河北省唐山市遵化市2020-2021学年七年级上学期期末考试数学试题(扫描版)
- 格式:doc
- 大小:2.17 MB
- 文档页数:7
2022-2023学年上学期初中数学人教版七年级期末必刷常考题之直线、射线、线段一.选择题(共5小题)1.(2020秋•天桥区期末)如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.两点确定一条直线B.两点间距离的定义C.两点之间,线段最短D.因为它直2.(2020秋•北仑区期末)如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()A.4cm B.cm C.5cm D.cm 3.(2021春•博兴县期末)为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法依据的几何知识应是()A.两点确定一条直线B.两点之间,线段最短C.射线只有一个端点D.两直线相交只有一个交点4.(2020秋•宁波期末)下列各图中表示线段MN,射线PQ的是()A.B.C.D.5.(2021春•牧野区校级期末)如图所示,关于线段、射线和直线的条数,下列说法正确的是()A.五条线段,三条射线B.三条线段,两条射线,一条直线C.三条射线,三条线段D.三条线段,三条射线二.填空题(共5小题)6.(2021春•莱阳市期末)线段AB的长为2cm,延长AB到点C,使AC=3AB,再延长BA 到点D,使BD=2BC,则线段CD的长为cm.7.(2020秋•海淀区校级期末)在一面墙上用两根钉子钉木条时,木条就会固定不动,用数学知识解释这种生活现象为.8.(2020秋•铁西区期末)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB >AB,其依据是.9.(2021春•芝罘区期末)两根长度分别为8cm和10cm的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为.10.(2020秋•海淀区校级期末)已知线段AB=6cm,若M是AB的三等分点,N是AM的中点,则线段MN的长度为.三.解答题(共5小题)11.(2020秋•铁西区期末)如图,点C为线段AB的中点,点E为线段AB上的点,点D 为线段AE的中点,若AB=15,CE=4.5,求出线段AD的长度.12.(2020秋•鄂州期末)已知:如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若线段AB=15,CE=4.5,求线段BE、DE的长.13.(2020秋•兴业县期末)如图,点C在线段AB上,AC=6cm,CB=4cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC=acm,CB=bcm,点M、N分别是AC、BC的中点,猜想:MN=cm.(3)若C在线段AB的延长线上,且满足AC=acm,CB=bcm(a>b),点M、N分别为AC、BC的中点,猜想:MN=cm.14.(2020秋•桂林期末)如图,已知线段AB=24cm,延长AB至C,使得BC=AB,(1)求AC的长;(2)若D是AB的中点,E是AC的中点,求DE的长.15.(2021春•沂源县期末)如图,直线AB上有一点P,点M,N分别为线段P A,PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:①当P在AB之间;②当P在A左边;③当P在B右边;你发现了什么规律?2022-2023学年上学期初中数学人教版七年级期末必刷常考题之直线、射线、线段参考答案与试题解析一.选择题(共5小题)1.(2020秋•天桥区期末)如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.两点确定一条直线B.两点间距离的定义C.两点之间,线段最短D.因为它直【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短.【专题】线段、角、相交线与平行线;几何直观.【分析】根据线段的性质进行解答即可.【解答】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.2.(2020秋•北仑区期末)如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()A.4cm B.cm C.5cm D.cm【考点】两点间的距离.【专题】线段、角、相交线与平行线;几何直观.【分析】设BC=xcm,求出AB=2xcm,AC=3xcm,根据线段中点求出CD=1.5xcm,即可求出x.【解答】解:设BC=xcm,∵BC=AB,∴AB=2BC=2x,AC=AB+BC=3xcm,∵D为AC的中点,∴AD=DC=AC=1.5xcm,∵CD=3cm,∴1.5x=3,解得:x=2,即AB=2xcm=4cm,故选:A.【点评】本题考查了求两点之间的距离和线段的中点,能选择适当的方法求解是解此题的关键,用了方程思想.3.(2021春•博兴县期末)为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法依据的几何知识应是()A.两点确定一条直线B.两点之间,线段最短C.射线只有一个端点D.两直线相交只有一个交点【考点】直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短.【专题】线段、角、相交线与平行线;推理能力.【分析】先让两个同学站好,实质是确定两定点,而由两点即可确定一条直线.【解答】解:由题意可知:两点确定一条直线,故选:A.【点评】本题考查了直线的性质,正确掌握直线的性质是解题关键.4.(2020秋•宁波期末)下列各图中表示线段MN,射线PQ的是()A.B.C.D.【考点】直线、射线、线段.【专题】线段、角、相交线与平行线;几何直观.【分析】根据直线没有端点,射线有一个端点,线段有两个端点解答.【解答】解:A、是直线MN,射线QP,故此选项不符合题意;B、是射线MN,线段PQ,故此选项不符合题意;C、是线段MN,射线PQ,故此选项符合题意;D、是线段MN,射线QP,故此选项不符合题意;故选:C.【点评】本题考查了直线、射线、线段,熟记直线、射线、线段的概念是解题的关键.5.(2021春•牧野区校级期末)如图所示,关于线段、射线和直线的条数,下列说法正确的是()A.五条线段,三条射线B.三条线段,两条射线,一条直线C.三条射线,三条线段D.三条线段,三条射线【考点】直线、射线、线段.【专题】线段、角、相交线与平行线;几何直观.【分析】本题考查直线、射线及线段的知识,属于基础题,注意基本概念的掌握.根据直线、射线及线段的定义及特点结合图形即可解答.【解答】解:如图:由直线、射线及线段的定义可知:线段有:AB、BC、CA;射线有:AD、AE;直线有:DE.即有三条线段,两条射线,一条直线.故选:B.【点评】此题考查了直线、线段、射线,掌握其概念是解决此题关键.二.填空题(共5小题)6.(2021春•莱阳市期末)线段AB的长为2cm,延长AB到点C,使AC=3AB,再延长BA 到点D,使BD=2BC,则线段CD的长为12cm.【考点】两点间的距离.【专题】线段、角、相交线与平行线;应用意识.【分析】根据已知分别得出BC,AD的长,即可得出线段CD的长.【解答】解:∵线段AB=2cm,延长AB到C,使AC=3AB,再延长BA至D,使BD=2BC,∴BC=2AB=4cm,BD=4AB=8cm,∴AD=BD﹣AB=3AB=6cm∴CD=AD+AB+BC=6+2+4=12(cm),故答案为:12.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差关系是解答此题的关键.7.(2020秋•海淀区校级期末)在一面墙上用两根钉子钉木条时,木条就会固定不动,用数学知识解释这种生活现象为两点确定一条直线.【考点】直线的性质:两点确定一条直线.【专题】线段、角、相交线与平行线;应用意识.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为:两点确定一条直线.故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.8.(2020秋•铁西区期末)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【专题】线段、角、相交线与平行线;几何直观.【分析】依据线段的性质,即可得出结论.【解答】解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短.故答案为:两点之间,线段最短.【点评】本题主要考查了线段的性质,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.9.(2021春•芝罘区期末)两根长度分别为8cm和10cm的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为1cm或9cm.【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分两种情况:①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=10cm,较短的木条为BC=8cm,∵M、N分别为AB、BC的中点,∴BM=5cm,BN=4cm,①如图1,BC不在AB上时,MN=BM+BN=5+4=9(cm),②如图2,BC在AB上时,MN=BM﹣BN=5﹣4=1(cm),综上所述,两根木条的中点间的距离是1cm或9cm,故答案为:1cm或9cm.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.10.(2020秋•海淀区校级期末)已知线段AB=6cm,若M是AB的三等分点,N是AM的中点,则线段MN的长度为1cm或2cm.【考点】两点间的距离.【专题】推理填空题;线段、角、相交线与平行线;运算能力;推理能力.【分析】根据M是AB的三等分点,可得AM的长,再根据线段中点的性质,可得答案.【解答】解:由线段AB=6cm,若M是AB的三等分点,得AM=2cm,或AM=4cm.当AM=2cm时,由N是AM的中点,得MN=AM=×2=1(cm);当AM=4cm时,由N是AM的中点,得MN=AM=×4=2(cm);故答案为:1cm或2cm.【点评】本题考查了两点间的距离,利用了三等分点的性质:M距A点近的三等分点,M距A点远的三等分点,以防漏掉.三.解答题(共5小题)11.(2020秋•铁西区期末)如图,点C为线段AB的中点,点E为线段AB上的点,点D 为线段AE的中点,若AB=15,CE=4.5,求出线段AD的长度.【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【分析】根据中点的性质,可得BC的长,根据线段的和差,可得BE的长,AE的长,根据中点的性质,可得答案.【解答】解:∵点C为线段AB的中点,AB=15,∴,∴BE=BC﹣CE=7.5﹣4.5=3,AE=AB﹣BE=15﹣3=12,∵点D为线段AE的中点,∴.【点评】本题考查了两点间的距离,线段的中点分线段相等是解题关键.12.(2020秋•鄂州期末)已知:如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若线段AB=15,CE=4.5,求线段BE、DE的长.【考点】两点间的距离.【专题】常规题型;几何直观;运算能力.【分析】C为AB的中点,可以先求出BC的长,然后求出BE的长,再求出AE的长,就可以求出DE的长.【解答】解:∵C为AB中点,∴BC=AB==7.5,∵CE=4.5,∴BE=3.∴AE=AB﹣BE=15﹣3=12,∵D为AE中点,∴DE=AE=×12=6.【点评】本题主要考查线段的计算,两次运用到线段的中点.13.(2020秋•兴业县期末)如图,点C在线段AB上,AC=6cm,CB=4cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC=acm,CB=bcm,点M、N分别是AC、BC的中点,猜想:MN=(a+b)cm.(3)若C在线段AB的延长线上,且满足AC=acm,CB=bcm(a>b),点M、N分别为AC、BC的中点,猜想:MN=(a﹣b)cm.【考点】两点间的距离.【专题】线段、角、相交线与平行线;几何直观.【分析】(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可;(2)当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=(a+b);(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.【解答】解:(1)∵AC=6cm,点M是AC的中点,∴CM=AC=3cm,∵CB=4cm,点N是BC的中点,∴CN=BC=2cm,∴MN=CM+CN=5cm,∴线段MN的长度为5cm;(2)∵AC=acm,点M是AC的中点,∴CM=AC=acm,∵CB=bcm,点N是BC的中点,∴CN=BC=bcm,∴MN=CM+CN=a+b=(a+b)cm,∴线段MN的长度为(a+b)cm,故答案为:(a+b);(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC=acm,∵点N是BC的中点,∴CN=BC=bcm,∴MN=CM﹣CN=(AC﹣BC)=(a﹣b)cm,故答案为:(a﹣b).【点评】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.分情况讨论是解题的关键.14.(2020秋•桂林期末)如图,已知线段AB=24cm,延长AB至C,使得BC=AB,(1)求AC的长;(2)若D是AB的中点,E是AC的中点,求DE的长.【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【分析】(1)根据BC与AB的关系可得BC,由AC=AB+BC可得答案;(2)根据线段中点的定义分别求出AE和AD的长度,再利用线段的和差得出答案.