剪切力作用后,容易发生流动变形,因此,静止液体不能承受剪切力,液体运动时可以承受剪切力。
3、惯性、质量和密度(1)惯性是物体具有保持原有运动或静止状态的物理性质,质量是惯性大小的量度,常用符号m 表示,常用单位是克(g )、千克(kg )等;(2) 液体的密度是单位体积液体的质量。
常用符号ρ表示,常用单位是克/米3(g/m 3)、千克/米3(kg/m 3)等;水的密度随温度和压力变化,但这种变化很小,水力计算中常把水的密度视为常数,31000kg/m ρ=4、重力和重度(1)重力是物体受到地球引力作用的大小,常用符号G 表示。
重力的常用单位是牛顿(N )、千牛(kN )等;(2)液体的重度是单位体积液体的重力,也称容重。
水力学网上辅导材料7:一、第6章 明渠恒定流动(2)【教学基本要求】1、了解水跃和水跌现象,掌握共轭水深的计算,特别是矩形断明渠面共轭水深计算。
2、能进行水跃能量损失和水跃长度的计算。
3、掌握棱柱体渠道水面曲线的分类、分区和变化规律,能正确进行水面线定性分析,了解水面线衔接的控制条件。
4、能进行水面线定量计算。
5、了解缓流弯道水流的运动特征。
【内容提要和学习指导】6.9水跃和水跌(1)水流从缓流向急流过渡,水面经过临界水深h k ,形成水跌现象。
水跌经常发生在跌坎处、由缓坡向陡坡过渡及水流由水库进入陡坡渠道等地方。
水流从急流跨过临界水深h k 变成缓流,形成急剧翻滚的旋涡,这种水力突变现象称为水跃,常发生在闸、坝的下游和由陡坡向缓坡的过渡。
(2)水跃存在急剧翻滚的表面旋涡要消耗大量的能量,是水利工程中经常采用的一种消耗水流多余能量的方式。
(3)在棱柱体水平明渠中,水跃的基本方程式为(6—17) 即 J (h 1)=J (h 2) (6—18) J (h )称为水跃函数,水跃方程表明跃前断面的水跃函数值等于跃后断面的水跃函数值。
我们把满足水跃方程的跃前断面水深h 1和跃后断面水深h 2称为一对共轭水深,。
(4)水跃共轭水深的计算是这一部分的重点。
对于一般形状断面的明渠可以采用试算法和图解法。
矩形断面明渠的共轭水深计算依据下列公式(要求掌握并记住)。
(6—19) 或 (6—20)请注意:根据水跃函数曲线,跃前断面水深越小,,跃后断面的水深越大。
同时还要求能依据教材上提供的公式进行水跃能量损失和水跃长度的计算。
22221211gA Q c h A gA Q c h A +=+]181[21222-+=Fr h h ]181[22112-+=Fr hh(5)水跌也是急变流,当水流从缓流向急流过渡时,水深是连续地逐渐减小的。
因此必定在某个位置水深正好等于临界水深h k ,通常这个位置在跌坎和从缓坡转向陡坡的变坡处略靠上游处,但距离很小。
水力学辅导资料七
主题:第五章有压管道恒定流1-3节
学习时间:2013年11月11日-11月17日
内容:
我们这周主要学习水力学的第五章的1-3节。
希望通过下面的内容能使同学们加深对短管和长管的水力计算等相关知识的理解。
一、学习要求
1. 掌握短管的水力计算;
2. 掌握短管的水力计算实例;
3. 掌握长管的水力计算。
二、主要内容
重要知识点:
短管和长管的水力计算。
第五章有压管道恒定流
水流充满整个管道横断面,且管道中的动水压强大于或小于大气压强的管道中的流动称为有压管流。
作用水头不随时间变化的有压管流称有压管道恒定流。
出流在大气中的有压管流称为有压管道自由出流。
(熟记两个出流)
出流在水面下的有压管流称为有压管道淹没出流。
