二次根式(2)导学案
- 格式:doc
- 大小:168.00 KB
- 文档页数:4
16.1二次根式(第二课时)学习目标1.掌握二次根式的基本性质:a a =22.能利用上述性质对二次根式进行化简. 学习重点和难点 重点:二次根式的性质a a =2. 难点:综合运用性质a a =2进行化简和计算。
一.复习引入(1)什么是二次根式,它有哪些性质?(2)二次根式25x -有意义,则x 。
(3)在实数范围内因式分解:x 2-6= x 2 - ( )2= (x+ ___)(x-____)二.提出问题1.式子a a =2表示什么意义?2.如何用a a =2来化简二次根式?3.在化简过程中运用了哪些数学思想?三.自主学习自学课本第3页的内容,完成下面的题目:1.计算:=24 =22.0 =2)54( =220观察其结果与根号内幂底数的关系,归纳得到:当=>a a ,0时2.计算:=-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<a a ,0时3.计算:=20 当==a a ,0时四.例题讲解1.归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2 a a2.化简下列各式:2(1)0.3______=()2(2)0.3______-=()2(3)5_______-=2(4)(2)_____a 0a =(<)3.请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。
五.反馈练习1.化简下列各式(1))0(42≥x x (2) 4x2.化简下列各式(1))3()3(2≥-a a (2)()232+x (x <-2)六.总结反思1.说说你的收获?2.你还有什么问题?七.能力提高(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________.(2) 把(2-x)21-x 的根号外的(2-x )适当变形后移入根号内,得( )A 、x -2B 、2-xC 、x --2D 、2--x(3) 26x -+x-4│-│7-x │。
16.1二次根式(2)学习目标:1.掌握二次根式的基本性质:a a =2;2.能利用上述性质对二次根式进行化简.学习重、难点:重点:二次根式的性质a a =2.(a )2=a (a ≥0)难点:运用性质进行化简和计算(a )2=a (a ≥0),2a =a (a ≥0)”解决具体问题.学习过程: 一、自主学习:1.什么是二次根式,它有哪些性质?2.计算:=24 =22.0 =2)54( =220观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时计算:=-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时计算:=20 当==2,0a a 时归纳总结:将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<->==00002a a a a a a 认真理解!!二、合作交流: 1.化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )2.请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系?3.化简下列各式(1))0(42≥x x (2) 4x(1))3()3(2≥-a a (2)()232+x (x <-2)三、课堂检测(1、2必做 3、4题选做):1.填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.(2)、2)4(-π=(3)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________.2.若042=-++--y x y x ,则x=3. 已知0<x <1,化简:4)1(2+-x x -4)1(2-+xx4.把()212--x x 的根号外的()x -2适当变形后移入根号内,得( )A 、x -2B 、2-xC 、x --2D 、2--x八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若210m m +-=,则3222019m m ++的值为( ) A .2020 B .2019 C .2021 D .2018【答案】A【分析】根据已知方程可得21m m =-,代入原式计算即可. 【详解】解:∵210m m +-= ∴21m m =-∴原式=()2122019m m m -⋅++222220192019120192020m m m m m =-++=++=+=故选:A 【点睛】这类题解法灵活,可根据所给条件和求值式的特征进行适当的变形、转化. 2.一次函数()0y kx b k =+≠的图象如图所示0y <的取值范围是( )A .3x <B .0x >C .2x <D .2x >【答案】D【分析】y<0也就是函数图象在x 轴下方的部分,观察图象找出函数图象在x 轴下方的部分对应的自变量的取值范围即可得解.【详解】根据图象和数据可知,当y <0即图象在x 轴下侧时,x>2, 故选D . 【点睛】本题主要考查了一次函数与不等式,数形结合思想,准确识图是解题的关键.3.下列式子是分式的是( ) A .2x B .2xC .x πD .2x y+【答案】B【解析】解:A 、C 、D 是整式,B 是分式.故选B .4.下列从左到右的变形:2a ab ab=①;2a ab b b =②;a ac b bc =③;()()221.1a x a b b x +=+④其中,正确的是( )A .①②B .②④C .③④D .①②③④【答案】B【解析】根据分式的基本性质进行计算并作出正确的判断.【详解】①2a ab ab=,当a=1时,该等式不成立,故①错误;②2a ab b b = ,分式a b 的分子、分母同时乘以b,等式仍成立,即2a abb b =,故②正确; ③a ac b bc=,当c=1时,该等式不成立,故③错误; ④()()221a 1a x b b x +=+,因为x2+1≠1,即分式ab 的分子、分母同时乘以(x2+1),等式仍成立,即()()221a 1a xb b x +=+成立,故④正确;综上所述,正确的②④. 故选:B. 【点睛】本题考查了分式的基本性质,注意分式的基本性质中分子、分母乘以(或除以)的数或式子一定不是1. 5.如图,OP 为∠AOB 的平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是( )A .∠COP =∠DOPB .PC =PD C .OC =OD D .∠COP =∠OPD【答案】D【分析】先根据角平分线的性质得出PC =PD ,∠POC =∠POD ,再利用HL 证明△OCP ≌△ODP ,根据全等三角形的性质得出OC =OD 即可判断.【详解】∵OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D , ∴PC =PD ,∠POC =∠POD ,故A ,B 正确; 在Rt △OCP 与Rt △ODP 中,OP OPPC PD =⎧⎨=⎩, ∴Rt △OCP ≌Rt △ODP (HL ), ∴OC =OD ,故C 正确.不能得出∠COP =∠OPD ,故D 错误. 故选:D . 【点睛】此题主要考查角平分线的性质与证明,解题的关键是熟知角平分线的性质定理与全等三角形的判定方法. 6.如图所示:已知两个正方形的面积,则字母A 所代表的正方形的面积为( )A .4B .8C .64D .16【答案】C【解析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即为所求正方形的面积.【详解】∵正方形PQED 的面积等于1,∴PQ 2=1.∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得: PR 2=PQ 2+QR 2,∴QR 2=PR 2﹣PQ 2=289﹣1=2,则正方形QMNR 的面积为2. 故选C .【点睛】本题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是解答本题的关键. 7.若20a ab -=(b ≠0),则aa b+=( ) A .0 B .12 C .0或12D .1或 2【答案】C【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C8.下列算式中,计算结果等于6a 的是( ) A .33a a + B .5a a ⋅C .()24aD .122a a ÷【答案】B【分析】根据同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘,等法则进行计算即可得出答案. 【详解】A .3332a a a +=,所以A 不符合题意 B .56a a a ⋅=,所以B 符合题意 C .()248a a =,所以C 不符合题意D .12210a a a ÷=,所以D 不符合题意.故选B. 【点睛】本题考查的是整式的运算,本题的关键是掌握整式运算的法则.9.已知A (x 1,3),B (x 2,12)是一次函数y =﹣6x+10的图象上的两点,则下列判断正确的是( ) A .12x x < B .12x x >C .12x x =D .以上结论都不正确【答案】B【分析】根据一次函数y =−6x +10图象的增减性,以及点A 和点B 的纵坐标的大小关系,即可得到答案. 【详解】解:∵一次函数y =−6x +10的图象上的点y 随着x 的增大而减小,且3<12, ∴x 1>x 2, 故选B . 【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.10.如图,在直角坐标系中,点A 、B 的坐标分别为(1,3)和(2,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当ABC 的周长最小时,点C 的纵坐标是( )A .0B .1C .2D .3【答案】C【分析】如解析图作B 点关于y 轴的对称点B′,连接AB′交y 轴一点C 点,根据两点之间线段最短,这时△ABC 的周长最小,求出直线AB′的解析式为2y x =+,所以,直线AB′与y 轴的交点C 的坐标为(0,2).【详解】作B 点关于y 轴的对称点B′,连接AB′交y 轴一点C 点,如图所示:∵点A 、B 的坐标分别为(1,3)和(2,0), ∴B′的坐标是(-2,0)∴设直线AB′的解析式为y kx b =+,将A 、B′坐标分别代入,302k b k b =+⎧⎨=-+⎩解得12k b =⎧⎨=⎩∴直线AB′的解析式为2y x =+∴点C 的坐标为(0,2) 故答案为C. 【点睛】此题主要考查平面直角坐标系中一次函数与几何问题的综合,解题关键是根据两点之间线段最短得出直线解析式. 二、填空题11.用科学计数法表示1.111 1526=_____________. 【答案】55.2610-⨯【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×11-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定. 