【解答】解:(1)∵BC=AB,AB=24cm,∴BC=×24cm=12cm,∴AC=AB+BC=36cm;(2)∵D是AB的中点,E是AC的中点,∴AD=AB=12cm,AE=AC=18cm,∴DE=18cm﹣12cm=6cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.(2021春•沂源县期末)如图,直线AB上有一点P,点M,N分别为线段P A,PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:①当P在AB之间;②当P在A左边;③当P在B右边;你发现了什么规律?【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【分析】(1)根据线段中点的性质,可得MP,NP,根据线段的和,可得答案;(2)①根据线段中点的性质,可得MP,NP,根据线段的和,可得答案;②③分别画图,同理可得MN的长,从而得规律.【解答】解:(1)当P在线段AB上,如图1,∵AP=8,点M是AP中点,∴MP=AP=4,∵AP=8,AB=14,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7;(2)①点P在AB之间,∵M是AP的中点,N是PB的中点,∴MP=AP,PN=PB,∴MN=PM+PN=P A+PB=AB=(x+y)=;②点P在A的左边时,如图2,∵M是AP的中点,N是PB的中点,∴MP=AP,PN=PB,∴MN=PN﹣PM=PB﹣P A=y﹣x==AB;③点P在B的右边时,如图3,∵M是AP的中点,N是PB的中点,∴MP=AP,PN=PB,∴MN=PM﹣PN=P A﹣PB=x﹣y==AB;发现规律:当P在直线AB上时,MN=AB.【点评】本题考查了两点间的距离,利用线段中点的性质得出MP,NP的长是解题关键.考点卡片1.直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.2.直线的性质:两点确定一条直线(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.3.线段的性质:两点之间线段最短线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.4.两点间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.。
专题06 角的运算1.(2021·河北高邑·七年级期中)下列角中,能用1∠,ACB∠,C∠三种方法表示同一个角的是()A.B.C.D.2.(2021·河北·石家庄市第四十二中学七年级期中)钟表盘上指示的时间是11时20分,此刻时针与分针之间的夹角为()A.160︒B.150︒C.140︒D.130︒3.(2021·全国·七年级课时练习)某一时刻从海岛观测站P观测到海面上的两艘轮船,轮船A位于南偏东35︒方向上,轮船B位于北偏西50︒方向上,此时APB∠为().A.95︒B.155︒C.165︒D.175︒4.(2021·全国·七年级专题练习)下列说法中:(1)角的两边越长,角就越大;(2)AOB∠与BOA∠表示同一个角;(3)在角一边的延长线上取一点D;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形.错误的个数是()A.1个B.2个C.3个D.4个5.(2021·黑龙江·哈尔滨市第四十九中学校期中)下列说法中正确的是()=,则点C ①两条射线组成的图形叫做角;②角的大小与边的长短无关;③若线段AC BC是线段AB的中点;④将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.A.1个B.2个C.3个D.4个6.(2021·全国·七年级专题练习)如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100︒B.110︒C.115︒D.120︒7.(2021·重庆第二外国语学校七年级期中)如图,O为直线AB上一点,OC平分∠∠=︒∠=∠,则DOE,50,4AOD AOC BOD DOE∠的度数为()A.20︒B.18︒C.60︒D.80︒8.(2021·福建省福州第十九中学八年级期中)如图,将一副三角板摆放在直线AB上,∠ECD =∠FDG=90°,∠EDC=45°,设∠GDB=x,则用x的代数式表示∠EDF的度数为()A.x B.x﹣15°C.45°﹣x D.60°﹣x 9.(2021·河北迁安·七年级期中)如图,∠AOB=α,OA1、OB1分别是∠AOM和∠MOB的平分线,OA2、OB2分别是∠A1OM和∠MOB1的平分线,OA3、OB3分别是∠A2OM和∠MOB2的平分线,…,OA n、分别是∠A n-1OM和∠MOB n-1的平分线,则∠A n OB n的度数是()A.anB.12na-C.2naD.2an10.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)如图,直线AB、CD相交于点O,射线O M平分∠AOC,ON∠OM,若∠AOM=35°,则∠CON的度数为()A.45°B.55°C.65°D.7511.(2021·全国·七年级专题练习)已知小岛A位于基地O的东南方向,货船B位于基地O 的北偏东50°方向,那么∠AOB的度数等于_____.12.(2021·辽宁西丰·七年级期末)某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.13.(2021·全国·七年级课时练习)小华家、小明家、小艳家在平面图上的标点分别为A、B、C,小明家在小华家的正东方向,小艳家在小华家南偏西25︒方向,则∠=CAB________︒.14.(2021·河南·永城市教育体育局教研室七年级期末)如图,已知∠AOC = 160°,OD平分∠AOC ,∠AOB是直角,则∠BOD的大小是__________.15.(2021·全国·七年级单元测试)计算:65°19′48″+35°17′6″=___(将计算结果换算成度).16.(2021·陕西神木·七年级期末)如图,已知∠BAE=∠CAF=110°,∠CAE=60°,AD是∠BAF的平分线,则∠BAD的度数为___°.17.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,AE 平分BAD ∠交BC 于点E ,连接OE ,则∠BOE 的度数是________.18.(2021·全国·七年级专题练习)计算: (1)23°45′36″+66°14′24″; (2)180°-98°24′30″; (3)15°50′42″×3; (4)88°14′48″÷4.19.(2021·全国·七年级专题练习)计算(1)把26.29°转化为度、分、秒表示的形式; (2)把33°24′36″转化成度表示的形式.20.(2021·辽宁太平·七年级期中)如图,33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,OE 平分AOD ∠,求AOE ∠的度数.21.(2021·四川旌阳·七年级期末)已知O 为直线AB 上的一点,COE ∠是直角,OF 平分AOE ∠. (1)如图1,若28COF ∠=︒,则BOE ∠= ︒;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,∠BOE 与COF ∠之间有何数量关系?请说明理由.(3)在图3中,若65COF ∠=︒,在∠BOE 的内部是否存在一条射线OD ,使得12()2BOD AOF BOE BOD ∠+∠=∠-∠?若存在,请求出BOD ∠的度数;若不存在,请说明理由.22.(2021·辽宁抚顺·七年级期末)如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC 与∠BOD 大小关系,并验证你的结论;(2)如图2,若OM 平分∠AOC ,ON 平分∠AOD ,∠BOD =30°,请求出∠MON 的度数.23.(2021·全国·七年级课时练习)如图,OM 是AOC ∠的平分线,ON 是BOC ∠的平分线. (1)如图1,当AOB ∠是直角,60BOC ∠=︒时, NOC ∠=________,MOC ∠=________ ,MON ∠=________;(2)如图2,当AOB α∠=,60BOC ∠=︒时,猜想:MON ∠与α的数量关系,并说明理由; (3)如图3,当AOB α∠=,BOC β∠= (β为锐角)时,猜想:MON ∠与α、β有数量关系吗?如果有,请写出结论,并说明理由.24.(2021·全国·七年级单元测试)如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠BOC =120°.将一块直角三角板的直角顶点放在点O 处,边OM 与射线OB 重合,另一边ON 位于直线AB 的下方.(1)将图1的三角板绕点O 逆时针旋转至图2,使边OM 在∠BOC 的内部,且恰好平分∠BOC ,问:此时ON 所在直线是否平分∠AOC ?请说明理由;(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t 秒,在旋转的过程中,ON 所在直线或OM 所在直线何时会恰好平分∠AOC ?请求所有满足条件的t 值;(3)将图1中的三角板绕点O 顺时针旋转至图3,使边ON 在∠AOC 的内部,试探索在旋转过程中,∠AOM 和∠CON 的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.1.(2021·全国·七年级专题练习)如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒2.(2021·全国·七年级课时练习)将矩形ABCD 沿AE 折叠,得如图所示的图形,已知'70CED ∠=︒,则AED ∠的大小是( ).A .50︒B .55︒C .60︒D .70︒3.(2021·全国·七年级课时练习)己知:2AOB AOM ∠=∠;②12BOM AOB ∠=∠;③12AOM BOM AOB ∠=∠=∠;④AOM BOM AOB ∠+∠=∠,其中能够得到射线OM 是AOB∠的平分线的有( ). A .0个 B .1个C .2个D .3个4.(2021·四川绵阳·七年级期末)如图,在竖直墙角AOB 中,可伸长的绳子CD 的端点C 固定在OA 上,另一端点D 在OB 上滑动,在保持绳子拉直的情况下,30BOE ∠=︒,BDC ∠的平分线DF 与OE 交与点E ,DCO α∠=,当CE DE ⊥时,则2OEC α∠+=( )A .120︒B .135︒C .150︒D .152︒5.(2021·辽宁兴城·七年级期末)如图,已知90AOD ∠=︒,90COB ∠=︒,OE 是COD ∠的平分线.有下列关系式:①AOC BOD ∠=∠;②AOE BOE ∠=∠;③90AOE COE ∠+∠=︒;④180AOB COD ∠+∠=︒,其中一定正确的个数是( ).A .4B .3C .2D .16.(2021·重庆酉阳·七年级期末)如图是一个时钟某一时刻的简易图,图中的12条短线刻度位置是时钟整点时时针(短针)位置,根据图中时针和分针(长针)位置,该时钟显示时间是( )A .1011点B .78点C .56点D .23~点7.(2021·全国·七年级专题练习)如图,点O 为线段AD 外一点,点M ,C ,B ,N 为AD 上任意四点,连接OM ,OC ,OB ,ON ,下列结论不正确的是( )A .以O 为顶点的角共有15个B .若MC CB =,MN ND =,则2CD CN = C .若M 为AB 中点,N 为CD 中点,则()12MN AD CB =- D .若OM 平分AOC ∠,ON 平分BOD ∠,5AOD COB ∠=∠,则()32MON MOC BON ∠=∠+∠8.(2021·全国·七年级专题练习)在锐角AOB ∠内部由O 点引出3种射线,第1种是将AOB ∠分成10等份;第2种是将AOB ∠分成12等份;第3种是将AOB ∠分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .6669.(2021·全国·七年级专题练习)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∠OB ,∠AOB =50°,则∠ODE 的度数是__.10.(2020·浙江杭州·七年级期末)如图,已知AOC Rt ∠=∠,OB 平分AOC ∠,20.5COD ∠=︒,OD 平分∠BOE ,则AOE ∠=_______︒.11.(2021·全国·七年级专题练习)如图,射线OE ,OA ,OD 均在BOC ∠内部,且0180BOC ︒<∠<︒.OE 平分BOC ∠,OD 平分AOC ∠.请从A ,B 两题中任选一题作答.我选择______.A .若30AOC ∠=︒,130BOC ∠=︒,则DOE ∠的度数为______︒.B .若AOB α∠=︒,则DOE ∠的度数为______︒.(用含α的式子表示)12.(2021·黑龙江齐齐哈尔·七年级期末)射线OC 平分∠AOB ,从点O 引出一条射线OD ,使∠AOB =3∠AOD ,若∠COD =20°,则∠AOB 的度数为_____.13.(2021·四川成都·七年级期末)已知OC 是∠AOB 的平分线,∠BOD =13∠COD ,OE 平分∠COD ,设∠AOB =β,则∠BOE =_____.(用含β的代数式表示)14.(2021·江西余干·七年级期末)在同一平面内,90AOB ∠=︒,20AOC ∠=︒,50COD =︒∠,COD ∠至少有一边在AOB ∠内部,则BOD ∠的度数为___.15.(2020·辽宁皇姑·七年级期末)如图,在平面内,点O 是直线AC 上一点,60AOB ∠=,射线OC 不动,射线OA ,OB 同时开始绕点O 顺时针转动,射线OA 首次回到起始位置时两线同时停止转动,射线OA ,OB 的转动速度分别为每秒40和每秒20.若转动t 秒时,射线OA ,OB ,OC 中的一条是另外两条组成角的角平分线,则t =______秒.16.(2020·北京·七年级期末)已知:如图,∠AOB =90°,从点O 出发引射线OC (点C 在∠AOB 的外部),OD 平分∠BOC ,OE 平分∠AOD .