在水力计算中常将管道分为短管和长管。
短管是指管道中的流速水头、局部水头损失和沿程水头损失具有同样的量级,在水力计算中均需计入的管路。
长管
是指管道中的流速水头与局部水头损失之和远小于沿程水头损失,在水力计算中忽略流速水头和局部水头损失,只计沿程水头损失或者将流速水头与局部水头损失之和折算成沿程水头损失的百分数,然后加在沿程水头损失上的管路。
第一节 短管的水力计算
(一)自由出流
f Q μ=式中f μ为管道自由出流时的流量系数。
f =μ (二)淹没出流
s Q μ=
式中s μ为管道淹没出流时的流量系数。
s =μ
第二节 短管的水力计算实例
(一)短管水力计算的类型(下列常见类型应着重练习)
1. 已知作用水头H 或上下游水位差z ,管道布置及管道材料,求流量Q 。
由于流量未知,流速就未知,从而雷诺数未知,最终导致沿程水头损失系数λ未知。
因此解此类问题需采用试算逐次逼近法。
即根据经验假设1λ,然后去计算流量1Q ,用此1Q 计算流速υ和雷诺数Re ,从莫迪图中查得沿程水头损失系数2λ。
如果2λ和1λ相差无几,就认为假设的1λ和计算出的流量1Q 是正确的。
否则需用2λ重复上面的计算,直到两次的λ值之差小于5~10%为止。
2. 已知流量Q ,作用水头H 或上下游水位差z ,管道布置及管道材料,求管径d 。
由于管径未知,流速和雷诺数就未知,从而沿程水头损失系数λ就无法求得。
解此类问题只能采用试算法。
根据经验假设几个管径,再计算出几个相对应的流量,其中计算流量与已知流量相等的管径即为所求的管径。
3. 已知流量Q,管径d,管道布置及管道材料,求作用水头H或上下游水位差。
4. 已知流量Q,管径d,管道布置及管道材料,求管中某点的压强p。
此类问题可用写位置、压强及流速已知断面与待求压强断面能量方程求解。
(二)管道的经济流速
管道中的流速大小直接与所求的管径大小相关。
管道中的流速大,则管径小,管道投资少,但水头损失大,水塔高,水塔投资多,同时电能投资也多。
相反地,管道中的流速小,则管径大,管道投资大,但水头损失小,水塔低,水塔投资少,同时电能投资也少。
(掌握管道流速与管径关系)
工程上是用经济流速
υ来确定管道直径d的。
经济流速是使供水系统总成本
e
最小的流速。
下表给出了常用管道的经济流速
υ值。
j
相应于经济流速
υ的管道直径按下面公式计算。
j
(三)水泵和水轮机的装机容量
1. 水泵的装机容量为
式中:γ—水的容重;
η—水泵的总效率;Q—通过水泵的流量;
P
H—水泵的总扬程,它等于水塔水面与吸水池水面的高程差加上吸水管P
和压水管中的水头损失。
2. 水轮机的装机容量为
式中:γ—水的容重;
η—水泵的总效率;Q—通过水泵的流量;
T
H—水轮机的作用水头,它等于上游水面与尾水池中水面的高程差减去引T
水管和尾水管中的水头损失。
第三节长管的水力计算
(一)简单长管
沿程管径、管材及流量不变,且在水力计算中只计沿程水头损失的管路称为简单长管,如下图所示。
1. 长管流动的特征是:(重要知识点,常见简答题,也可拆分为客观题)
(1)长管中的作用水头全部消耗在克服沿程水头损失上;
(2)总水头线与测压管水头线重合。
2. 简单长管的基本公式为
,
A是管路的比阻,表示单位流量通过单位长度管路所需要的水头。
它与管径d和沿程水头损失系数λ有关。
水力学中计算沿程水头损失系数λ的公式较多,这里只介绍建筑给水排水工程中应用于旧钢管、旧铸铁管的舍维列夫公式。