【详解】解:1.111 1226=2.26×11-2; 故答案为:2.26×11-2. 【点睛】本题考查了用科学记数法表示绝对值较小的数,一般形式为a×11-n ,其中1≤|a|<11,n 为由原数左边起第一个不为零的数字前面的1的个数所决定.12.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入_____号球袋.【答案】1【解析】试题解析:根据题意,每次反射,都成轴对称变化,一个球按图中所示的方向被击出,经过3次反射后,落入1号球袋.故答案为:1.13.把多项式因式分解22a b ab b -+的结果是__________.【答案】2(1)b a -【分析】先提取公因式,再利用公式法因式分解即可.【详解】()()2222211a b ab b b a a b a -+=-+=-.故答案为: ()21b a -. 【点睛】本题考查因式分解的计算,关键在于熟练掌握基本的因式分解方法. 14.如果332y x x =-+--,那么y x =_______________________. 【答案】19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x=3, ∴y=﹣2,∴2139yx -==. 故答案为:19.【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.15.如图,已知12∠=∠ ,45B ∠=︒ 则DCE ∠= _________.【答案】45°【分析】根据三角形外角的性质得出∠ACD=∠2+∠B ,再利用12∠=∠即可求出∠DCE 的度数. 【详解】∵∠ACD=∠2+∠B=∠1+∠DCE ,45B ∠=︒ ∴DCE ∠=45B ∠=︒, 故答案为:45°. 【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的两个内角的和,熟记性质并熟练运用是解题的关键.16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于_______.【答案】1.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=12AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得22221068CD AC AD=-=-=.故答案是:1.17.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB= cm.【答案】1.【解析】试题分析:因为Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,所以AB="2" CD=1.考点:直角三角形斜边上的中线.三、解答题18.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A,C坐标分别是(a,5),(﹣1,b).(1)求a,b的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC关于y轴对称的图形△A'B'C'.【答案】(1)a=﹣4,b=3;(2)如图所示,见解析;(3)△A'B'C'如图所示,见解析.【分析】(1)根据点A的纵坐标和点C的横坐标即可画出直角坐标系,即可判定a,b的值;(2)根据点A的纵坐标和点C的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,可得:a=﹣4,b=3(2)如图所示:(3)△A'B'C'如图所示:【点睛】此题主要考查平面直角坐标系的确定以及轴对称图形的画法,熟练掌握,即可解题.19.在ABC 中,AB AC =,点E 、F 分别在AB 、AC 上,BE CF =,BF 与CE 相交于点P . (1)求证:BEC CFB ≌;(2)求证:BP CP =.【答案】(1)见详解;(2)见详解【分析】(1)根据等腰三角形的性质等边对等角、全等三角形的判定进行推导即可;(2)由(1)的结论根据全等三角形的性质可得BCE CBF ∠=∠,再利用等式的性质可得FBC ECB ∠=∠,最后由等腰三角形的判定等角对等边可得结论.【详解】(1)证明:∵AB AC =∴A ABC CB =∠∠在BEC △和CFB 中BE CF ABC ACB BC CB =⎧⎪∠=∠⎨⎪=⎩∴()BEC CFB SAS ≌(2)证明:∵BEC CFB ≌∴BCE CBF ∠=∠∴BP CP =.【点睛】本题考查了等腰三角形的性质和判定、全等三角形的判定和性质、等式的性质等知识点,体现了逻辑推理的核心素养.20.因式分解(1)225105mx mxy my -+;(2)(32)(23)a a b a -+-.【答案】(1)25()m x y -;(2)()(32)a b a --. 【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式即可.【详解】解:(1)原式()2252m x xy y =-+25()m x y =-.(2)原式(32)(32)a a b a =---()(32)a b a =--.【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.21.如图,在平面直角坐标系中,线段AB 的两个端点的坐标分别为1,2,()(24),A B ----.(1)画出线段AB 关于x 轴对称的对应线段11A B ,再画出线段11A B 关于y 轴对称的对应线段22A B ; (2)点2A 的坐标为_________;(3)若此平面直角坐标系中有一点(),M a b ,先找出点M 关于x 轴对称的对应点1M ,再找出点1M 关于y 轴对称的对应点2M ,则点2M 的坐标为_______;【答案】(1)详见解析;(2)(1,2);(3)(,)a b --【分析】(1)根据轴对称图形的作图方法画对称线段即可;(2)根据图像可得点2A 坐标;(3)根据关于x 轴对称的特点可得点1M 坐标,再根据关于y 轴对称的特点可得点2M 坐标.【详解】解:(1)如图,线段11A B ,线段22A B 即为所求.(2)由图得2(1,2)A(3)由点M 关于x 轴对称,横坐标不变,纵坐标互为相反数,可得对应点1(,)M a b -,由1M 关于y 轴对称,纵坐标不变,横坐标互为相反数可得其对应点2M (,)a b --.所以点2M 的坐标为(,)a b --.【点睛】本题考查了平面直角坐标系中的轴对称,熟练掌握关于x 轴和y 轴的对称特点是解题的关键.22.如图,直线l 1:y =kx +4(k 关0)与x 轴,y 轴分别相交于点A ,B ,与直线l 2:y =mx (m ≠0)相交于点C (1,2).(1)求k ,m 的值;(2)求点A 和点B 的坐标.【答案】(1)k =-1,m =1;(1)点A (1,0),点B (0,4)【分析】(1)将点C (1,1)的坐标分别代入y=kx+4和y= mx 中,即可得到k ,m 的值;(1)在y=-1x+4中,令y=0,得x=1;令x=0,得y=4,即可得到点A 和点B 的坐标.【详解】解:(1)将点C (1,1)的坐标分别代入y =kx +4和y =mx 中,得1=k +4,1=m ,解得k =-1,m =1.(1)在y =-1x +4中,令y =0,得x =1,令x =0,得y =4,点A (1,0),点B (0,4).【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b (k ≠0,且k,b 为常数)与x 轴的交点坐标、与y 轴的交点坐标,掌握待定系数法求函数解析式是解题的关键.23.(1)先化简,再求值:21(1)121aa a a -÷+++,其中1a =;(2)解分式方程:23193xx x +=--.【答案】(1)1a +;(2)4x =-【分析】(1)先进行化简,然后将a 的值代入求解;(2)根据分式方程的解法求解.【详解】(1) 原式= 211()1121a aa a a a +-÷++++=2121a aa a a ÷+++ =2211a a a a a ++⋅+=2(1)1a a a a +⋅+=1a +当1a =时,原式= 11+=(2)原方程可化为:31(3)(3)3xx x x +=+--方程两边乘()(33)x x +-得:3(3)(3)(3)x x x x ++=+-22339x x x ++=-22393x x x +-=--312x =-4x =-检验:当4x =-时, (3)(3)0x x +-≠所以原方程的解是4x =-【点睛】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.24.因式分解:(1)325x x -(2)22344x y xy y -+【答案】(1)()()55x x x +-;(2)()22y x y -【分析】(1)通过提取公因式法和平方差公式,即可得到答案;(2)通过提取公因式法和完全平方公式,即可得到答案.【详解】(1)原式()225x x =- ()()55x x x =+-;(2)原式()2244y x xy y =-+()22y x y =-.【点睛】本题主要考查分解因式,掌握提取公因式法和公式法因式分解,是解题的关键.25.如图,在ABC ∆中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB(1)若65ABC ∠=,则NMA ∠的度数是 度(2)若10AB cm =,MBC ∆的周长是18cm①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出PBC ∆周长的最小值【答案】(1)40°;(2)①8;②18cm【分析】(1)根据垂直平分线上的点到线段两个端点距离相等得AM BM =,再根据等腰三角形的性质即可求解;(2)①根据垂直平分线的性质得AM BM =,MBC ∆的周长是18cm ,10AC AB cm ==,即可求BC 的长度;②当点P 与点M 重合时,PBC ∆周长的最小,即为MBC ∆的周长.【详解】解:(1)AB AC =,ABC C ∴∠=∠65ABC ∠=︒,65C ∴∠=︒,50A ∴∠=︒,MN 是AB 的垂直平分线,AM BM ∴=,50A ABM ∴∠=∠=︒,15MBC ABC ABM ∴∠=∠-∠=︒,80AMB MBC C ∴∠=∠+∠=︒,1402NMA AMB ∴∠=∠=︒. 故答案为40︒.(2)①10AB AC ==,MBC ∆的周长是18cm ,即18BM MC BC ++=AM BM =,18AM MC BC ∴++=,18AC BC ∴+=,8BC ∴=.答:BC 的长度为8cm .②点B 关于MN 对称点为A ,AC 与MN 交于点M ,∴当点P 与点M 重合时,PBC ∆周长的值最小,且为AC+BC=10+8=18cm ,∴PBC ∆的周长的最小值为18cm .【点睛】本题考查了轴对称—最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5【答案】A【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A .【点睛】本题考查(1)、众数;(2)、中位数.2.