(1)若∠BOC =40°,请依题意补全图形,并求∠BOE 的度数;(2)若∠BOC =α(0°< α <180°),请直接写出∠BOE 的度数(用含α的代数式表示).17.(2021·河北·石家庄市第四十二中学七年级期中)已知∠AOB =90°,(1)如图1,OE、OD分别平分∠AOB和∠BOC,若∠EOD=64°,则∠BOC是°;(2)如图2,OE、OD分别平分∠AOC和∠BOC,若∠BOC=40°,求∠EOD的度数(写推理过程).(3)若OE、OD分别平分∠AOC和∠BOC,∠BOC=α(0°<α<180°),则∠EOD的度数是(在稿纸上画图分析,直接填空).18.(2021·辽宁大石桥·八年级期中)已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当PAB的周长最小时,求∠APB的度数.19.(2021·河北·邯郸市永年区教育体育局教研室七年级期中)(问题)如图①,点C是线段AB上一点,点D,E分别是线段AC,BC的中点,若线段AB=26cm,则线段DE的长为cm.(拓展)在(问题)中,若把条件“如图①,点C 是线段AB 上一点”改为“点C 是直线 AB 上一点”,其余条件不变,则(问题)中DE 的长是否会发生变化?请画出示意图并求解. (应用)(1)如图②,∠AOB =α,点C 在∠AOB 内部,射线OM ,ON 分别平分∠AOC ,∠BOC ,则∠MON 的大小为 (用含字母α的式子表示).(2)如图③,在(1)中,若点C 在∠AOB 外部,且射线OC 与射线OB 在OA 所在直线的同侧,其他条件不变,则(1)中的结论是否成立,若成立,请写出求解过程;若不成立,请说明理由.图①20.(2022·河北·石家庄市第四十二中学八年级期中)已知90AOB ∠=︒,(1)如图1,OE 、OD 分别平分AOB ∠和BOC ∠,若64EOD ∠=︒,则BOC ∠是______︒;(2)如图2,OE 、OD 分别平分AOC ∠和BOC ∠,若40BOC ∠=︒,求EOD ∠的度数(写推理过程).(3)若OE 、OD 分别平分AOC ∠和BOC ∠,(0180)BOC αα∠=︒<<︒,则EOD ∠的度数是________(在稿纸上画图分析,直接填空).21.(2021·河北滦州·七年级期中)已知:如图①所示,OC 是AOB ∠内部一条射线,且OD 平分AOC ∠,OE 平分BOC ∠.(1)若80AOC ∠=︒,50BOC ∠=︒,则EOD ∠的度数是______.(2)若AOC α∠=,BOC β∠=,求EOD ∠的度数,并根据计算结果直接写出EOD ∠与AOB ∠之间的数量关系.(写出计算过程)(3)如图③所示,射线OC 在AOB ∠的外部,且OD 平分AOC ∠,OE 平分BOC ∠.试着探究EOD ∠与AOB ∠之间的数量关系.(写出详细推理过程)22.(2021·全国·七年级期末)已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°) (1)若∠AOB =60°,∠COD =40°, ①当α=0°时,如图1,则∠POQ = ; ②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).专题06 角的运算1.(2021·河北高邑·七年级期中)下列角中,能用1∠,ACB∠三种方法表示同一个角∠,C的是()A.B.C.D.【答案】C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“∠”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.2.(2021·河北·石家庄市第四十二中学七年级期中)钟表盘上指示的时间是11时20分,此刻时针与分针之间的夹角为( ) A .160︒ B .150︒ C .140︒ D .130︒【答案】C 【分析】根据钟表的特点,可以计算出钟表上显示11时20分,则此刻时针与分针的夹角的度数. 【详解】解:当钟表上显示11时20分时,分针指着4,时针处于11和12之间,走了11到12之间的13, 由钟表的特点可知,每个大格是30°,如1到2,2到3都是30°,故钟表上显示11时20分,则此刻时针与分针的夹角的度数为:4×30°+30°×23=140°,故答案为:C . 【点睛】本题考查钟面角,解答本题的关键是明确钟面角的特点,求出相应的角的度数.3.(2021·全国·七年级课时练习)某一时刻从海岛观测站P 观测到海面上的两艘轮船,轮船A 位于南偏东35︒方向上,轮船B 位于北偏西50︒方向上,此时APB ∠为( ). A .95︒ B .155︒C .165︒D .175︒【答案】C 【分析】根据题意,作出示意图,进而根据方位角的表示方法可得APB ∠的度数 【详解】如图,依题意35,50APD BPE ∠=︒∠=︒3590(9050)165APB APD CPD CPB ∴∠=∠+∠+∠=︒+︒+︒-︒=︒故选C 【点睛】本题考查了方位角的计算,掌握方位角的表示方法是解题的关键.4.(2021·全国·七年级专题练习)下列说法中:(1)角的两边越长,角就越大;(2)AOB ∠与BOA ∠表示同一个角;(3)在角一边的延长线上取一点D ;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形.错误的个数是( ) A .1个 B .2个C .3个D .4个【答案】B 【分析】由共一个端点的两条射线组成的图形叫做角,角也可以看作由一条射线绕着它的端点旋转而形成的图形,角的大小与角的两边张开的程度有关;根据角的概念、表示及大小逐一进行判断即可. 【详解】(1)角的大小与角的两边张开的程度有关,与角的两边长短无关,故说法错误; (2)AOB ∠与BOA ∠表示同一个角,此说法正确;(3)角的两边是两条射线,射线是向一端无限延伸的,故此说法错误; (4)此说法正确; 所以错误的有2个 故选:B . 【点睛】本题考查了角的概念、角的大小、角的表示等知识,掌握这些知识是关键. 5.(2021·黑龙江·哈尔滨市第四十九中学校期中)下列说法中正确的是( )①两条射线组成的图形叫做角;②角的大小与边的长短无关;③若线段AC BC =,则点C是线段AB的中点;④将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.A.1个B.2个C.3个D.4个【答案】B【分析】①根据有公共端点的两条射线组成的图形叫做角,即可判断;②根据角的特点判断即可;③A、B、C三点不一定在一条直线上,即可判断;④根据两点确定一条直线,即可判断.【详解】①有公共端点的两条射线组成的图形叫做角,①不正确,故不符合题意;②角的大小与边的长短无关,②正确,故符合题意;=,则三点不一定在一条直线上,③不正确,故不符合题意;③若线段AC BC④两点确定一条直线,④正确,故符合题意,∴正确的有2个,故选:B.【点睛】本题主要考查角的定义,中点定义以及两点确定一条直线,属于基础题,熟练掌握这些概念是解题的关键.6.(2021·全国·七年级专题练习)如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100︒B.110︒C.115︒D.120︒【答案】B【分析】根据时针在钟面上每分钟转0.5,分针每分钟转6,然后分别求出时针、分针转过的角度,即可得到答案.【详解】解:∠时针在钟面上每分钟转0.5,分针每分钟转6,∠钟表上12时20分钟时,时针转过的角度为0.52010⨯=,⨯=,分针转过的角度为620120所以12:20时分针与时针的夹角为12010110-=.故选B.【点睛】本题主要考查了钟面角,解题的关键在于能够熟练掌握时针和分针每分钟所转过的角度是多少.7.(2021·重庆第二外国语学校七年级期中)如图,O为直线AB上一点,OC平分,50,4AOD AOC BOD DOE∠∠=︒∠=∠,则DOE∠的度数为()A.20︒B.18︒C.60︒D.80︒【答案】A【分析】根据角平分线的定义得到∠COD,从而得到∠BOD,再根据∠BOD=4∠DOE即可求出结果.【详解】解:∠OC平分∠AOD,∠∠AOC=∠COD=50°,∠∠BOD=180°-2×50°=80°,∠∠BOD=4∠DOE,∠∠DOE=14∠BOD=20°,故选A.【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.8.(2021·福建省福州第十九中学八年级期中)如图,将一副三角板摆放在直线AB上,∠ECD =∠FDG=90°,∠EDC=45°,设∠GDB=x,则用x的代数式表示∠EDF的度数为()A.x B.x﹣15°C.45°﹣x D.60°﹣x【答案】C【分析】根据已知条件和平角的定义即可得到结论. 【详解】解:∠∠FDG =90°,∠EDC =45°,∠GDB =x , ∠∠EDF =180°﹣∠CDE ﹣∠GDB ﹣∠FDG =180°﹣45°﹣x ﹣90° =45°﹣x , 故选:C . 【点睛】本题考查了平角的定义,熟练掌握平角的定义是解题的关键.9.(2021·河北迁安·七年级期中)如图,∠AOB =α,OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,…,OA n 、分别是∠A n -1OM 和∠MOB n -1的平分线,则∠A n OB n 的度数是( )A .a nB .12n a - C .2na D .2a n 【答案】C 【分析】由∠AOB =α,OM 是∠AOB 中的一射线,可得∠AOM +∠MOB =α,由OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,可得∠A 1OM =12AOM ∠,∠B 1OM =12BOM ∠,可得∠A 1OB 1=∠A 1OM +∠B 1OM =12AOM∠+12BOM ∠=12α,由OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,可求∠A 2OB 2=∠A 2OM +∠B 2OM =112A OM ∠+112B OM ∠=212α,由OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,可求∠A 3OB 3=∠A 3OM +∠B 3OM =212A OM ∠+212B OM ∠=312α,…,然后根据规律可求∠A n OB n =12n α.【详解】解:∠∠AOB =α,OM 是∠AOB 中的一射线, ∠∠AOM +∠MOB =α,∠OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,∠∠A 1OM =12AOM ∠,∠B 1OM =12BOM ∠ ∠∠A 1OB 1=∠A 1OM +∠B 1OM =12AOM ∠+12BOM ∠=()111222AOM BOM AOB α∠+∠=∠=, ∠OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,∠∠A 2OM =112A OM ∠,∠B 2OM =112B OM ∠, ∠∠A 2OB 2=∠A 2OM +∠B 2OM =112A OM ∠+112B OM ∠=()11112111222AOM B OM AOB α∠+∠=∠=, ∠OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,∠∠A 3OM =212A OM ∠,∠B 3OM =212B OM ∠, ∠∠A 3OB 3=∠A 3OM +∠B 3OM =212A OM ∠+212B OM ∠=()22223111222A OMB OM A OB α∠+∠=∠=, …,∠OA n 、分别是∠A n -1OM 和∠MOB n -1的平分线,∠∠A n OM =112n A OM -∠,∠B n OM =112n B OM -∠, ∠∠A n OB n =∠A n -1OM +∠B n -1OM =112n A OM -∠+112n B OM -∠=()1111111222n n n n n A OM B OM A OB α----∠+∠=∠=, 故选择C .【点睛】本题考查角的和,与角平分线的定义,规律探索,利用角平分线求出∠A 1OB 1,∠A 2OB 2,∠A 3OB 3,找出规律是解题关键.10.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)如图,直线AB 、CD 相交于点O ,射线O M 平分∠AOC ,ON ∠OM ,若∠AOM =35°,则∠CON 的度数为( )A .45°B .55°C .65°D .75【答案】B【分析】根据角平分线的定义、垂线的定义、对顶角和邻补角的定义计算即可;【详解】∠O M 平分∠AOC ,∠AOM =35°,∠35MOC AOM ∠=∠=︒,∠ON ∠OM ,∠90MON ∠=︒,∠903555CON ∠=︒-︒=;故选B .【点睛】本题主要考查了角平分线的定义、垂线的性质和对顶角的定义,准确计算是解题的关键.11.(2021·全国·七年级专题练习)已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于_____.【答案】85︒【分析】根据方位角的概念,画图正确表示出A ,B 的方位,易得结果.【详解】解:如图:250∠=︒,390240∴∠=︒-∠=︒,∠小岛A 位于基地O 的东南方向∠145∠=︒,13454085AOB ∴∠=∠+∠=︒+︒=︒,故答案为:85︒.【点睛】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键.12.(2021·辽宁西丰·七年级期末)某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.【答案】45°【分析】根据钟面平均分成12份,可得每份是30°,4点30分时,时针分针相差1.5格,根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:4:30时,时针与分针的夹角的度数是30°×1.5=45°,故答案为:45°.【点睛】本题考查了钟面角,能够正确利用了时针与分针相距的份数乘以每份的度数进行计算是解题的关键.13.