υ≥时:(掌握两种情况下的计算公式)水力粗糙管紊流,当 1.2/m s
经推导得:
υ<时,
过渡粗糙管紊流,当 1.2/m s
经推导得:
,
k称为流区修正系数,见下表1。
过渡粗糙管紊流的比阻A’等于粗糙管紊流的比阻A乘上流区修正系数k。
其中粗糙管紊流比阻计算的结果如下两表所示。
表1 钢管及铸铁管比阻A的修正系数k值
表2 钢管的比阻A值
表3 铸铁管的比阻A值
当已知管道的粗糙系数n时,管道的比阻A计算如下:根据上式计算的比阻值见下表4。
表4 已知粗糙系数n时管道
(要求掌握查表方法,能准确配合水力计算,表中各具体数值不做要求)
υ<时,流区修正系数可按下式计算。
当管道中的流速 1.2/m s
(二)串联长管
由直径不同的几段管路依次连接而成的管路称为串联管路。
串联管路各段通过的流量可能相等,也可能不相等。
这是因为沿管线管路需向外不断供水,所以随流程增加流量减小,而管径也相应地减小,如下图所示。
串联管路的特征:(重要知识点,常见选择、判断题)
(1)各管段的水头损失之和等于管路的总作用水头;
(2)前管段的流量等于后管段的流量与两管段间节点分出的流量之和。
(三)并联长管
两节点间并设两个以上管段的管路系统称为并联管路。
如下图所示,节点A、B间是两条管路并联。
设并联管路的目的是提高供水的可靠性。
并联管路的特征:(重要知识点,常见选择、判断题)
(1)液体通过并联的任何管段的水头损失相等;
(2)流入某节点的流量和应该等于由该节点流出的流量和。
三、本周课程内容典型例题
(一)选择题
1、在短管的水力计算需要考虑()。
A.仅考虑流速水头
B.仅考虑沿程水头损失
C.需考虑局部水头损失和流速水头
D.需考虑局部水头损失和流速水头和沿程水头损失
答案:D
2、串联管路各管段的水头损失()。
A.相等B.逐渐减小
C.之和等于管路流速水头D.之和等于管路的总作用水头
答案:D
(二)填空题
1、出流在大气中的有压管流称为有压管道______________,出流在水面下的有压管流称为有压管道______________。
答案:自由出流、淹没出流
(三)判断题
1、长管的水力计算中,沿程水头损失一般被忽略,主要计算流速水头和局部水头损失。
()
答案:错误。
长管水力计算中,忽略流速水头和局部水头损失,只计沿程水头损失或者将流速水头与局部水头损失之和折算成沿程水头损失的百分数,然后加在沿程水头损失上。
2、液体通过并联的任何管段的水头损失相等()。
答案:正确。
(四)简答题
1、何谓简单长管?其液体流动的特征是什么?
答案:(1)沿程管径、管材及流量不变,且在水力计算中只计沿程水头损失的管路称为简单长管。
(2)长管流动的特征是:
① 长管中的作用水头全部消耗在克服沿程水头损失上;
② 总水头线与测压管水头线重合。
(五)计算题
1、如下图所示用一根普通旧铸铁管由A 水池引向B 水池,已知:管长60l m =,管径200d mm =,有一转弯,其弯曲半径0.5R m =,有一阀门,相对开度/0.5e d =,当量粗糙度0.6s k mm =,水温20T C ︒=,试求:当水位差3z m =时管中的流量Q 。
解:此题属于短管淹没出流,其
计算公式为:
由于流量Q 即流速υ未知,因此
只能事先假设λ值,设0.026λ=。
查表得0.5ζ=进,0.143ζ=弯, 2.06ζ=阀,1ζ=出。
所以
∴
校核所设λ值是否正确
,
, 由莫迪图查得0.026λ=,与原假设一致,故30.071m /Q s =正确。