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若1BD =,3BC =,则AC 的长为( )A .5B .4C .3D .2【答案】A 【分析】根据已知条件,延长BD 与AC 交于点F ,可证明△BDC ≌△FDC ,根据全等三角形的性质得到BD=DF,再根据A ABD ∠=∠得AF=BF ,即可AC .【详解】解:延长BD,与AC 交于点F,∵BD CD ⊥∴∠BDC =∠FDC=90°∵CD 平分ACB ∠,∴∠BCD =∠FCD在△BDC 和△FDC 中90BDC FDC BCD FCDCD CD ∠∠=︒⎧⎪∠∠⎨⎪=⎩== ∴△BDC ≌△FDC∴BD=FD =1 BC=FC=3∵A ABD ∠=∠∴AF=BF∵1BD =,3BC =,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A【点睛】本题考查的是三角形的判定和性质,全等三角形的对应边相等,是求线段长的依据,本题的AC=AF+FC,AF,FC 用已知线段来代替.3.下列命题中不正确的是( )A .全等三角形的对应边相等B .全等三角形的面积相等C .全等三角形的周长相等D .周长相等的两个三角形全等【答案】D【解析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D .4.如图,已知△ABC 中,PM 、QN 分别是AB ,AC 边上的垂直平分线,∠BAC=100°,AB>AC ,则∠PAQ 的度数是( )A .10°B .20°C .30°D .40【答案】B 【分析】根据三角形内角和定理求出B C ∠+∠,根据线段的垂直平分线的性质得到PA PB =,QA QC =,计算即可.【详解】解:100BAC ∠=︒,80B C ∴∠+∠=︒, PM ,QN 分别是AB ,AC 的垂直平分线,PA PB ∴=,QA QC =,PAB B ∴∠=∠,QAC C ∠=∠,()20PAQ BAC PAB QAC ∴∠=∠-∠+∠=︒,故选:B .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC ∠=∠D .CDE BAD ∠=∠【答案】B 【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.6.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定【答案】B 【分析】如图,直线l 1:y 1=k 1x+b 与直线l 2:y 2=k 2x 在同一平面直角坐标系中的图像如图所示,则求关于x 的不等式k 1x+b >k 2x 的解集就是求:能使函数y 1=k 1x+b 的图象在函数y 2=k 2x 的上方的自变量的取值范围.【详解】解:能使函数y 1=k 1x+b 的图象在函数y 2=k 2x 的上方的自变量的取值范围是x<-1.故关于x 的不等式k 1x+b >k 2x 的解集为:x<-1.故选B .7.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE 的长为( )A .32xB .23xC .33xD 3x【答案】D【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.8.若分式23x x +有意义,则x 的取值范围是( ) A .x≠3B .x≠-3C .x >3D .x >-3 【答案】B【分析】直接利用分式有意义的条件分析得出答案. 【详解】分式23x x +有意义, ∴x 的取值范围为:3x ≠-.故选B .【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5CD .5【答案】D【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边=2243-=7;当第三边为斜边时,3和4为直角边,第三边=2243+=5,故选:D .【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.10.下列哪个点在第四象限( )A .(1,2)B .(1,2)-C .(2,1)-D .(2,1)-- 【答案】C【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答即可.【详解】因为第四象限内的点横坐标为正,纵坐标为负,各选项只有C 符合条件,故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题11.已知:如图,,AB AD BC DC == ,点P 在AC 上,则本题中全等三角形有___________对.【答案】1【分析】由AB=AD ,BC=DC ,AC 为公共边可以证明△ABC ≌△ADC ,再由全等三角形的性质可得∠BAC=∠DAC ,∠BCA=∠DCA ,进而可推得△ABP ≌△ADP ,△CBP ≌△CDP .【详解】在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC ;∴∠BAC=∠DAC ,∠BCA=∠DCA ,在△ABP 和△ADP 中,AB AD BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP ,在△CBP 和△CDP 中,BC DC BCP DCP CP CP =⎧⎪∠=∠⎨⎪=⎩,△CBP ≌△CDP .综上,共有1对全等三角形.故答案为:1.【点睛】本题考查了三角形全等的判定定理和性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.等腰三角形的腰长为8,底边长为6,则其底边上的高为_________.【答案】55【分析】先画出图形,根据等腰三角形“三线合一”的性质及勾股定理即可求得结果.【详解】如图,AB=AC=8,BC=6,AD 为高,则BD=CD=3,∴22228355AD AB BD -=-=55【点睛】本题考查的是等腰三角形的性质,勾股定理,解答本题的关键是熟练掌握等腰三角形“三线合一”的性质:等腰三角形顶角平分线,底边上的高,底边上的中线重合.13.如图,在三角形纸片ABC 中,90,30,6C A AC ︒︒∠=∠==,折叠纸片,使点C 落在AB 边上的点D 处,折痕BE 与AC 交于点E ,则折痕BE 的长为_____________;【答案】4 【分析】根据勾股定理求得23BC =43AB =CBE=∠ABE=12∠ABC=30°,继而证得BE=AE ,在Rt △BCE 中,利用勾股定理列方程即可求得答案.【详解】在Rt △ABC 中,90,30,6C A AC ︒︒∠=∠==,设BC x =,则2AB x =,∵222BC AC AB +=,即()22262x x +=, 解得:23x = ∴23BC =43AB =∵折叠△ABC 纸片使点C 落在AB 边上的D 点处,∴∠CBE=∠ABE ,在Rt △ABC 中,∠A=30°,∴∠ABC=60°,∴∠CBE=∠ABE=12∠ABC=30°, ∴∠ABE=∠A=30°,∴BE=AE ,在Rt △BCE 中,∠C=90°,23BC =6CE AC AE BE =-=-,∵222BC CE BE +=,即(()22236BE BE +-=, 解得:4BE =.【点睛】本题主要考查了勾股定理的应用,含30度的直角三角形的性质以及折叠的性质,利用勾股定理构建方程求线段的长是解题的关键.领会数形结合的思想的应用.14.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为_____.【答案】1【分析】首先根据题意可得MN是AB的垂直平分线,由线段垂直平分线的性质可得AD=BD,再根据△ADC 的周长为10可得AC+BC=10,又由条件AB=7可得△ABC的周长.【详解】解:∵在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=1.故答案为1.15.平面上有三条直线两两相交且不共点,那么平面上到此三条直线距离相等的点的个数是_____.【答案】1【分析】根据角平分线性质的逆定理,结合三角形内角平分线和外角平分线作出图形即可解答.【详解】解:到三条直线的距离相等的点应该有A、B、C、D共1个,故答案为:1.【点睛】本题考查了角平分线性质的逆定理,掌握角平分线性质的逆定理是解题的关键.16.等腰三角形的一个角是70°,则它的底角是_____.【答案】55°或70°.【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°; 若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.17.如图,ABC ∠的内角平分线BP 与ACB ∠的外角平分线CP 相交于点P ,若29P ∠=︒,则A ∠=____.【答案】58︒【分析】根据角平分线的定义和三角形外角性质然后整理得到∠BAC=2∠P ,代入数据进行计算即可得解.【详解】∵BP 、CP 分别是∠ABC 和∠ACD 的平分线,∴∠ACD=2∠PCD ,∠ABC=2∠PBC ,由三角形的外角性质得,∠ACD=∠BAC+∠ABC ,∠PCD=∠P+∠PBC ,∴∠BAC+∠ABC=∠ACD=2∠PCD =2(∠P+∠PBC)= 2∠P+2∠PBC=2∠P+∠ABC ,∴∠BAC=2∠P ,∵∠P=29︒,∴∠BAC=58︒.故答案为:58︒.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和,角平分线的定义,熟记性质并准确识图最后求出∠BAC=2∠P 是解题的关键.三、解答题18.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?【答案】20°.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC 和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°﹣∠BAD=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),再求∠MAN的度数即可得出答案.【详解】如图,作A关于BC和CD的对称点A',A″,连接A'A″,交BC于M,交CD于N,则A'A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA'M+∠A″=180°﹣∠BAD=180°﹣100°=80°.∵∠MA'A=∠MAA',∠NAD=∠A″,且∠MA'A+∠MAA'=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA'A+∠MAA'+∠NAD+∠A″=2(∠AA'M+∠A″)=2×80°=160°,∴∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.19.已知一次函数y1=kx+b(其中k、b为常数且k≠0)(1)若一次函数y2=bx﹣k,y1与y2的图象交于点(2,3),求k,b的值;(2)若b=k﹣1,当﹣2≤x≤2时,函数有最大值3,求此时一次函数y1的表达式.【答案】(1)39,55;(2)y1=x或y1=﹣3x﹣1【分析】(1)y1与y2的图象交于点(2,3),代入y1与y2的解析式,组成k与b方程组,解之即可, (2)当﹣2≤x≤2时,y1函数有最大值3,一次函数y1增减性由k确定,分k>0,x=2,y=2与k<0,x=-2,y=2,代入解之即可.