(2021·全国·七年级课时练习)小华家、小明家、小艳家在平面图上的标点分别为A 、B 、C ,小明家在小华家的正东方向,小艳家在小华家南偏西25︒方向,则∠=CAB ________︒.【答案】115【分析】由题意,正确的画出方向角,然后进行计算,即可得到答案.【详解】解:根据题意,如图∠9025115CAB ∠=︒+︒=︒.故答案为:115.【点睛】本题考查了方位角,解题的关键是正确的画出图形,从而进行解题.14.(2021·河南·永城市教育体育局教研室七年级期末)如图,已知∠AOC = 160°,OD 平分∠AOC ,∠AOB 是直角,则∠BOD 的大小是__________.【答案】10°【分析】根据角平分线的性质求出∠AOD,再用∠AOB-∠AOD即可求出∠BOD.【详解】解:∠OD平分∠AOC∠∠AOD=∠DOC=160°÷2=80°又∠AOB=90°∠∠DOB=∠AOB-∠AOD=90°-80°=10°故答案为10°【点睛】本题考查角平分线的性质,掌握这一点是解题关键.15.(2021·全国·七年级单元测试)计算:65°19′48″+35°17′6″=___(将计算结果换算成度).【答案】100.615°【分析】先把各度、分、秒相加,再结合度、分、秒的进制是60进行计算解答即可.【详解】65°19′48″+35°17′6″=100°36′54″,∠54÷60=0.9,(36+0.9)÷60=0.615,100+0.615=100.615,∠100°36′54″=100.615°.故答案是:100.615°.【点睛】本题考查角度的计算和度、分、秒的换算.掌握度、分、秒的进制是60是解答本题的关键.16.(2021·陕西神木·七年级期末)如图,已知∠BAE=∠CAF=110°,∠CAE=60°,AD是∠BAF 的平分线,则∠BAD的度数为___°.【答案】80【分析】由∠BAE =110°,∠CAE =60°,可得∠BAC =110°﹣60°=50°,结合∠CAF =110°,可得∠BAF =110°+50°=160°,再由AD 平分∠BAF 即可得∠BAD =80°.【详解】∠∠BAE =110°,∠CAE =60°,∠∠BAC =110°﹣60°=50°,又∠∠CAF =110°,∠∠BAF =110°+50°=160°,又∠AD 是∠BAF 的角平分线,∠∠BAD =12∠BAF =12×160°=80°.故答案为:80.【点睛】本题主要考查了角平分线的定义和几何中角度的计算,解题的关键在于能够熟练掌握角平分线的定义.17.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,AE 平分BAD ∠交BC 于点E ,连接OE ,则∠BOE 的度数是________.【答案】75︒【分析】由矩形的性质得出90BAD ABC ∠=∠=︒,OA OB =,证明AOB ∆是等边三角形,得出AB OB =,60ABO ∠=︒,证明出ABE ∆是等腰三角形,得出AB BE =,因此BE OB =,由等腰三角形的性质即可得出∠BOE 的大小.【详解】 解:四边形ABCD 是矩形,90BAD ABC ∴∠=∠=︒,12OA AC =,12OB BD =,AC BD = , OA OB ∴=,60AOB ∠=︒, AOB ∴∆是等边三角形,AB OB ∴=,60ABO ∠=︒,30OBE =∴∠︒,AE ∵平分BAD ∠,45BAE ∴∠=︒,ABE ∴∆是等腰直角三角形,AB BE ∴=,BE OB ∴= ,()118030752BOE ∠∴=︒-︒=︒ 故答案为:75︒.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.18.(2021·全国·七年级专题练习)计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3;(4)88°14′48″÷4.【答案】(1)90°;(2)81°35′30″;(3)47°32′6″;(4)22°3′42″【分析】类比与小数的计算方法,计算度分秒即可,注意满60进一,借一当60.【详解】解:(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=179°59′60″-98°24′30″=81°35′30″;(3)15°50′42″×3=45°150′126″=45°152′6″=47°32′6″;(4)88°14′48″÷4=22°3′42″.【点睛】本题考查了角度的四则运算以及度分秒的换算,注意度分秒之间的换算:1度=60分,1分=60秒.19.(2021·全国·七年级专题练习)计算(1)把26.29°转化为度、分、秒表示的形式; (2)把33°24′36″转化成度表示的形式.【答案】(1)26°17′24″;(2)33.41°【分析】根据度、分、秒之间的换算关系求解.【详解】解:(1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫ ⎪⎝⎭=33°+24′+0.6′=33°+24.6′=33°+24.6×160⎛⎫ ⎪⎝⎭°=33.41° 【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.20.(2021·辽宁太平·七年级期中)如图,33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,OE 平分AOD ∠,求AOE ∠的度数.【答案】52︒【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得12∠=∠AOE AOD ,进而得到答案.【详解】解:∠33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,∠∠AOD =∠AOB +∠BOC +∠COD =33°+48°+23°=104°,∠OE 平分AOD ∠, ∠111045222AOE AOD ∠=∠=⨯︒=︒ . 【点睛】此题主要考查了角平分线的性质,解题的关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.(2021·四川旌阳·七年级期末)已知O 为直线AB 上的一点,COE ∠是直角,OF 平分AOE ∠. (1)如图1,若28COF ∠=︒,则BOE ∠= ︒;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,∠BOE 与COF ∠之间有何数量关系?请说明理由.(3)在图3中,若65COF ∠=︒,在∠BOE 的内部是否存在一条射线OD ,使得12()2BOD AOF BOE BOD ∠+∠=∠-∠?若存在,请求出BOD ∠的度数;若不存在,请说明理由.【答案】(1)56°;(2)∠BOE =2∠COF ,理由见解析;(3)存在,16°【分析】(1)首先根据28COF ∠=︒,COE ∠是直角,求出∠EOF =62°,然后根据OF 平分AOE ∠求出∠AOE =124°,最后根据平角的性质即可求出∠BOE 的度数;(2)首先根据COE ∠是直角,OF 平分AOE ∠表示出∠AOE =180°﹣2∠COF ,然后根据平角的性质即可得到∠BOE 与COF ∠之间的数量关系;(3)首先根据COE ∠是直角,OF 平分AOE ∠求出∠EOF =25°,∠BOE =130°,然后代入12()2BOD AOF BOE BOD ∠+∠=∠-∠求解即可. 【详解】解:(1)∠∠COF =28°,∠COE =90°,∠∠EOF =90°﹣28°=62°,∠OF 平分∠AOE ,∠∠AOE =2∠EOF =124°,∠∠BOE =180°﹣∠AOE =56°;(2)结论:∠BOE =2∠COF ;理由如下:∠∠COE =90°,∠∠EOF =90°﹣∠COF ,∠OF 平分∠AOE ,∠∠AOE =2∠EOF =180°﹣2∠COF ,∠∠BOE =180°﹣∠AOE =180°﹣(180°﹣2∠COF )=2∠COF ;(3)存在;∠∠COF =65°,∠COE =90°,∠EOF =25°,∠OF 平分∠AOE ,∠∠AOF =∠EOF =25°,∠∠BOE =130°,∠2∠BOD +∠AOF =12(∠BOE ﹣∠BOD ),即2∠BOD +25°=12(130°﹣∠BOD ),解得∠BOD =16°.【点睛】此题考查了角平分线的有关运算,平角和直角的性质,解题的关键是正确分析图形中各角之间的关系.22.(2021·辽宁抚顺·七年级期末)如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC与∠BOD大小关系,并验证你的结论;(2)如图2,若OM平分∠AOC,ON平分∠AOD,∠BOD=30°,请求出∠MON的度数.【答案】(1)∠AOC=∠BOD,证明见解析;(2)60°【分析】(1)根据补角的性质即可求解;(2)根据角平分线的定义以及等量关系列出方程求解即可.【详解】解:(1)∠AOC=∠BOD,理由如下:∠A,O,B三点共线,∠∠AOC+∠BOC=180°,∠∠AOC与∠BOC互补,∠∠BOD与∠BOC互补,∠∠AOC=∠BOD;(2)∠∠BOD=30°,∠∠AOC=∠BOD=30°,∠OM平分∠AOC,∠1152AOM AOC=∠=∠,∠∠AOD+∠BOD=180°,∠∠AOD=180°﹣30°=150°,∠ON平分∠AOD,∠1752AON AOD=∠=∠,∠∠MON=∠AON﹣∠AOM=60°.【点睛】本题考查的是角的有关计算和角平分线的定义,正确理解并灵活运用角平分线的定义是解题的关键.23.(2021·全国·七年级课时练习)如图,OM是AOC∠的平分线,ON是BOC∠的平分线.(1)如图1,当AOB ∠是直角,60BOC ∠=︒时, NOC ∠=________,MOC ∠=________ ,MON ∠=________;(2)如图2,当AOB α∠=,60BOC ∠=︒时,猜想:MON ∠与α的数量关系,并说明理由; (3)如图3,当AOB α∠=,BOC β∠= (β为锐角)时,猜想:MON ∠与α、β有数量关系吗?如果有,请写出结论,并说明理由.【答案】(1)30,75︒,45︒;(2)12MON ∠=α,理由见解析;(3)有,12MON ∠=α,理由见解析. 【分析】(1)观察图形,结合角平分线的定义可得11603022NOC BOC ∠∠==⨯︒=︒,09060150AOC AOB B C ∠=∠+∠=︒+︒=︒,111507522MOC AOC ∠∠===︒⨯︒即可求解;(2)观察图形,结合角平分线的定义可得60AOC AOB BOC ∠∠∠α=+=+︒,11603022NOC BOC ∠∠==⨯︒=︒,11303022MON MOC NOC ∠∠∠αα=-=+︒-︒=即可求解;(3)观察图形,结合角平分线的定义可得AOC AOB BOC αβ∠=∠+∠=+,1122NOC BOC β∠=∠=,111()222MON MOC NOC ∠∠∠αββα=-=+-=即可求解;【详解】解:(1)∠ON 平分BOC ∠,∠11603022NOC BOC ∠∠==⨯︒=︒,∠09060150AOC AOB B C ∠=∠+∠=︒+︒=︒, ∠OM 是AOC ∠的平分线,∠111507522MOC AOC ∠∠===︒⨯︒,∠753045MON MOC NOC ∠∠∠=-=︒-=︒︒; 故答案为:30,75︒,45︒;(2)12MON ∠=α.理由:60AOC AOB BOC ∠∠∠α=+=+︒,OM 是AOC ∠的平分线,()1116030222MOC AOC ∠∠αα︒==+=+︒,因为ON 平分BOC ∠, 所以11603022NOC BOC ∠∠==⨯︒=︒,11303022MON MOC NOC ∠∠∠αα=-=+︒-︒=;(3)12MON ∠=α.理由:因为ON 平分BOC ∠,所以1122NOC BOC β∠=∠=,又因为AOC AOB BOC αβ∠=∠+∠=+,OM 是AOC ∠的平分线,所以11()22MOC AOC ∠∠αβ==+,111()222MON MOC NOC ∠∠∠αββα=-=+-=.【点睛】本题主要考查了角平分线的定义及角的运算,解题的关键是掌握角平分线的定义并通过观察图形找到角与角之间的关系.24.(2021·全国·七年级单元测试)如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠BOC =120°.将一块直角三角板的直角顶点放在点O 处,边OM 与射线OB 重合,另一边ON 位于直线AB 的下方.(1)将图1的三角板绕点O 逆时针旋转至图2,使边OM 在∠BOC 的内部,且恰好平分∠BOC ,问:此时ON 所在直线是否平分∠AOC ?请说明理由;(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t 秒,在旋转的过程中,ON 所在直线或OM 所在直线何时会恰好平分∠AOC ?请求所有满足条件的t 值;(3)将图1中的三角板绕点O 顺时针旋转至图3,使边ON 在∠AOC 的内部,试探索在旋转过程中,∠AOM 和∠CON 的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.【答案】(1)直线ON 平分∠AOC ,见解析;(2)10秒或40秒或25秒或55秒;(3)不变,30°【分析】(1)直线ON平分∠AOC,设ON的反向延长线为OD,已知OM平分∠BOC,根据角平分线的定义可得∠MOC=∠MOB,又由OM∠ON,根据垂直的定义可得∠MOD=∠MON=90°,所以∠COD=∠BON,再根据对顶角相等可得∠AOD=∠BON,即可∠COD=∠AOD,结论得证;(2)分直线ON平分∠AOC时和当直线OM平分∠AOC时两种情况进行讨论求解即可;(3)设∠AON=x°,则∠CON=60°-x°,∠AOM=90°-x°,即可得到∠AOM-∠CON=30°.【详解】解:(1)直线ON平分∠AOC理由:设ON的反向延长线为OD,∠OM平分∠BOC,∠∠MOC=∠MOB,又∠OM∠ON,∠∠MOD=∠MON=90°,∠∠COD=∠BON,又∠∠AOD=∠BON,∠∠COD=∠AOD,∠OD平分∠AOC,即直线ON平分∠AOC;(2)①当直线ON平分∠AOC时,三角板旋转角度为60°或240°,∠旋转速度为6°/秒,∠t=10秒或40秒;②当直线OM平分∠AOC时,三角板旋转角度为150°或330°,∠t=25秒或55秒,综上所述:t=10秒或40秒或25秒或55秒;(3)设∠AON=x°,则∠CON=60°-x°,∠AOM=90°-x°,。