【详解】解:(1)∵y1与y2的图象交于点(2,3),∴把点(2,3)代入y1与y2的解析式得,23 23 k bb k+=⎧⎨-=⎩,解得,3595kb⎧=⎪⎪⎨⎪=⎪⎩;(2)根据题意可得y1=kx+k﹣1,①当k>0时,在﹣2≤x≤2时,y1随x的增大而增大,∴当x=2时,y1=3k﹣1=2,∴k=1,∴y1=x;②当k<0时,在﹣2≤x≤2时,y1随x的增大而减小,∴当x=﹣2时,y1=﹣k﹣1=2,∴k=﹣3,∴y1=﹣3x﹣1.综上所述,y1=x或y1=﹣3x﹣1.【点睛】本题考查解析式的求法,利用两直线的交点,与区间中的最值来求,关键是增减性由k确定分类讨论.20.计算:①(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)②(x﹣2y)(3x+2y)﹣(x﹣2y)2【答案】①﹣3a3b2;②2x2﹣8y2【分析】①先计算乘方运算,在计算乘除运算,最后算加减运算即可得出答案;②根据多项式乘多项式和完全平方公式可以解答本题.【详解】①解:(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)=﹣a3•b2+4a6b4÷(﹣2a3b2)=﹣a3b2﹣2 a3b2=﹣3a 3b 2②解:(x ﹣2y )(3x+2y )﹣(x ﹣2y )2=3x 2+2xy ﹣6xy ﹣4y 2﹣x 2+4xy ﹣4y 2=2x 2﹣8y 2【点睛】本题考查整式的混合运算,有乘方、乘除、加减的混合运算中,要按照先乘方后乘除、最后加减的顺序运算,其运算顺序和有理数的混合运算顺序相似.掌握整式的混合运算顺序是解题的关键.21.如图,四边形ABCD 中,//AB CD ,CD AD =,60ADC ∠=︒,对角线BD 平分ABC ∠交AC 于点P.CE 是ACB ∠的角平分线,交BD 于点O.(1)请求出BAC ∠的度数;(2)试用等式表示线段BE 、BC 、CP 之间的数量关系,并说明理由;【答案】(1)60︒;(2)BE+CP=BC ,理由见解析.【分析】(1)先证得ADC ∆为等边三角形,再利用平行线的性质可求得结论;(2)由BP 、CE 是△ABC 的两条角平分线,结合BE=BM ,依据“SAS ”即可证得△BEO ≌△BMO ;利用三角形内角和求出∠BOC=120°,利用角平分线得出∠BOE=∠BOM=60︒,求出∠BOM ,即可判断出∠COM=∠COP ,即可判断出△OCM ≌△OCP ,即可得出结论;【详解】(1)∵CD AD =,60ADC ∠=︒,∴ADC ∆为等边三角形,∴∠ACD=60︒,∵//AB CD ,∴∠BAC=∠ACD=60︒;(2)BE+CP=BC ,理由如下:在BC 上取一点M ,使BM=BE ,连接OM ,如图所示:。
第二章 实数2.7二次根式导学案(2)学习目标1.掌握二次根式的运算法则2.会进行(根号下仅限于数)二次根式简单四则运算.并解决实际问题3.经过观察,比较,总结和应用等数学活动,感受和体验发现的快乐,并提高应用意识。
学习重难点:二次根式的简单四则运算。
学习过程:1.复习:1、二次根式的性质:)0,0______(≥≥=b a ab ,)0,0____(>≥=b a ba 2、在二次根式的运算中,最后结果中的二次根式一般要写成______的形式。
2.自主探究:1、计算下列各式,观察计算结果:(1)94⋅=______ 94⋅=_______(2)2516⋅=_______ 2516⋅=_______(3)36100⋅=_______ 36100⋅=_______2、用“>”、“<”或“=”填空:(1)94⋅=______94⋅(2)2516⋅=______2516⋅(3)36100⋅=_____36100⋅问题:(1)你们发现了什么规律?(2)你能用数学表达式表示发现的规律吗?教师点评:(1)被开方数都不是负数(2)两个二次根式相乘等于一个二次根式。
(3)把两个二次根式中的被开方数相乘,作为等号另一边二次根式中的被开方数。
(4)表达式a ·b =ab (a ≥0,b ≥0) 由此可知:)0,0(≥≥⋅=b a b a ab )0,0(>≥=b a b a b a这两个公式倒过来就可以成为二次根式的乘除法运算公式。
)0,0(≥≥=⋅b a ab b a )0,0(>≥=b a ba b a三、例3:计算:⨯2.巩固练习:⨯÷18278÷⋅四、同样二次根式也可以进行加减运算,这时,以前学习的实数运算法则、运算律仍然适用。
当然,如果运算结果中出现某些项,她们各自化简后的被开方数相同,那么应当将这些项合并。
五、例4:计算:3 ×2 ×-5 (-1)2(+4)(-4) (-)2.巩固练习:× 1362-⨯ 6)6532(⋅-22)3223()3223(+-- (-3)2 (+2)(-2) (-) 2312348⋅÷ 2532112÷⋅⨯六、例5:计算- + (-)2.巩固练习:10827753+- 2215448÷- 3)18282(÷-+)2418)(122(--⨯⨯3.若一个长方体的长为cm 62,宽为cm 3,高为cm 2,则它的体积为_______3cm 。
北师大版初二上册第二章二次根式(导学案)学习目的:了解二次根式的意义;探求二次根式的乘法和除法法那么;会停止复杂的二次根式的乘法和除法运算。
学习重点二次根式的乘法和除法法那么的运用学习进程一、学习预备:1、平方根:假设 x2 = a,那么x叫做a的平方根。
假定0a≥, 那么a的平方根记为。
2、算术平方根:正数a的正的平方根,叫做a的算术平方根。
假定0a≥, 那么a的算术平方根记为_____。
100的_______,结果为_______。
3、填空:①的_______,结果为_____。
②表示4964③ 0.81的算术平方根记为___________,结果为_________。
_______,__________,二、阅读了解4、二次根式的概念:〞叫做关于形如二次根式,根号下的数叫做被开方数。
在实数范围内,正数没有平方根,所以被开方数只能是正数或零,即被开方数只能是非正数。
5、积的算术平方根计算= = . =× = ,所普通地,b=(0,0)≥≥〔留意:公式中,a b必需都是非a b正数〕积的算术平方根,等于。
应该等于多少?〔2〔3〔4〕例1、化简:〔1a b≥≥0,0)解〔1〕4936==⨯=〔2〔3即时练习:计算〔16、二次根式的乘法把公式=(0,0)a b≥≥,反过去得=≥≥.即:二次根式相乘,根指数不变,被开0,0)a b方数相乘.运用此公式,可以停止二次根式的乘法运算。
例2、计算 〔1〔2〕即时练习:计算〔12〕〔3〕(- 7、商的算术平方根计算:== , 23= =。
普通地,有=(0,0)a b ≥>商的算术平方根,等于 。
化简〔1〕〔2〔3即时练习:化简〔1 〔2 〔3 课堂检测1、计算:〔1〕〔2〔3〕〔4〕2、设直角三角形的两条直角边区分为a, b, 斜边为c. 〔1〕假设6,9,a b c ==求; 〔2〕假设4,12,a c b ==求; 〔3〕假设15,10,c b a ==求3、计算:〔1〕〔2〕〔4〔3〕〔2〔34、化简〔1〕。
12.1 二次根式(2) 学案学习目标:1.理解二次根式的性质,能运用二次根式的性质进行二次根式的运算和化简;2.a |的过程,培养分类的数学思想.学习重点:a |及运用.学习难点:运用二次根式的性质进行二次根式的化简.学习过程:一、温故互查1.形如 的式子叫做二次根式;a≥0)是一个 数;2= .二、设问导读 探究新知阅读课本,完成下列问题【探究】⑴计算: =24 =22.0 =2)54( =220_____观察其结果与根号内幂底数的关系,归纳得到: 当=>2,0a a⑵计算: =-2)4( =-2)2.0( =-2)54( =-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a . ⑶计算: =20 ;当==2,0a a【归纳】二次根式的性质:⎪⎩⎪⎨⎧<=>==0)(a _____0)a ( _____0)a ( ____ 2 a a三、自我检测【例1】化简:(1(2(3(4【例2】求下列各式的值.⑴ 2)45( ⑵ 2)32(- ⑶ 2)21(- ⑷ 2)14.3(π-四、巩固训练已知:实数a 、b 在数轴上的位置如图: 化简:222)(b a b a ---【课本练习】 第1、2题五、拓展提升1.如果2)2(2-=-x x ,那么x 的取值范围是 .2.若1<x<2,则2)1(|3|-+-x x 的值为 .3.已知344+-+-=x x y ,求代数式)4)(4(yx xy y x y x xy y x +-+-+-的值. 六、小结评价1.请说说你本节课的收获?(口述给组长)2.小组对你这节课表现进行评价:(较好;好;一般;差;较差)组长:. . . . . . . . -1 0 1a b。
优质资料新人教版八年级数学下册第十六章《二次根式(2)》导学案课题16.1 二次根式(2) 授课时间课 型新授 主备班级课时1授课人科目数学知识 与技 能1、掌握二次根式的基本性质: a a 2 [来源:Z§xx§][来源:学科网][来源:学§科§网]2、能利用上述性质对 二次根式进行化简. [来源:学科网]一、 预习检测导学活动四、精讲点拨二次修改 意见[来源:学科网]教(一) 复习引 入: [来源:Z&xx&]学 过程 经历探索二次根式基本性质的过程,归纳应用二 (1)什么是二次根式,它有哪些性质?目 标与方 法次根式基 本性质。
(2)二次根式 2 有意义,则 x情感x5态度 培养学生归纳推理能力。
(3)在实数范围 内因式分解: x2 6 x2 (价值 观教 材 分 析重 难 点重点:二次根式的性质 a2 a . 难点:综合运用性质 a2 a 进行化简 和计算。
(y-)(二)自主学习1、计算: 42 0.22 (4)2 5。
)2=(x+1、化简下列各式: ( 1 )、 0.32 ( 2 )、 (0.5)2 ( 3 )、 (6)2 (4)、 2a2 =( a 0 )[来源:学科网ZXXK]) 2、请大 家思考、讨论二次根式的性质 ( a )2 a(a 0) 与 a2 a 有什么区别与联系。
[来源:学科网]202 五、当堂检测 1、化简下列各式教法三主互位导学法观察其 结果与根号内 幂底数的关系,归纳得到:当 a 0时, a2 (1) 4x2 (x 0)( 2) x4[来源:学科网]2、化简下列各式学法教 学 设 想教具小组合作学习2 、 计 算 : (4)2 (0.2)2 ( 4)2 (1) (a 3)2 (a 3)(2 ) 2x 32 (x<-2 )53、填空:(1)、 (2x 1)2 - ( 2x 3) 2 (x 2) =___ ______.(20)2 [来源:学,科,网](2)、 ( 4)2 =观察其 结果与根号内幂底数的关系,归纳得到:当 a 0时, a2 (3)a、b、c 为三角形的三条边,则 (a b c)2 b a c -3、计算 : 02 二,目标展示当 a 0时, a2 ________. 六、作业布置P5 页 第 2, 3,4 题16.1 二次根式板书 一、 预习检测设 计三、精讲点拨二、质疑探究 四·当堂检测1、掌握二次根式的基本性质: a2 a 2、能利用上述性质对 二次根式进行化简.优质资料三,质疑探究将上面做题过程中得到的结论综合起来,得到二次根式的又一条非 教常重要的性质:学 反a a 0思a 2 a 0 0 a a 0。