第5章《平面图形的认识(一)》试题精选(1)一.选择题(共2小题)1.(2019秋•江都区期末)将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′AD ′=16°,则∠EAF 的度数为( )A .40°B .45°C .56°D .37°2.(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是( )A .从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B .两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C .把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D .从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短二.填空题(共9小题)3.(2019秋•南京期末)已知线段AB ,点C 、点D 在直线AB 上,并且CD =8,AC :CB =1:2,BD :AB =2:3,则AB = .4.(2019秋•高邮市期末)一个角的余角比这个角补角的15大10°,则这个角的大小为 .5.(2019秋•崇川区期末)已知射线OA ,从O 点再引射线OB ,OC ,使∠AOB =67°31′,∠BOC =48°39′,则∠AOC 的度数为6.(2019秋•高新区期末)已知线段AB =5cm ,点C 在直线AB 上,且BC =3cm ,则线段AC = cm .7.(2019秋•淮安区期末)如图,直线AB ,CD 相交于点O ,若∠AOC +∠BOD =100°,则∠AOD 等于 度.8.(2019秋•句容市期末)如图,∠AOB =90°,∠AOC =2∠BOC ,则∠BOC = °.9.(2019秋•句容市期末)如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n∠BOC ,∠BOD =1n ∠AOB ,则∠DOE = °.(用含n 的代数式表示)10.(2019秋•泰兴市期末)如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.11.(2019秋•建湖县期末)如图,直线AB和直线CD相交于点O,∠BOE=90°,有下列结论:①∠AOC 与∠COE互为余角;①∠AOC=∠BOD;①∠AOC=∠COE;①∠COE与∠DOE互为补角;①∠AOC与∠DOE互为补角;①∠BOD与∠COE互为余角.其中错误的有.(填序号)三.解答题(共26小题)12.(2019秋•东海县期末)如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=13∠EOC.(1)若OE⊥AC,垂足为O点,则∠BOE的度数为°,∠BOD的度数为°;在图中,与∠AOB相等的角有;(2)若∠AOD=32°,求∠EOC的度数.13.(2019秋•工业园区期末)如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.14.(2019秋•镇江期末)如图1,点C为线段AB延长线上的一点,点D是AC的中点,且点D不与点B 重合,AB=8,设BC=x.(1)①若x=6,如图2,则BD=;①用含x的代数式表示CD,BD的长,直接写出答案;CD=,BD=;(2)若点E为线段CD上一点,且DE=4,你能说明点E是线段BC的中点吗?15.(2019秋•高邮市期末)如图,已知∠AOB=150°,将一个直角三角形纸片(∠D=90°)的一个顶点放在点O处,现将三角形纸片绕点O任意转动,OM平分斜边OC与OA的夹角,ON平分∠BOD.(1)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若∠COD=30°,则∠MON =;(2)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若射线OD恰好平分∠MON,若∠MON=8∠COD,求∠COD的度数;(3)将三角形纸片绕点O从OC与OA重合位置顺时针转动到OD与OA重合的位置,猜想在转动过程中∠COD和∠MON的数量关系?并说明理由.16.(2019秋•沭阳县期末)(1)如图①,OC是∠AOE内的一条射线,OB是∠AOC的平分线,OD是∠COE 的平分线,∠AOE=120°,求∠BOD的度数;(2)如图①,点A、O、E在一条直线上,OB是∠AOC的平分线,OD是∠COE的平分线,请说明OB ⊥OD.17.(2019秋•鼓楼区期末)如图,点O在直线AB上,OC、OD是两条射线,OC⊥OD,射线OE平分∠BOC.(1)若∠DOE=150°,求∠AOC的度数.(2)若∠DOE=α,则∠AOC=.(请用含α的代数式表示)18.(2019秋•秦淮区期末)【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC、和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)【深入研究】如图2,点A表示数﹣10,点B表示数20,若点M从点B,以每秒3cm的速度向点A运动,当点M到达点A时停止运动,设运动的时间为t秒.(2)点M在运动过程中表示的数为(用含t的代数式表示);(3)求t为何值时,点M是线段AB的“二倍点”;(4)同时点N从点A的位置开始,以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.19.(2019秋•太仓市期末)如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.20.(2019秋•兴化市期末)如图,直线AB,CD相交于点O,OF⊥CD,OE平分∠BOC.(1)若∠BOE=60°,求∠AOF的度数;(2)若∠BOD:∠BOE=4:3,求∠AOF的度数.21.(2019秋•赣榆区期末)如图,已知线段AB,延长AB到C,点D是线段AB的中点,点E是线段BC 的中点.(1)若BD=5,BC=4,求线段EC、AC的长;(2)试说明:AC=2DE.22.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠BOC=80°,∠AOC=40°,求∠DOE的度数;(2)若∠BOC=α,∠AOC=50°,求∠DOE的度数;(3)若∠BOC=α,∠AOC=β,试猜想∠DOE与α、β的数量关系并说明理由.23.(2019秋•扬州期末)如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG﹣∠CEG=度.24.(2019秋•南京期末)已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=20,AD=2BE,求线段CE的长.25.(2019秋•崇川区期末)如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.(1)求∠AOG的度数;(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.26.(2019秋•东台市期末)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图①,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图①所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图①所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.27.(2019秋•淮安区期末)如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.28.(2019秋•清江浦区期末)如图,C为线段AB上一点,D在线段AC上,且AD=23AC,E为BC的中点.(1)若AC=6,BE=1,求线段AB、DE的长;(2)试说明:AB+BD=4DE.29.(2019秋•张家港市期末)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长.30.(2019秋•高新区期末)如图,O为直线AB上一点,∠AOC=48°,OD平分∠AOC,∠DOE=90°.(1)图中有个小于平角的角;(2)求出∠BOD的度数;(3)试判断OE是否平分∠BOC,并说明理由.31.(2019秋•江都区期末)如图,直线AB与CD相交于点O,∠AOC=48°,∠DOE:∠BOE=5:3,OF平分∠AOE.(1)求∠BOE的度数;(2)求∠DOF的度数.32.(2019秋•建湖县期末)如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=2:3,(1)如图1,若∠BOD=75°,求∠BOE;(2)如图2,若OF平分∠BOE,∠BOF=∠AOC+12°,求∠EOF.33.(2019秋•常熟市期末)已知,OM平分∠AOC,ON平分∠BOC.(1)如图1,若OA⊥OB,∠BOC=60°,求∠MON的度数;(2)如图2,若∠AOB=80°,∠MON:∠AOC=2:7,求∠AON的度数.34.(2019秋•南京期末)已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC 绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕O点以每秒2°的速度逆时针旋转t 秒,如图3,若∠AOM:∠DON=2:3,求t的值.35.(2019秋•沛县期末)已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.36.(2019秋•清江浦区期末)如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.(1)如图1,如果∠AOC=40°,依题意补全图形,写出求∠DOE度数的思路(不必写出完整的推理过程);(2)当直角三角板绕点O顺时针旋转一定的角度得到图2,使得直角边OC在直线AB的上方,若∠AOC =α,其他条件不变,请你直接用含α的代数式表示∠DOE的度数;(3)当直角三角板绕点O继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现∠AOC与∠DOE (0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.37.(2019秋•句容市期末)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.第5章《平面图形的认识(一)》试题精选(1)参考答案与试题解析一.选择题(共2小题)1.【答案】D【解答】解:设∠EAD′=α,∠F AB′=β,根据折叠可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=16°,∴∠DAF=16°+β,∠BAE=16°+α,∵四边形ABCD是正方形,∴∠DAB=90°,∴16°+β+β+16°+16°+α+α=90°,∴α+β=21°,∴∠EAF=∠B′AD′+∠D′AE+∠F AB′=16°+α+β=16°+21°=37°.则∠EAF的度数为37°.故选:D.2.【答案】A【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.二.填空题(共9小题)3.【答案】见试题解答内容【解答】解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=23 AB,∵BD:AB=2:3,∴BD=23nn,∴CD=BC+BD=43nn=8,∴AB=6;①当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;①当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=38nn=3,故AB=6或3.故答案为:6或34.【答案】见试题解答内容【解答】解:设这个角为∠α,则90°﹣∠α=15(180°﹣∠α)+10°,解得:∠α=55°,故答案为:55°.5.【答案】见试题解答内容【解答】解:如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;①OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.6.【答案】见试题解答内容【解答】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm﹣3cm=2cm;当点C在线段AB的延长线上时,则AC﹣BC=AB,所以AC=5cm+3cm=8cm.故答案为8或2.7.【答案】见试题解答内容【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣50°=130°.故答案为:130.8.【答案】见试题解答内容【解答】解:∵∠AOB=90°,∠AOC=2∠BOC,∴∠AOC+∠BOC=90°,即2∠BOC+∠BOC=90°,∴∠BOC=30°故答案为:30°.9.【答案】见试题解答内容【解答】解:设∠BOE =x °,∵∠BOE =1n ∠BOC ,∴∠BOC =nx ,∴∠AOB =∠AOC +∠BOC =60°+nx ,∵∠BOD =1n ∠AOB =1n (60°+nx )=60°n +x ,∴∠DOE =∠BOD ﹣∠BOE =60°n +x ﹣x =60°n ,故答案为:60n .10.【答案】见试题解答内容【解答】解:如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40°,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°,故答案为:110.11.【答案】见试题解答内容【解答】解:∵∠BOE =90°,∴∠AOE =180°﹣∠BOE =180°﹣90°=90°=∠AOC +∠COE ,因此①不符合题意;由对顶角相等可得①不符合题意;∵∠AOE =90°=∠AOC +∠COE ,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠COE +∠DOE =180°,因此①不符合题意;∠EOC +∠DOE =180°,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠BOD =∠AOC ,且∠COE +∠AOC =90°,因此①不符合题意;故答案为:①①三.解答题(共26小题)12.【答案】见试题解答内容【解答】解:(1)∵OE ⊥AC ,∴∠AOE =∠COE =90°,∵∠BOE =13∠EOC ,∴∠BOE =13×90°=30°;∴∠AOB =90°﹣30°=60°,∵OD 平分∠AOB ,∴∠BOD =12nAOB =30°; ∴∠DOE =∠BOD +∠BOE =60°,∴∠AOB =∠DOE ;故答案为:30,30,∠EOD ;(2)∵OD 平分∠AOB ,∴∠AOB =2∠AOD .∵∠AOD=32°,∴∠AOB=64°.∴∠COB=180°﹣∠AOB=116°.∵∠BOE=13∠EOC,∴∠EOC=34∠COB=34×116°=87°.13.【答案】见试题解答内容【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE ∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.14.【答案】见试题解答内容【解答】解:①∵BC=6,AB=8,∴AC=AB+BC=14,∵点D是AC的中点,∴AD=DC=12AC=7,∴BD=AB﹣AD=8﹣7=1;故答案为1;①用含x的代数式表示:CD=12(8+x)=4+12x,BD=|8﹣(4+12x)|=|4−12x|,故答案为:4+12x,|4−12x|;(2)能说明点E是线段BC的中点.理由如下:如图所示:∵AB=8,设BC=x,∴AC=AB+BC=8+x,DE=4,∵点D是AC的中点,∴AD=DC=12AC=4+12x,∴CE=DC﹣DE=4+12x﹣4=12x,BE=DE﹣DB=4﹣(AB﹣AD)=4﹣(4−12 x)=1 2x.∴CE=BE.所以点E是线段BC的中点.15.【答案】见试题解答内容【解答】解:(1)∵∠AOB=150°,∠COD=30°,∴∠AOC+∠BOD=∠AOB﹣∠COD=150°﹣30°=120°,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nBOD,∴∠AOM+∠BON=12(∠AOC+∠BOD)=60°,∴∠MON=∠AOB﹣(∠AOM+∠BON)=90°,故答案为:90°;(2)∵∠MON=8∠COD,∴设∠COD=α,则∠MON=8α,∵OD平分∠MON,∴∠DOM=∠DON=4α,∴∠COM=3α,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOC=2∠COM=6α,∠BOD=2∠DON=8α,∵∠AOB=∠AOC+∠COD+∠BOD=6α+α+8α=150°,∴α=10°,∴∠COD=10°;(3)∠COD+150°=2∠MON或2∠COD=210°﹣∠MON,理由:①三角形纸片在∠AOB的内部,如图1,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nnnn,∵∠AOM+∠BON=150°﹣∠MON,∠COD=150°﹣2(∠AOM+∠BON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①如图2,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠DON=12nnnn,∵∠AOM+∠DON=150°+∠BOD﹣∠MON,∴∠AOM﹣∠DON=150°﹣∠MON,∵∠COD=∠BOC+∠BOD=150°﹣∠AOC+∠BOD=150°﹣2(∠AOM﹣∠DON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①三角形纸片在∠AOB的外部,如图3,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=∠COM=12∠AOC,∠BON=∠DON=12nnnn,∵∠AOM+∠BON=360°﹣150°﹣∠MON,∠COD=∠AOM+∠BON﹣∠MON=360°﹣150°﹣2(∠MOC+∠DON)=210°﹣2(∠MON+∠COD)∴3∠COD=210°﹣2∠MON,综上所述,∠COD+150°=2∠MON或2∠COD=210°﹣2∠MON.16.【答案】见试题解答内容【解答】解:(1)∵OB是∠AOC的平分线∴∠nnn=12nnnn同理,∠nnn=12nnnn∴∠BOD=∠BOC+∠DOC=12∠AOC+12∠EOC=12(∠AOC+∠EOC)=12∠AOE,∵∠AOE=120°∴∠nnn=12×120°=60°(2)由(1)可知∠nnn=12nnnn∵∠AOE=180°∴∠nnn=12×180°=90°∴OB⊥OD.17.【答案】见试题解答内容【解答】解:(1)∵OC⊥OD,∠DOE=150°,∴∠COE=∠DOE﹣∠COD=150°﹣90°=60°,∵射线OE平分∠BOC.∴∠COE=∠BOE=60°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣60°﹣60°=60°,(2))∵OC⊥OD,∠DOE=α,∴∠COE=∠DOE﹣∠COD=α﹣90°,∵射线OE平分∠BOC.∴∠COE=∠BOE=α﹣90°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,故答案为:360°﹣2α.18.【答案】见试题解答内容【解答】解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”故答案为:是(2)点M 在运动过程中表示的数为20﹣3t ,故答案为:20﹣3t ;(3)当AM =2BM 时,30﹣3t =2×3t ,解得:t =103;当AB =2AM 时,30=2×(30﹣3t ),解得:t =5;当BM =2AM 时,3t =2×(30﹣3t ),解得:t =203;答:t 为103或5或203时,点M 是线段AB 的“二倍点”; (4)当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;当AM =2NM 时,30﹣3t =2[2t ﹣(30﹣3t )],解得:t =9013;当MN =2AM 时,2t ﹣(30﹣3t )=2(30﹣3t ),解得:t =9011; 当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;答:t 为152或9013或9011或152时,点M 是线段AN 的“二倍点”.19.【答案】见试题解答内容【解答】解:(1)∵OG ⊥CD .∴∠GOC =∠GOD =90°,∵∠AOC =∠BOD =38°12′,∴∠BOG =90°﹣38°12′=51°48′,(2)OG 是∠EOB 的平分线,理由:∵OC 是∠AOE 的平分线,∴∠AOC =∠COE =∠DOF =∠BOD ,∵∠COE +∠EOG =∠BOG +∠BOD =90°,∴∠EOG =∠BOG ,即:OG 平分∠BOE .20.【答案】见试题解答内容【解答】解:(1)∵OE平分∠BOC,∠BOE=60°,∴∠BOC=2∠BOE=120°,∴∠AOC=180°﹣120°=60°,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣60°=30°;(2)∵OE平分∠BOC,∴∠BOE=∠COE,∵∠BOD:∠BOE=4:3,∴∠BOD:∠BOE:∠EOC=4:3:3,∴∠BOD=180°×44+3+3=72°=∠AOC,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣72°=18°.21.【答案】见试题解答内容【解答】解:(1)∵D是线段AB的中点,BD=5,∴AB=2BD=10,∵E是线段BC的中点,BC=4,∴EC=12BC=2,∴AC=AB+BC=10+4=14;(2)∵D是线段AB的中点,∴AB=2BD,∵E是线段BC的中点,∴BC=2BE,∴AC=AB+BC=2BD+2BE=2DE.22.【答案】见试题解答内容【解答】解:(1)∵OD、OE分别平分∠AOB、∠AOC,∠AOC=40°,∴∠AOE=∠EOC=12∠AOC=20°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:80°=40°+2∠COD,∴∠COD=20°,∴∠DOE=∠COD+∠COE=20°+20°=40°;(2)∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=25°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=50°+2∠COD,∴∠COD=n−50 2,∴∠DOE=∠COD+∠COE=n−502+25°=n2;(3)∠nnn=n2,与β无关∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=n2,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=β+2∠COD,∴∠COD=n−n 2,∴∠DOE=∠COD+∠COE=n−n2+n2=n2;23.【答案】见试题解答内容【解答】解:(1)设∠BEC的度数为x,则180﹣x=3(90﹣x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x﹣25,由∠AEC=135°,得x+(x﹣25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°﹣100°﹣∠DEF=80°﹣∠DEF,∴∠AEG﹣∠CEG=100°﹣∠AEF﹣(80°﹣∠DEF)=20°,故答案为:20.24.【答案】见试题解答内容【解答】解:(1)∵|a﹣17|+(b﹣5.5)2=0,∴|a﹣17|=0,(b﹣5.5)2=0,解得:a=17,b=5.5,∵AB=a,CE=b,∴AB=17,CE=5.5(2)如图1所示:∵点C为线段AB的中点,∴AC=12nn=12×17=172,又∵AE=AC+CE,∴AE=172+112=14,∵点D为线段AE的中点,∴DE=12AE=12×14=7;(3)如图2所示:∵C为线段AB上的点,AB=20,∴AC=BC=12nn=12×20=10,又∵点D为线段AE的中点,AD=2BE,∴AE=4BE,DE=12nn,又∵AB=AE+BE,∴4BE+BE=20,∴BE=4,AE=16,又∵CE=BC﹣BE,∴CE=10﹣4=6.25.【答案】见试题解答内容【解答】解:(1)∵AB、CD相交于点O,∴∠AOC=∠BOD=36°,∵OG⊥CD,∴∠COG=90°,即∠AOC+∠AOG=90°,∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;(2)OC是∠AOE的平分线.理由∵OG是∠AOF的角平分线,∴∠AOG=∠GOF,∵OG⊥CD,∴∠COG=∠DOG=90°,∴∠COA=∠DOF,又∵∠DOF=∠COE,∴∠AOC=∠COE,∴OC平分∠AOE.26.【答案】见试题解答内容【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=12∠AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=12∠AOC,∠EOC=12∠BOC,∠DOE=∠COD﹣∠EOC=12∠AOC−12∠BOC=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.27.【答案】见试题解答内容【解答】解:(1)∠BOE=180°﹣∠AOC﹣∠COE=180°﹣36°﹣90°=54°;(2)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,∴∠BOD=30°,∵∠BOD=∠AOC,∴∠AOC=30°,∴∠AOE=∠COE+∠AOC=90°+30°=120°.28.【答案】见试题解答内容【解答】解:(1)∵E为BC的中点,BE=1,∴BC=2BE=2,CE=BE=1,∵AC=6,∴AB=AC+BC=6+2=8,∵AD=23AC,AC=6,∴AD=4,∴DC=6﹣4=2,∴DE=DC+CE=2+1=3;(2)∵AB=AC+BC,BD=BC+CD,∴AB+BD=AC+BC+BC+CD,∵AD=23AC,E为BC的中点,∴AC=3CD,BC=2CE,∴AB+BD=3CD+2CE+2CE+CD=4CD+4CE=4(CD+CE)=4DE.29.【答案】见试题解答内容【解答】解:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.所以AB=2AM=8x=16.故AB的长为16.30.【答案】见试题解答内容【解答】解:(1)小于平角的角有:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB共有9个.故答案是:9;(2)∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC=12×48°=24°,∴∠BOD=180°﹣∠AOD=180°﹣24°=156°;(3)∵∠COE=∠DOE﹣∠COD=90°﹣24°=66°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣24°﹣90°=66°,∴∠COE=∠BOE,∴OE平分∠BOC.31.