第二十一章《二次根式》导学计划一:课标要求:了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。
二:导学目标:知识与技能目标:了解二次根式的概念,理解二次根式有意义的条件和基本性质“()2=a(a≥0)”;了解二次根式的性质“= a(a≥0),并会用来化简二次根式;理解二次根式的乘除法法则,会进行简单的二次根式的乘除运算;理解同类二次根式的概念和二次根式的加减法法则,会进行简单的二次根式的加减运算;了解最简二次根式的概念,能运用二次根式的有关性质进行化简。
过程与方法目标:通过类比与探索,学习二次根式与同类二次根式的概念,二次根式的运算。
情感与态度目标:培养学生自主参与、自主探索的习惯。
三:导学重难点导学重点:1、理解二次根式的概念,掌握二次根式的性质,明确相关性质成立的条件。
2、理解二次根式的运算法则,灵活运用法则进行计算。
导学难点:1、二次根式的性质=a ( a≥0)=-a (a<0) 。
2、二次根式的混合运算。
四:单元导学策略1、导学步骤:2、实施建议3、课时安排全章导学时间为10课时,建议分配如下:§21.1 二次根式--------------------------3课时§21.2 二次根式的乘除法------------------3课时§21.3 二次根式的加减法------------------2课时复习-------------------------------2课时课题21.1 二次根式(1)总第 1 课课标要求:了解二次根式的概念【导学目标】1、知识与技能:理解二次根式的概念,并利用(a≥0)的意义解答具体题目2、过程与方法:通过自主学习,类比发现规律,并归纳总结。
3、情感态度与价值观:提出问题,根据问题给出概念,应用概念解决实际问题。
【导学核心点】导学重点:形如(a≥0)的式子叫做二次根式的概念导学难点:利用“(a≥0)”解决具体问题。
二次根式(第2课)【目标导航】1.使学生初步掌握利用(a)2=a(a≥0)进行计算.2.乘方与开方互为逆运算在推导结论(a)2=a(a≥0)中的应用3.(a≥0)并利用它进行计算和a(a≥0),并利用这个结论解决具体问题.【知识回顾】1. 5,a有意义吗?为什么?2.5表示的意义是什么?3.a表示的意义是什么?思考:请同学们想一想a有没有可能小于重点:应用(a)2=a(a≥0)进行计算.难点:应用二次根式的非负性解决问题.例1已知3+x+5-y=0,求xy的值是多少?练习已知a-1+7+b=0,求a-b的值.例2计算(1)(7.1)2(2)(25)2;(3)(12+a)2.例3化简(1(2(3(4例4填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1a,则a可以是什么数?(2a,则a可以是什么数?(3a,则a可以是什么数?例5当x>2时,.【课堂操练】1.(9)2=_________;(5.0)2=_________;2.(3)2=_________;(710)2=_________;3.(51)2=______;(372)2=________;4. (0)2=____;(22ba+)2=________;5. (a)2=______;(a≥0)6.7是一个正整数,则正整数m的最小值是________.8的值是()A.0B.23C.423D.以上都不对2.a≥0它们的结果,下面四个选项中正确的是()ABCD.【课后盘点】1.先化简再求值:当a=9时,求a+甲解答:原式=a=a+(1-a)=1;乙解答:原式=a a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│+=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│+4.=-2)7(,=4,=-2)5.1(,=-2)1(x(x≥1)=-2)7(,=2)32(,=+-442xx(2≥x);)2= ;()2= ;)2 = ;()2= ;()2= ;(2= ;=2)32(;2)32(-;-2= ;()2= ;(-2= ;= .)2 = ;)2= .5.在实数范围内分解下列因式:(1)x2-3 (2)x4-4(3)2x2-3(4)3x2-56.把根号外的因式移入根号内,mm1-计算:(设计:黄本华)241222-。
16.1二次根式(2)学习目标:1.掌握二次根式的基本性质:a a =2; 2.能利用上述性质对二次根式进行化简. 学习重、难点: 重点:二次根式的性质a a =2.(a )2=a (a ≥0)难点:运用性质进行化简和计算(a )2=a (a ≥0),2a =a (a ≥0)”解决具体问题. 学习过程:一、自主学习:1.什么是二次根式,它有哪些性质?2.计算:=24 =22.0 =2)54( =220观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时计算:=-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时计算:=20 当==2,0a a 时归纳总结:将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<->==00002a a a aa a 认真理解!!二、合作交流:1.化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )2.请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系?3.化简下列各式(1))0(42≥x x (2) 4x(1))3()3(2≥-a a (2)()232+x (x <-2)三、课堂检测(1、2必做 3、4题选做):1.填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.(2)、2)4(-π=(3)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________.2.若042=-++--y x y x ,则x=3. 已知0<x <1,化简:4)1(2+-x x -4)1(2-+x x4.把()212--x x 的根号外的()x -2适当变形后移入根号内,得( )A 、x -2B 、2-xC 、x --2D 、2--x八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,13【答案】C【分析】根据勾股数的定义:有a 、b 、c 三个正整数,满足a 2+b 2=c 2,称为勾股数.由此判定即可.【详解】解:A 、32+42=52,能构成勾股数,故选项错误;B 、62+82=102,能构成勾股数,故选项错误C 、42+62≠82,不能构成勾股数,故选项正确;D 、52+122=132,能构成勾股数,故选项错误.故选:C .【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用. 2.如图,直线y kx b =+()0b>经过点(2,0),则关于x 的不等式0kx b +≥的解集是( )A .x>2B .x<2C .x≥2D .x≤2【答案】D 【分析】写出函数图象在x 轴上方及x 轴上所对应的自变量的范围即可.【详解】解:当x ≤2时,y ≥1.所以关于x 的不等式kx +3≥1的解集是x ≤2.故选D .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)1的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3.一个多边形内角和是720,则这个多边形的边数为( )A .8B .7C .6D .5【答案】C【分析】n 边形的内角和为(n−2)180 ︒,由此列方程求n 的值.【详解】设这个多边形的边数是n ,则:(n−2)×180 ︒=720 ︒,解得n =6,故选:C .【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.在平面直角坐标系中,线段AB 的端点分别为()()2,00,4A B ,,将线段AB 平移到11A B ,且点1A 的坐标为(8,4),则线段11A B 的中点的坐标为( )A .(7,6)B .(6,7)C .( 6,8)D .(8,6) 【答案】A【分析】根据点A 、A 1的坐标确定出平移规律,求出B 1坐标,再根据中点的性质求解.【详解】∵()2,0A ,1A (8,4),∴平移规律为向右平移6个单位,向上平移4个单位,∵()0,4B ,∴点B 1的坐标为(6,8),∴线段11A B 的中点的坐标为8648,22++⎛⎫⎪⎝⎭,即(7,6), 故选A .【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.已知直角三角形两边的长分别为6和8,则此三角形的周长为( )A .14B .14+C .24或14+D .14或7+【答案】C【分析】先设Rt △ABC 的第三边长为x ,由于8是直角边还是斜边不能确定,故应分8是斜边或x 为斜边两种情况讨论.【详解】解:设Rt ABC ∆的第三边长为x ,①当8为直角三角形的直角边时,x 为斜边,由勾股定理得,22x=+=,6810=++=;此时这个三角形的周长681024②当8为直角三角形的斜边时,x为直角边,由勾股定理得,22x=-=-=,此时这个三角形的周长86643627=++=+,68271427故选:C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.-6和-5之间B.-5和-4之间C.-4和-3之间D.-3和-2之间【答案】A【解析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【详解】∵点P坐标为(-4,3),点B(-1,0),∴OB=1,∴22+233∴OA=32,∴点A的横坐标为2,∵-6<2<-5,∴点A的横坐标介于-6和-5之间.故选A.【点睛】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解题的关键.7.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.【答案】C【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【详解】解:根据选项,可知根据角和边来对三角形分别进行分类.故选:C.【点睛】此题考查三角形问题,很基础的一道考查数学概念的题目,在考查知识的同时也考查了学生对待学习的态度,是一道好题.8.设(2a+3b)2=(2a﹣3b)2+A,则A=()A.6ab B.12ab C.0 D.24ab【答案】D【解析】∵(2a+3b)2=4a2+12ab+9b2, (2a-3b)2+A=4a2-12ab+9b2+A, (2a+3b)2 =(2a-3b)2+A∴4a2+12ab+9b2=4a2-12ab+9b2+A,∴A=24ab;故选D.9.下列平面图形中,不是轴对称图形的是()A.B.C.D.【答案】A【解析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.10.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【答案】C【解析】试题解析:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选C.考点:基本作图.二、填空题11.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为_____.【答案】1【分析】求出∠BAD=∠BAC﹣∠DAC=10°,求出AB=2,求出BC=4,则CD可求出.【详解】∵AD⊥BC于点D,∠C=10°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=10°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=10°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=1.故答案为:1.【点睛】此题主要考查直角三角形的性质与证明,解题的关键是熟知含10°的直角三角形的性质.12.2234xy z·(-28z y )的值为_______ 【答案】-6xy 【解析】试题分析:原式=222384xy z z y ⋅-⋅=222244xy z yz -=-6xy . 故答案为-6xy .13.如图,ABC △中,6AC =cm ,8AB =cm ,10BC =cm ,DE 是边AB 的垂直平分线,则ADC 的周长为______cm.【答案】16【解析】根据垂直平分线的性质得到AD=BD,AE=BE ,再根据三角形的周长组成即可求解.【详解】∵DE 是边AB 的垂直平分线,∴AD=BD,AE=BE∴ADC 的周长为AD+CD+AC=BD+CD+AC=BC+AC=10+6=16cm ,故填16.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的性质.14.在某次数学测验后,王老师统计了全班50名同学的成绩,其中70分以下的占12%,70~80分的占24%,80~90分的占36%,则90分及90分以上的有__________人.【答案】1【分析】先求出90分及90分以上的频率,然后根据“频数=频率×数据总和”求解.【详解】90分及90分以上的频率为:1-12%-24%-36%=28%,∵全班共有50人,∴90分及90分以上的人数为:50×28%=1(人).故答案为:1.【点睛】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.15.一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),则关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为____. 【答案】24x y =⎧⎨=⎩. 【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】∵一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),∴关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为24x y =⎧⎨=⎩. 故答案为:24x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 16.根据数量关系:x 的5倍加上1是正数,可列出不等式:__________.【答案】510x +>【分析】问题中的“正数”是关键词语,将它转化为数学符号即可.【详解】题中“x 的5倍加上1”表示为:51x +“正数”就是0.> x 的5倍加上1是正数,可列出不等式:510x +>故答案为510x +>.【点睛】用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.17.把命题“直角三角形的两个锐角互余”改写成“如果……那么……”的形式:__________________.【答案】如果一个三角形是直角三角形,那么它的两个锐角互余.【分析】首先找出原命题中的条件及结论,然后写成“如果…,那么…”的形式即可.【详解】解:故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余.【点睛】此题主要考查学生对命题的理解及运用能力.三、解答题18.如图,平面直角坐标系xoy 中A(﹣4,6),B(﹣1,2),C(﹣4,1).(1)作出△ABC 关于直线x=1对称的图形△A 1B 1C 1并写出△A 1B 1C 1各顶点的坐标;(2)将△A 1B 1C 1向左平移2个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标; (3)观察△ABC 和△A 2B 2C 2,它们是否关于某直线对称?若是,请指出对称轴,并求△ABC 的面积.【答案】(1)作图见解析,A 1(6,6),B 1(3,2),C 1(6,1);(2)作图见解析,A 2(4,6),B 2(1,2),C 2(4,1);(3)△ABC 和△A 2B 2C 2关于y 轴对称,△ABC 的面积=7.1.【分析】(1)根据题意分别作出三顶点关于直线x=1的对称点,再顺次连接即可得;(2)由题意将△A 1B 1C 1的三个顶点分别向左平移,再顺次连接即可得;(3)由题意观察图形即可得,再利用三角形的面积公式求解可得.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,A 1(6,6),B 1(3,2),C 1(6,1).(2)如上图所示,△A 2B 2C 2即为所求,A 2(4,6),B 2(1,2),C 2(4,1);(3)△ABC 和△A 2B 2C 2关于y 轴对称,△ABC 的面积为12⨯1×3=7.1. 【点睛】本题考查的是作图-轴对称变换,熟练掌握轴对称的性质是解答此题的关键. 19. (1)已知2=2+x x ,求()()()2()2311x x x x x ++++﹣﹣的值. (2)化简:259123-⎛⎫-÷ ⎪++⎝⎭x x x ,并从±2,±1,±3中选择一个合适的数求代数式的值. 【答案】(1)原式=23x x ++,把22x x +=代入得;原式235=+=;(2)原式12x =+,当1x =时,原式13=.【分析】(1)先进行整式运算,再代入求值;(2)先进行分式计算,根据题意选择合适的值代入求解.【详解】解:(1)原式2224431x x x x x =++--+-23x x =++,把22x x +=代入得,原式235=+=;(2)原式2322(3)(35)x x x x x x ++⎛⎫=-⨯ ⎪++-+⎝⎭ 332(3)(3)x x x x x -+=⨯+-+ 12x =+, 由分式有意义条件得 当x 为-2,±3时分式无意义, ∴当1x =时,原式13=. 【点睛】(1)整体代入求值是一种常见的化简求值的方法,要熟练掌握;(2)遇到分式化简求值时,要使选择的值确保原分式有意义.20.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式225a a -+的最小值.方法如下:∵()2222521414a a a a a -+=-++=-+,由()210a -≥,得()2144a -+≥; ∴代数式225a a -+的最小值是4.(1)仿照上述方法求代数式2107x x ++的最小值.(2)代数式2816a a --+有最大值还是最小值?请用配方法求出这个最值.【答案】(1)18-;(2)有最大值,最大值为32.【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】解:(1)∵()222107102518518x x x x x ++=++-=+-,由()250x +≥, 得 ()251818x +-≥-;∴代数式2107x x ++的最小值是18-;(2)()22281681632432a a a a a --+=---+=-++, ∵()240a -+≤, ∴()243232a -++≤, ∴代数式2816a a --+有最大值,最大值为32.【点睛】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键. 21.计算:(1)(﹣a 1)3•4a (1)1x (x+1)+(x+1)1.【答案】 (2)-4a 7; (2) 3x 2+4x+2.【解析】试题分析:(2)根据幂的乘方、同底数幂的乘法进行计算即可;(2)根据单项式乘以多项式以及完全平方公式进行计算即可.解:(2)原式=﹣a 6•4a=﹣4a 7;(2)原式=2x 2+2x+x 2+2x+2=3x 2+4x+2.22.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①211x x -+;②222a b a b --;③22x y x y +-;④()222a b a b -+.其中是“和谐分式”是 (填写序号即可);(2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3)在化简22344a ab ab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:原式=22344a a ab b b b -⨯-=223244a a ab b b --=()()222323244a b a ab b ab b b ---, 小强:原式=22344a a ab b b b -⨯-=()()()222224444a a a b a a b a b ba b b ---=--, 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简.【答案】(1)②;(2) 4,5;(3)见解析.【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题;(2)根据和谐分式的定义可以得到a 的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】(1)②分式=,不可约分, ∴分式是和谐分式, 故答案为②;(2)∵分式为和谐分式,且a 为正整数, ∴a=4,a=﹣4(舍),a=5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式====故答案为小强通分时,利用和谐分式找到了最简公分母.【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答. 23.化简与计算(1)将公式a b x ab-=变形成已知x 与a ,求b .(假定变形中所有分式其分母都不为0) (2)22214()2442x x x x x x x x+---÷--+ (3)计算:2221(21)4(1)(0.5)8x x x x x +--+-÷ (4)计算:23(12)(536)x x mx x --+-,并把结果按字母x 升幂排列【答案】(1)1a b ax =+;(2)()222x -; (3)6x-3 (4)()()23451366212x m x m x x -++-++ 【分析】(1)代数式通过变形,即可得到答案;(2)先把代数式进行因式分解,计算括号内的运算,然后除法变成乘法,进行计算即可;(3)根据完全平方公式进行计算,以及整式乘法的运算法则进行计算,即可得到答案;(4)利用多项式乘以多项式进行计算,然后按照x 的升幂排列,即可得到答案.