【答案】见试题解答内容【解答】解:(1)∵∠DOE:∠BOE=5:3,∴∠BOE=38∠BOD=38∠AOC=38×48°=18°,∠DOE=58∠BOD=58∠AOC=58×48°=30°,(2)∠AOE=180°﹣∠BOE=180°﹣18°=162°,∵OF平分∠AOE.∴∠AOF=∠EOF=12∠AOE=81°,∴∠DOF=∠EOF﹣∠DOE=81°﹣30°=51°.32.【答案】见试题解答内容【解答】解:(1)∵∠AOC=∠BOD=75°,∠AOE:∠EOC=2:3,∴∠BOC=180°﹣∠BOD=180°﹣75°=105°,∠COE=35∠AOC=35×75°=45°,∴∠BOE=∠BOC+∠COE=105°+45°=150°;(2)∵OF平分∠BOE,∴∠EOF=∠BOF,∵∠BOF=∠AOC+12°=∠EOF,∴∠FOC+∠COE=∠AOE+∠COE+12°,即:∴∠FOC=∠AOE+12°,设∠AOE=x°,则∠FOC=(x+12)°,∠COE=32 x°,∵∠AOE+∠EOF+∠BOF=180°∴x+(x+12+32x)×2=180,解得,x=26,∴∠EOF=∠COE+∠COF=32x°+x°+12°=77°33.【答案】见试题解答内容【解答】解:(1)∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,∴∠COM=12∠AOC=75°,∵ON平分∠BOC,∴∠CON=12∠BOC=12×60°=30°,∴∠MON=∠COM﹣∠CON=75°﹣30°=45°;(2)∵∠COM=12∠AOC,∠CON=12∠BOC,∴∠MON=12(∠AOC﹣∠BOC)=12∠AOB=40°,∵∠MON:∠AOC=2:7,∴∠AOC=140°,∵OM平分∠AOC,∴∠AOM=12∠AOC=70°,∴∠AON=∠AOM+∠MON=70°+40°=110°34.【答案】见试题解答内容【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12(∠AOB+∠BOD)=12∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=1 2×180°﹣20°=70°;(3)∵∠AOM=12(10°+2t+20°),∠DON=12(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.35.【答案】见试题解答内容【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.36.【答案】见试题解答内容【解答】解:(1)如图1,补全图形;解题思路如下:①由∠AOC+∠BOC=180°,∠AOC=40°,得∠BOC=140°;①由OE平分∠BOC,得∠COE=70°;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=70°,得∠DOE=20°.(2)①由∠AOC+∠BOC=180°,∠AOC=α,得∠BOC=180°﹣α;①由OE平分∠BOC,得∠COE=90°−12α;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=90°−12α,得∠DOE=n 2.(3)∠DOE=12∠AOC(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC(0°≤∠DOE≤180°).37.【答案】见试题解答内容【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.。
遵化市2020~2021学年度第一学期期中考试高二数学试卷2020.11 本试卷分第Ⅰ卷(1—2页,选择题)和第Ⅱ卷(3—8页,非选择题)两部分,共150分.考试用时120分钟。
第Ⅰ卷(选择题,共60分)一、单项选择题(本小题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系中,直线+的倾斜角是A、B、C、D、2、某三棱锥的三视图如图所示,则该三棱锥的体积是A、B、C、D、3、圆的圆心坐标和半径分别为A、,5B、,C、D、4、如图所示,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是A、平行B、相交C、相交成D、异面5、若点P为圆的弦MN的中点,则弦MN所在直线方程为A、2y1=0B、2y+1=0C、+2y3=0D、2y3=06、已知A、B是球O的球面上两点,,C为该球面上的动点.若三棱锥O体积的最大值为36,则球O的表面积为A、36B、64C、144D、2567、若直线y=+b与曲线y=3有公共点,则b的取值范围是A、B、[,3]C、[1,]D、[,3]8、在正方体ABCD中,直线A与面BD所成角的正弦为A、B、C、D、二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9、垂直于同一条直线的两条直线的位置关系A、平行B、垂直C、异面D、重合10、设m、n是两条不同的直线,、、是三个不同的平面,下列命题正确的是A、若,,则;B、若,则;C、若m;D、若m,则m n11、已知圆上有且仅有两个点到直线3415=0的距离为1,则实数a的可能取值A、15B、 6C、0D、112、如图,在正方体ABCD中,点P在面对角线AC上运动,给出下列。
专题02 绝对值与相反数一.选择题1.(2021•岑溪市模拟)﹣2021的相反数是()A.﹣2021B.−12021C.12021D.20212.(2018秋•常熟市期末)化简﹣(+2)的结果是()A.﹣2B.2C.±2D.03.(2020秋•高新区期末)已知a,b是有理数,|a+b|=﹣(a+b),|a﹣b|=a﹣b,若将a,b 在数轴上表示,则图中有可能正确的是()A.B.C.D.4.(常州期末)若(a+3)的值与4互为相反数,则a的值为()A.﹣7B.−72C.﹣5D.12二.填空题5.(宣汉县期末)|−12|的相反数是.6.(2019秋•淮阴区期末)一个数的绝对值是2,则这个数是.7.(南城县期末)如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是.8.(2020秋•溧阳市期末)若|a|﹣a−13=0,则(3a−12)2021=.三.解答题9.(滨湖区校级期末)绝对值小于3的正整数是,绝对值小于5的负整数是;(画图)绝对值在2和5之间的整数是.(画图)10.(句容市校级期末)在数轴上表示a,0,1,b四个数的点如图所示,已知O为AB的中点.求|a+b|+|ab|+|a+1|的值.11.(滨湖区校级期末)附加题:已知a、b、c在数轴上的位置如图所示,试求|a|+|c﹣3|+|b|的值.12.(靖江市期末)若|a|=8,|b|=6.(1)求a+b的值;(2)若|a+b|=a+b,求b﹣a的值;(3)若|a﹣b|=b﹣a,求a+b的值.一.选择题1.(太仓市期末)若|x+3|+|y﹣2|=0,则x+y的值为()A.5B.﹣5C.﹣1D.12.(淮安期末)若|a+1|+|b﹣2|+|c+3|=0,则(a﹣1)(b+2)(c﹣3)的值是()A.﹣48B.48C.0D.无法确定3.(无锡期末)若m为有理数,则|m|﹣m的值为()A.大于0B.大于等于0C.小于0D.小于等于0 4.(如东县期末)式子|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣9|﹣|x﹣10|的最大值为()A.5B.6C.7D.8二.填空题5.(2020•长沙模拟)如果1<x<2,化简|x﹣1|+|x﹣2|=.6.(如皋市期末)若|x﹣2|+|y+3|=0,则x+y=.7.(射阳县校级期末)我们知道:式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子|x﹣2|+|x+1|的最小值为.8.(兰州模拟)用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2010⇒2011)⇐(2009⇒2008)=.三.解答题9.(太仓市期末)已知|2﹣b |与|a ﹣b +4|互为相反数,求ab ﹣2007的值.10.(滨湖区校级期末)(1)写出所有不大于4且大于﹣3的整数有 ;(2)不小于﹣4的非正整数有 .(画图)(3)若|a |+|b |=4,且a =﹣1,则b = .(写过程)11.(清河区校级期末)同学们,我们在本期教材中曾经学习过绝对值的概念:在数轴上,表示一个数a 的点与原点的距离叫做这个数的绝对值,记作|a |.实际上,数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|;数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,也就是说,在数轴上,如果A 点表示的数记为a ,B 点表示的数记为b ,则A 、B 两点间的距离就可记作|a ﹣b |.回答下列问题:(1)数轴上表示2和7的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;(2)数轴上表示x 与﹣1的两点A 和B 之间的距离可记作 ,如果这两点之间的距离为2,那么x 为 ;(3)找出所有符合条件的整数x ,使得|x +2|+|x ﹣1|=3,这样的整数是 .12.(南京校级期末)阅读材料,解答下列问题例:当a >0时,如a =6则|a |=|6|=6,故此时a 的绝对值是它本身当a =0时,|a |=0,故此时a 的绝对值是零当a <0时,如a =﹣6则|a |=|﹣6|=6=﹣(﹣6),故此时a 的绝对值是它的相反数所以综合起来一个数的绝对值要分三种情况,即|a |={a(a >0)0(a =0)−a(a <0)这种分析方法渗透了数学的分类讨论思想(1)比较大小:|﹣7| 7,|3| ﹣3;(用>,<,=填写)(2)请仿照例中的分类讨论的方法,分析猜想|a |与﹣a 的大小关系.专题02 绝对值与相反数一.选择题1.(2021•岑溪市模拟)﹣2021的相反数是()A.﹣2021B.−12021C.12021D.2021【分析】利用相反数的定义分析得出答案.【解答】解:﹣2021的相反数是:2021.故选:D.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(常熟市期末)化简﹣(+2)的结果是()A.﹣2B.2C.±2D.0【分析】直接利用去括号法则化简得出答案.【解答】解:﹣(+2)=﹣2.故选:A.【点评】此题主要考查了相反数,正确去括号是解题关键.3.(2020秋•高新区期末)已知a,b是有理数,|a+b|=﹣(a+b),|a﹣b|=a﹣b,若将a,b 在数轴上表示,则图中有可能正确的是()A.B.C.D.【分析】根据绝对值的性质化简即可判断.【解答】解:∵|a+b|=﹣(a+b),|a﹣b|=a﹣b,∴a+b≤0,a﹣b≥0,∴a≥b,A.由图知,a>0,b>0,所以a+b>0,所以此选项不合题意;B.由图知,a<0,b<0,a>b,所以a+b<0,所以此选项符合题意;C.由图知,a<0,b>0,a<b,所以此选项不合题意;D.由图知,a>0,b<0,|a|>|b|,所以a+b>0,所以此选项不合题意;故选:B.【点评】本题主要考查了绝对值的性质,熟练化简绝对值符号是解答此题的关键.4.(常州期末)若(a+3)的值与4互为相反数,则a的值为()A.﹣7B.−72C.﹣5D.12【分析】直接利用互为相反数的定义分析得出答案.【解答】解:∵(a+3)的值与4互为相反数,∴a+3+4=0,解得:a=﹣7.故选:A.【点评】此题主要考查了互为相反数,正确把握定义是解题关键.二.填空题5.(宣汉县期末)|−12|的相反数是−12.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:|−12|=12,|−12|的相反数是−12,故答案为:−1 2.【点评】本题考查了相反数,先求绝对值,再求相反数.6.(2019秋•淮阴区期末)一个数的绝对值是2,则这个数是±2.【分析】根据互为相反数的两个数的绝对值相等解答.【解答】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点评】本题考查了绝对值的性质,是基础题,熟记性质是解题的关键.7.(南城县期末)如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是﹣6.【分析】根据互为相反数的两数之和为0可得关于x的方程,解出即可得出x的值,继而得出x﹣2的值.【解答】解:由题意得:5x+3+(﹣2x+9)=0,解得:x=﹣4,∴x﹣2=﹣6.故填﹣6.【点评】本题考查相反数的知识,掌握互为相反数的两数之和为0是关键.8.(2020秋•溧阳市期末)若|a|﹣a−13=0,则(3a−12)2021=﹣1.【分析】先讨论得到a<0,此时解得a=−16,所以3a−12=−1,然后根据乘方的意义计算.【解答】解:当a≥0时,∵|a|﹣a−13=0,∴a﹣a−13=0,不合题意舍去;当a<0时,∵|a|﹣a−13=0,∴﹣a ﹣a −13=0,解得a =−16,∴3a −12=3×(−16)−12=−1,∴(3a −12)2021=(﹣1)2021=﹣1.故答案为﹣1.【点评】本题考查了绝对值:若a >0,则|a |=a ;若a =0,则|a |=0;若a <0,则|a |=﹣a .三.解答题9.(滨湖区校级期末)绝对值小于3的正整数是 1、2 ,绝对值小于5的负整数是 ﹣1、﹣2、﹣3、﹣4 ; (画图)绝对值在2和5之间的整数是 ﹣3、﹣4、3、4 .(画图)【分析】根据绝对值的定义和有理数的分类求解.【解答】解:如图所示:,绝对值小于3的正整数是 1、2,绝对值小于5的负整数是﹣1、﹣2、﹣3、﹣4; 绝对值在2和5之间的整数是﹣3、﹣4、3、4.故答案是:1、2;﹣1、﹣2、﹣3、﹣4;﹣3、﹣4、3、4.【点评】本题主要考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.10.(句容市校级期末)在数轴上表示a ,0,1,b 四个数的点如图所示,已知O 为AB 的中点.