【详解】解:(1)∵a b x ab -=,∴abx=a -b ,∴abx+b=a ,∴(1ax +)b = a , 1a b ax ∴=+; (2)原式= ()()()()()222212•422x x x x x x x x x x ⎡⎤-+--⎢⎥---⎢⎥⎣⎦=()222•4422xx x x x x x --+--=()242•42x x x x x ---=()222x -;(3)原式=22284414444x x x x x x ++-+--•=832x x --=6x -3;(4)原式=23234536106212x mx x x x mx x -+--+-+=()()23451366212x m x m x x -++-++【点睛】本题考查了分式的化简求值,整式的混合运算,解题的关键是熟练掌握整式的运算法则进行计算. 24.如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE.求证:BD =CE.【答案】见解析.【分析】先求出∠CAE =∠BAD 再利用ASA 证明△ABD ≌△ACE ,即可解答【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE+∠CAE =90°,∠BAE+∠BAD =90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.【点睛】此题考查全等三角形的判定与性质,解题关键在于判定三角形全等25.如图,四边形ABCD中,AB∥DC,AB=AD,求证:BD平分∠ADC.【答案】见解析【分析】由AB=AD可得出∠ADB=∠ABD,由AB∥DC,利用“两直线平行,内错角相等”可找出∠ABD =∠BDC,结合∠ADB=∠ABD可得出∠ADB=∠BDC,进而可证出BD平分∠ADC.【详解】证明:∵AB=AD,∴∠ADB=∠ABD,又∵AB∥DC,∴∠ABD=∠BDC,∴∠ADB=∠BDC,即BD平分∠ADC.【点睛】本题考查了等腰三角形的性质,平行线的性质,角平分线的判定,掌握等腰三角形的性质是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为( )A .2.5×10﹣6米B .25×10﹣5米C .0.25×10﹣4米D .2.5×10﹣4米【答案】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×-n 10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;【详解】∵1微米=0.000001米=1×-610米,∴2.5微米=2.5×1×-610米=2.5×-610米;故选:A .【点睛】本题主要考查了科学记数法的表示,掌握科学记数法是解题的关键.2.点P 在第二象限内,那么点P 的坐标可能是( )A .(4,3)B .(3,4)--C .()3,4-D .(3,4)- 【答案】C【分析】根据第二象限内点坐标的特点:横坐标为负,纵坐标为正即可得出答案.【详解】根据第二象限内点坐标的特点:横坐标为负,纵坐标为正,只有()3,4-满足要求 故选:C .【点睛】本题主要考查第二象限内点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键. 3.下列图形是轴对称图形的为( ) A . B . C . D .【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项不合题意;B 、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-【答案】B【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.5.运用乘法公式计算(x+3)2的结果是( )A.x2+9 B.x2–6x+9 C.x2+6x+9 D.x2+3x+9【答案】C【解析】试题分析:运用完全平方公式可得(x+3)2=x2+2×3x+32=x2+6x+1.故答案选C 考点:完全平方公式.6.如图,∠A、∠1、∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1【答案】B【分析】根据三角形的一个外角大于任何一个和它不相邻的内角解答.【详解】∵∠1是三角形的一个外角,∴∠1>∠A ,又∵∠2是三角形的一个外角,∴∠2>∠1,∴∠2>∠1>∠A .故选:B .【点睛】此题主要考查了三角形的内角和外角之间的关系,熟练掌握,即可解题.7.下列运算错误的是( )A .22()a a -=.B .()26(2)3a b ab a -÷=-.C .3128-=.D .0(1)1-=-. 【答案】D【分析】根据及整式的除法法则及零指数幂与负指数幂计算.【详解】解:A 选项2222()(1)a a a =-=-,A 正确;B 选项()26(2)3a b ab a -÷=-,B 正确; C 选项3311228-==,C 正确; D 选项0(1)11-=≠-,D 错误.故选:D【点睛】本题综合考查了整式乘法的相关运算,熟练掌握整式的除法运算及零指数幂与负指数幂的计算是解题的关键.即011(0),p pa a a a -=≠=. 8.在统计中,样本的标准差可以反映这组数据的( )A .平均状态B .分布规律C .离散程度D .数值大小 【答案】C【解析】根据标准差的概念判断.标准差是反映数据波动大小的量.【详解】方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.而标准差是方差的算术平方根,同样也反映了数据的波动情况.故选C .【点睛】考查了方差和标准差的意义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.而标准差是方差的算术平方根,9.对于任何整数m ,多项式()2459m +-都能( )A .被8整除B .被m 整除C .被()1m -整除D .被()21m -整除 【答案】A【分析】先对多项式进行因式分解,化为多个最简因式的乘积,再找出其中有无和选项中相同的一个,即可得出答案.【详解】原式2(45)3m =+- (453)(453)m m =+++-(48)(42)m m =++8(2)(21)m m =++故可知()2459m +-中含有因式8、2m +、21m +,说明该多项式可被8、2m +、21m +整除,故A 满足,本题答案为A.【点睛】本题关键,若想让多项式被因式整除,需要将多项式化简为多个最简因式的乘积,则多项式一定可以被这几个最简因式整除.10.如图,在等腰△ABC 中,顶角∠A=40°,AB 的垂直平分线MN 交AC 于点D ,若AB=m ,BC=n ,则△DBC 的周长是( )A .m+2nB .2m+nC .2m+2nD .m+n【答案】D 【分析】根据垂直平分线的性质和等腰三角形的定义,可得AD=BD ,AC=AB=m ,进而即可求解.【详解】∵AB 的垂直平分线MN 交AC 于点D ,顶角∠A=40°,∴AD=BD ,AC=AB=m ,∴△DBC 的周长=DB+BC+CD=BC+AD+DC=AC+BC=m+n .故选:D .【点睛】本题主要考查等腰三角形的定义以及垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点距离相等,是解题的关键.二、填空题11.计算:2422a a a a -=++____________. 【答案】2a a- 【分析】根据分式的加减运算的法则,先因式分解复杂的因式,找到最简公分母,通分,然后按同分母的分式相加减的性质计算,在约分,化为最简二次根式.【详解】解:2422a a a a-++ =42(2)a a a a -++ =24(2)(2)a a a a a -++ =24(2)a a a -+ =(2)(2)(2)a a a a +-+ =2a a-. 故答案为:2a a -. 【点睛】本题考查分式的加减运算.12.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若225∠=,则1∠的度数为__________.【答案】35︒【分析】延长AB 交CF 于E ,求出∠ABC ,根据平行线性质得出∠AEC=∠2=25°,再根据三角形外角性质求出∠1即可.【详解】解:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH ∥EF ,∴∠AEC=∠2=25°,∴∠1=∠ABC-∠AEC=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.13.已知:如图,45AOB ∠=︒,点P 为AOB ∠内部一点,点P 关于OA OB ,的对称点12P P ,的连线交OA OB ,于M N ,两点,连接PM PN ,,若2OP =,则PMN ∆的周长=__________.【答案】22【分析】连接OP 1,OP 2,利用对称的性质得出OP= OP 1= OP 2=2,再证明△OP 1 P 2是等腰直角三角形,则△PMN 的周长转化成P 1 P 2的长即可.【详解】解:如图,连接OP 1,OP 2,∵OP=2,根据轴对称的性质可得:OP= OP 1= OP 2=2,PN= P 2N ,PM= P 1M ,∠BOP=∠BOP 2,∠AOP=∠AOP 1,∵∠AOB=45°,∴∠P 1O P 2=90°,即△OP 1 P 2是等腰直角三角形,∵PN= P 2N ,PM= P 1M ,∴△PMN 的周长= P 1M+ P 2N+MN= P 1 P 2,∵P 1 P 221=22故答案为:22【点睛】本题考查轴对称的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用对称的性质将三角形周长转化成线段的长度.14.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD= .【答案】50°【解析】试题分析:由全等三角形的性质可知AB=AD,再根据等腰三角形的性质和三角形内角和定理即可得到答案.∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°考点:全等三角形的性质.15.如图,已知Rt ABC的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.【答案】1【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC的面积,阴影部分的面积是三角形ABC的面积加以AC为直径和以BC为直径的两个半圆的面积再减去以AB为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC为直径的半圆的面积:π×(6÷2)2×12=92π=4.5π,以BC为直径的半圆的面积:π×(8÷2)2×=8π,以AB 为直径的半圆的面积:π×(10÷2)2×12=12.5π, 三角形ABC 的面积:6×8×12=1, 阴影部分的面积:1+4.5π+8π−12.5π=1;故答案是:1.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.16.如图, 在平面直角坐标系中, 一次函数y=x+32的图象与x 轴交于点A, 与y 轴交于点B, 点P 在线段AB 上, PC ⊥x 轴于点C, 则△PCO 周长的最小值为_____【答案】323【解析】先根据一次函数列出PCO ∆周长的式子,再根据垂线公理找到使周长最小时点P 的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P 的坐标为(,32)(0)a a a +<,32OC a PC a ∴=-=+PCO ∴∆周长为3232OC PC OP a a OP OP ++=-++=则求PCO ∆周长的最小值即为求OP 的最小值如图,过点O 作⊥OD AB由垂线公理得,OP 的最小值为OD ,即此时点P 与点D 重合由直线32y x =+(32,0),(0,32)A B -,则32OA OB ==BAO ∴∆是等腰直角三角形,45BAO ∠=︒DAO ∴∆是等腰直角三角形,2232OD AD OD AD OA =+==解得3OD =则PCO ∆周长的最小值为3232323OP OD ==故答案为:323+.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出PCO ∆周长的式子,从而找到使其最小的点P 位置是解题关键.17.华为30 5mate G 手机上使用7nm 的芯片, 10.0000001nm cm =,则7nm 用科学记数法表示为__________cm【答案】7710-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:7770.0000001710nm c cm m -=⨯=⨯.故答案为:7710-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 三、解答题18.(1)先化简,再求值:21(1)121a a a a -÷+++,其中21a =; (2)解分式方程:23193x x x +=--. 【答案】(1)1a +22)4x =-【分析】(1)先进行化简,然后将a 的值代入求解;(2)根据分式方程的解法求解. 【详解】(1) 原式= 211()1121a a a a a a +-÷++++ =2121a a a a a ÷+++ =2211a a a a a++⋅+ =2(1)1a a a a+⋅+=1a + 当21a =-时,原式= 2112-+=(2)原方程可化为:31(3)(3)3xx x x +=+--方程两边乘()(33)x x +-得:3(3)(3)(3)x x x x ++=+-22339x x x ++=-22393x x x +-=--312x =-4x =-检验:当4x =-时, (3)(3)0x x +-≠所以原方程的解是4x =-【点睛】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.19.如图,点C 在线段AF 上,AB ∥FD ,AC =FD ,AB =FC ,CE 平分∠BCD 交BD 于E .求证:(1)△ABC ≌△FCD ;(2)CE ⊥BD .【答案】(1)见解析;(2)见解析【分析】(1)根据SAS 即可判定△ABC ≌△FCD ;(2)由全等三角形的性质得CB =CD ,结合等腰三角形的性质定理,即可得到结论.【详解】(1)∵AB ∥FD ,∴∠A =∠F ,又∵AC =DF ,AB =FC ,∴△ABC ≌△FCD (SAS );(2)∵△ABC ≌△FCD ,∴CB =CD ,又∵CE 平分∠BCD ,∴CE ⊥BD .【点睛】本题主要考查三角形全等的判定和性质定理以及等腰三角形的性质定理,掌握等腰三角形“三线合一”是解题的关键.20.如图,在ABC ∆中,90C ∠=︒,将ACE ∆沿着AE 折叠以后C 点正好落在AB 边上的点D 处.(1)当28B ∠=︒时,求CAE ∠的度数;(2)当6AC =,10AB =时,求线段DE 的长.【答案】(1)31︒ ;(2)3【分析】(1)先根据直角三角形两锐角互余求出CAB ∠的度数,再由折叠的性质得出CAE EAB ∠=∠,从而CAE ∠的度数可求;(2)先由勾股定理求出BC 的长度,然后由折叠的性质得到,,90AC AD CE CD CEA C ==∠=∠=︒,设DE x =,在Rt EDB 中利用勾股定理即可求出x 的值,即DE 的长度.【详解】(1)∵90C ∠=︒,28B ∠=︒90902862CAB B ∴∠=-∠=︒-︒=︒由折叠的性质可知CAE EAB ∠=∠1312CAE CAB ∴∠=∠=︒ (2)∵90C ∠=︒,6AC =,10AB = ∴22221068BC AB AC --由折叠的性质可知,,90AC AD CE DE EDA C ==∠=∠=︒1801809090EDB EDA ∴∠=︒-∠=︒-︒=︒设DE x =,则8,1064BE x DB =-=-=在Rt EDB 中,222ED DB EB +=∴2224(8)x x +=-解得3x =∴3DE =。
二次根式〔2〕 学案学习目标:1.理解二次根式的性质,能运用二次根式的性质进展二次根式的运算和化简;2.2=a 〔a ≥0〕的过程,培养分类的数学思想。
学习重点:2=a 〔a ≥0〕及运用。
学习难点:运用二次根式的性质进展二次根式的化简。
学习过程:一、温故互查〔1〕当a >0时,a 表示a 的 ,因此,;〔2〕当a =0时,a 表示0的 ,因此,a = ;就是说a 〔a ≥0〕总是一个 数。
有意义,那么2x =_______. 3.整数指数幂的运算性质:()n n n b a ab = n n na b a b =⎪⎭⎫ ⎝⎛ 二、设问导读 探究新知阅读课本,完成以下问题 【探究】根据算术平方根的意义填空:2=_______;〕2=_______;2=______;2=_______;〕2=______;〕2=_______;〕2=_______. 根据以上结果,你能发现什么规律?【归纳】二次根式的性质:三、自我检测例1 计算:⑴〕2 = ⑵〔〕2 =⑶2 = ⑷〕2=提示:⑵中用到了()n n n b a ab = ⑷中用到了n n na b a b =⎪⎭⎫ ⎝⎛ 【课本练习】Р5 1四、稳固训练计算:2〔x≥0〕= 〕2=〕2 = 〕2 =五、拓展提升1.计算〔1〕- 2 〔2〕〔12〕22.把以下非负数写成一个数的平方的形式:⑴5 ⑵3.4 ⑶16⑷x 〔x ≥0〕六、小结评价1.请说说你本节课的收获?〔口述给组长〕2.小组对你这节课表现进展评价:〔较好;好;一般;差;较差〕组长:。
请同学们认真阅读课本3--4页,并划出你认为重要的内容。
(1)4的算术平方根是 ,(2)∵( )2=5∴ 是 的算术平方根,∴(5)2= 。
(3)16的算术平方根是 。
(4)x 时,式子52+x 有意义。
(5)用基本运算符号(加、减、乘、除、乘方、开方)把 或表示数的 连接起来的式子叫做代数式。
1.根据算术平方根的意义填空=2)3( , =2)2( ,=2)31( ,=2)0( , 则(a )2 = ,(a 0≥),a 中a 是 数。
1.(a )2=a 成立的条件是 。
2、(1)(4.2)2 = (2)(-2.0)2=(3)(-72)2 = (4)(212)2=3.填空并总结规律:=23 ,22.0 ,=20 ,2)5-(= ,2)35-(= 。
由上式可得:当0≥a 时,=2a , 当0≤a 时,=2a 。
例1 计算(1)(-7)2 (2)(312)2(3)(-32.0)2 (4)-(55)2例2 计算:(1)-2)3-((2)已知()x -11-x 2=,求x 的取值范围。
归纳:二次根式的性质 (1)a 0;(2)(a )2 = ,(a 0≥); (3)⎪⎩⎪⎨⎧≤≥==0a ) (___0a (____)2a a1.)73-(2 6-10 810 = 2-3 =2.2a =a 成立的条件是 。
3.若2a =(a )2,则a 的取值范围是 。
4.实数a 在数轴上的位置如图所示,化简2a =.5.当x 时,2)2-(x =x-2.6.2)3-π(= (8)2)5-2(=7.计算(1)23.0+(2-)2(2)2)2-(-(3)2(3)24.0-(-3.0)22)2(4)(23)2-(38.计算2)4-π(+2)π-3(9.实数a、b在数轴上的位置如图所示,化简|a-b|-2a(x-|4-x| 。
化简:若0<x<2,则2)2-。
二次根式(第2课时)学习目标1.探究二次根式的两个性质;2.把二次根式化简为最简二次根式。
课堂探究知识点1 积的算术平方根★积的算术平方根的性质:积的算术平方根,等于积中各因数的算术平方根=≥≥0,0).a b注意:(1)a,b满足的条件是a≥0,b≥0这样的错误.(2)=⋅⋅⋅⋅⋅⋅≥.,,,,0)a b c n例1 化简:(1);.解:====⨯7⨯=.4312点拨如果没有特殊说明,本章中根号内所有字母均表示正数.所有符合)=≥≥这个公式的可直接应用公式.对于第(3)个式子,先利用a b0,0同号得正,化为两个正因数积的形式,再利用公式计算.知识点2 商的算术平方根的性质(难点)★商的算术平方根的性质:商的算术平方根等于被除数的算术平方根与除数==≥≥.0,0)a b注意:(1)0,0)a b=≥≥中a必须是非负数,b必须是正数才成立,如果a,b≠,而3==.若,则无意义.4(2)如果被开方数是带分数,应先化成假分数,,注意≠例2 化简:;分析:0,0)=≥≥来化简,但要注意当被开方数是带a b分数时,应先把它化成假分数.解:7===;=;311=;===.4点拨当被开方数中出现不完全平方数时,先把这个数分解因数.如:54=6×9.知识点5 最简二次根式(重点)★一般地,如果一个二次根式满足:①被开方数的因数是整数,因式是整式,②被开方数中不含能开得尽方的因数或因式,那么,我们把这样的二次根式叫做最简二次根式.★将二次根式化成最简二次根式的步骤:(1)根号下有带分数或小数的要把根号下的带分数化成假分数,小数化成分数;(2)被开方数不是完全平方数时,看能不能先进行因数分解,能分解的先分解因数;(3)将被开方式中开得尽方的因数,用它的算术平方根代替后移到根号外;(4)化去分母中的根号,如果根号内的分母是一个平方数,可直接利用商的算术平方根的性质,分子、分母分别开方;如果分母不能开得尽方,则被开方数中的分子、分母同乘一个适当的不为零的数,使分母成为一个平方数,其根据是分式的基本性质;(5)约分.例3 下列各式中是最简二次根式的是( )A B . C . D解析:A 中被开方式含有分母;B 中含有能开方的8;D 中含有(-4)2即42,可以开方,C 中的6不能分解为能开方的因数,故选C . 答案:C点拨判断所给式子是否为最简二次根式,必须同时考虑两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开得尽方的因数或因式.两者缺一不可.例4 把下列各式化为最简二次根式:(1)(2).分析:(1)应用0,0)a b =≥≥化简;(2)先把化为,再化简;(3)应用0,0)a b =≥≥化简;(4)0,0)a b ≥≥化简.解:(1)=====;(2)4==11782822=⨯=⨯⨯=;22===. 点拨 (1)在对二次根式进行化简时,如果被开方数是一个整数,一般先将被开方数写成一个平方数与另一个数的积的形式;(2)当被开方数是带分数时应化为假分数;(3)在二次根式化简时,当被开方数是一个分数时,分子开出来的还是分子,分母开出来的还是分母;(4)二次根式无论是计算还是化简,结果必须化为最简形式.小结作业。