求|a +b |+|a b |+|a +1|的值.【分析】首先根据已知及数轴得出|a +b |,|a b |,|a +1|,从而求出原式的值. 【解答】解:∵O 为AB 的中点,则a +b =0,a =﹣b (3分).有|a +b |=0,|a b|=1.(4分)由数轴可知:a <﹣1.(5分)则|a +1|=﹣a ﹣1.(7分)∴原式=0+1﹣a ﹣1=﹣a .(8分)【点评】此题主要考查利用求数轴上两点的距离和中点的性质.11.(滨湖区校级期末)附加题:已知a 、b 、c 在数轴上的位置如图所示,试求|a |+|c ﹣3|+|b |的值.【分析】由图知,﹣2<a<﹣1,b=1,2<c<3,由绝对值的性质,去掉绝对值符号计算即可.【解答】解:∵﹣2<a<﹣1,b=1,2<c<3,∴|a|+|c﹣3|+|b|=﹣a+3﹣c+1=﹣a﹣c+4.【点评】本题考查了绝对值以及数轴的有关知识.12.(靖江市期末)若|a|=8,|b|=6.(1)求a+b的值;(2)若|a+b|=a+b,求b﹣a的值;(3)若|a﹣b|=b﹣a,求a+b的值.【分析】(1)由于|a|=8,|b|=6,根据绝对值的定义可以分别得到a、b的值,然后分类讨论即可求解;(2)由于|a+b|=a+b,由此得到a+b是非负数,然后利用(1)的结果即可求解;(3)由于|a﹣b|=b﹣a,由此得到b﹣a是非负数,然后利用(1)的结果即可求解.【解答】解:(1)∵|a|=8,|b|=6.∴a=±8,b=±6,当a=8,b=6 时,a+b=14当a=8,b=﹣6时,a+b=2当a=﹣8,b=6 时,a+b=﹣2当a=﹣8,b=﹣6时,a+b=﹣14;(2)∵|a+b|=a+b,∴a+b≥0,∴当a=8,b=6时,b﹣a=﹣2当a=8,b=﹣6时,b﹣a=﹣14;(3)∵|a﹣b|=b﹣a,∴b﹣a≥0,∴当a=﹣8,b=6时,a+b=2当a=﹣8,b=﹣6时,a+b=2.【点评】此题主要考查了绝对值的性质及有理数的加法,解题时首先根据已知条件确定a、b的正负及绝对值的大小,然后利用有理数的加法法则即可解决问题.一.选择题1.(太仓市期末)若|x+3|+|y﹣2|=0,则x+y的值为()A.5B.﹣5C.﹣1D.1【分析】直接利用绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x+3|+|y﹣2|=0,∴x=﹣3,y=2,则x+y=﹣3+2=﹣1.故选:C.【点评】此题主要考查了绝对值的性质,正确得出x,y的值是解题关键.2.(淮安期末)若|a+1|+|b﹣2|+|c+3|=0,则(a﹣1)(b+2)(c﹣3)的值是()A.﹣48B.48C.0D.无法确定【分析】直接利用绝对值的性质得出a,b,c的值,进而得出答案.【解答】解:∵|a+1|+|b﹣2|+|c+3|=0,∴a=﹣1,b=2,c=﹣3,∴(a﹣1)(b+2)(c﹣3)=﹣2×4×(﹣6)=48.故选:B.【点评】此题主要考查了非负数的性质,正确掌握绝对值的性质是解题关键.3.(无锡期末)若m为有理数,则|m|﹣m的值为()A.大于0B.大于等于0C.小于0D.小于等于0【分析】根据绝对值的性质:正数的绝对值是它本身、负数的绝对值是它的相反数、0的绝对值是0,可根据m是正数、负数和0三种情况讨论.【解答】解:①当m>0时,原式=m﹣m=0;②当m=0时,原式=0﹣0=0;③当m<0时,原式=﹣m﹣m=﹣2m>0.所以|m|﹣m的值大于等于0.故选:B.【点评】本题主要考查绝对值的性质,能够通过讨论去掉绝对值符号是解决本题的关键.4.(如东县期末)式子|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣9|﹣|x﹣10|的最大值为()A.5B.6C.7D.8【分析】根据绝对值的几何意义,可知在数轴上,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣9|﹣|x﹣10||表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差与……表示x到9的距离与x到10的距离的差的和.【解答】解:根据绝对值的几何意义,可知在数轴上,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x 到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差与……表示x到9的距离与x到10的距离的差的和,可知:x≥10时有最大值1×5=5;故选:A.【点评】本题主要考查了绝对值的意义及性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题还可以对x的取值进行分类讨论求解.二.填空题5.(2020•长沙模拟)如果1<x<2,化简|x﹣1|+|x﹣2|=1.【分析】先判断绝对值里的数为正数还是负数,再去绝对值符号进行化简.【解答】解:∵1<x<2,∴x﹣1>0,x﹣2<0,∴|x﹣1|+|x﹣2|=x﹣1+2﹣x=1.故答案为:1.【点评】化简有理数,注意去绝对值号,若绝对值里本身是正数,绝对值后等于本身,若绝对值里本身是负数的,绝对值之后等于本身的相反数.6.(如皋市期末)若|x﹣2|+|y+3|=0,则x+y=﹣1.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+3=0,解得x=2,y=﹣3,所以,x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.(射阳县校级期末)我们知道:式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子|x﹣2|+|x+1|的最小值为3.【分析】根据绝对值的意义,可知|x﹣2|是数轴上表示数x的点与表示数2的点之间的距离,|x+1|是数轴上表示数x的点与表示数﹣1的点之间的距离,由线段的性质,两点之间,线段最短,可知当﹣1≤x≤2时,|x﹣2|+|x+1|有最小值.【解答】解:根据题意,可知当﹣1≤x≤2时,|x﹣2|+|x+1|有最小值.此时|x﹣2|=2﹣x,|x+1|=x+1,∴|x﹣2|+|x+1|=2﹣x+x+1=3.故答案为:3.【点评】本题考查的是绝对值的意义及线段的性质,掌握式子|x ﹣a |的几何意义是数轴上表示数x 的点与表示数a 的点之间的距离是解题的关键.8.(兰州模拟)用“⇒”与“⇐”表示一种法则:(a ⇒b )=﹣b ,(a ⇐b )=﹣a ,如(2⇒3)=﹣3,则(2010⇒2011)⇐(2009⇒2008)= 2011 .【分析】根据题意,(a ⇒b )=﹣b ,(a ⇐b )=﹣a ,可知(2010⇒2011)=﹣2011,(2009⇒2008)=﹣2008,再计算(﹣2011⇐﹣2008)即可.【解答】解:∵(a ⇒b )=﹣b ,(a ⇐b )=﹣a ,∴(2010⇒2011)⇐(2009⇒2008)=(﹣2011⇐﹣2008)=2011.【点评】本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.三.解答题9.(太仓市期末)已知|2﹣b |与|a ﹣b +4|互为相反数,求ab ﹣2007的值.【分析】已知两个非负数互为相反数,即它们的和为0,根据非负数的性质可求出a 、b 的值,进而可求出ab ﹣2007的值.【解答】解:由题意,得:|2﹣b |+|a ﹣b +4|=0;则有:{2−b =0a −b +4=0, 解得{a =−2b =2; 因此ab ﹣2007=﹣2011.【点评】初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.10.(滨湖区校级期末)(1)写出所有不大于4且大于﹣3的整数有 ﹣2、﹣1、0、1、2,3,4, ;(2)不小于﹣4的非正整数有 ﹣4,﹣3,﹣2,﹣1,0; .(画图)(3)若|a |+|b |=4,且a =﹣1,则b = ±3 .(写过程)【分析】(1)画出数轴,根据数轴上的数右边的总比左边的数大解答.(2)画出数轴,根据数轴上的数右边的总比左边的数大解答.(3)首先利用a 的值求得|a |,然后求得|b |,从而求得b 的值.【解答】解:(1)如图所示:,所以大于﹣3且不大于4的所有整数写出来是﹣2、﹣1、0、1、2,3,4;(2)如图所示:所以不小于﹣4的非正整数有﹣4,﹣3,﹣2,﹣1,0;(3)∵a=﹣1,∴|a|=1,∵|a|+|b|=4,∴|b|=3,∴b=±3;故答案为:﹣2、﹣1、0、1、2,3,4;﹣4,﹣3,﹣2,﹣1;±3.【点评】考查了绝对值的知识,解答此题利用数轴可将结果直观的呈现出来,体现了数形结合思想的作用.11.(清河区校级期末)同学们,我们在本期教材中曾经学习过绝对值的概念:在数轴上,表示一个数a的点与原点的距离叫做这个数的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|;数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,也就是说,在数轴上,如果A点表示的数记为a,B点表示的数记为b,则A、B两点间的距离就可记作|a﹣b|.回答下列问题:(1)数轴上表示2和7的两点之间的距离是5,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x与﹣1的两点A和B之间的距离可记作|x+1|,如果这两点之间的距离为2,那么x为1或﹣3;(3)找出所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是﹣2,﹣1,0,1.【分析】(1)根据题意所述,运用类比的方法即可得出答案.(2)根据两点之间的距离为2,得到|x+1|=2,继而可求出答案.(3)根据线段上的点到线段的两端点的距离的和最小值是线段的长度,可得点在线段上,再根据分母为1的数是整数,可得答案.【解答】解:(1)|2﹣7|=5,|1﹣(﹣3)|=4,故答案为:5,4;(2)AB=|x+1|,∵这两点之间的距离为2,∴|x+1|=2,∴x=1或﹣3;故答案为:|x+1|,1或﹣3;(3)所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是﹣2,﹣1,0,1.故答案为:﹣2,﹣1,0,1.【点评】此题考查了绝对值函数的最值、数轴、两点间的距离及相反数的知识,综合的知识点较多,难度一般,注意理解绝对值的几何意义是关键.12.(南京校级期末)阅读材料,解答下列问题例:当a >0时,如a =6则|a |=|6|=6,故此时a 的绝对值是它本身当a =0时,|a |=0,故此时a 的绝对值是零当a <0时,如a =﹣6则|a |=|﹣6|=6=﹣(﹣6),故此时a 的绝对值是它的相反数所以综合起来一个数的绝对值要分三种情况,即|a |={a(a >0)0(a =0)−a(a <0)这种分析方法渗透了数学的分类讨论思想(1)比较大小:|﹣7| = 7,|3| > ﹣3;(用>,<,=填写)(2)请仿照例中的分类讨论的方法,分析猜想|a |与﹣a 的大小关系.【分析】此题要结合一个数的绝对值的三种情况进行分析,|a |={a(a >0)0(a =0)−a(a <0).这种分析方法渗透了数学的分类讨论思想.【解答】解:(1)|﹣7|=7,|3|>﹣3;(2)显然当a >0时,|a |=a >﹣a ,当a =0时,|a |=﹣a =0,当a <0时,|a |=﹣a .【点评】注意绝对值的三种情况,今后在做有关绝对值的题时,要善于结合三种情况进行分析.。
第1章有理数典型题专练一、单选题1.(2021·浙江)南山隧道工程是温瑞大道快速路的重要节点工程,该工程造价最终报价为376000000元,其中376000000用科学记数法可表示为( ) A .37.6×108 B .3.76×108 C .3.76×109 D .37.6×107【答案】B【分析】根据科学记数法的定义:把一个数表示成10n a ⨯的形式,其中110a ≤<,即可得出答案.【详解】8376000000 3.7610⨯=. 故选:B .【点睛】本题考查的是科学记数法,熟练掌握科学记数法的定义是解决本题的关键. 2.(2021·湖北七年级期中)下列判断错误的是( ) A .3>﹣5B .﹣3>﹣5C .﹣2.5>﹣|﹣2.25|D .35>34-【答案】C【分析】根据有理数比较大小的法则即可得出答案. 【详解】A 、3>﹣5,故本选项不合题意;B 、因为|﹣3|=3,|﹣5|=5,3<5,所以﹣3>﹣5,故本选项不合题意;C 、﹣|﹣2.25|=﹣2.25,因为|﹣2.5|=2.5,|﹣2.25|=2.25,2.5>2.25, 所以﹣2.5<﹣|﹣2.25|, 故本选项符合题意;D 、因为33125520-==,33154420-==,12152020<, 所以3354->-,故本选项不合题意;【点睛】本题考查的是有理数的比较大小,注意负数的比较大小:绝对值大的反而小. 3.(2020·富县沙梁初级中学七年级期中)以下说法正确的是( ) A .一个数前面带有“﹣”号,则是这个数是负数 B .轴上表示数 a 的点在原点的左边,那么 a 是一个负数 C .数轴上的点都表示有理数 D .整数和小数统称为有理数 【答案】B【分析】利用有理数的定义、数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴,再结合数轴的性质分析得出答案.【详解】解:A 、一个数前面带有“﹣”号,这个数不一定是负数,如﹣(﹣3)=3,故选项错误;B 、数轴上表示数a 的点在原点的左边,那么a 是一个负数,故选项正确;C 、数轴上的点都表示实数,故选项错误;D 、整数和分数统称为有理数,故选项错误.故选:B .【点睛】此题主要考查了有理数、数轴,正确把握数轴的定义是解题关键. 4.(2020·四川七年级期中)3-的相反数是( ) A .3- B .3C .13-D .0【答案】B【分析】根据相反数的定义即可确定答案. 【详解】3-的相反数是3. 故选:B .【点睛】本题考查相反数定义,熟记相反数定义是解题的关键. 5.(2020·兴化市陈堡初级中学)绝对值小于3的负整数有( ) A .3个 B .2个C .4个D .1个【答案】B【分析】一个负数绝对值是它的相反数,即可解得. 【详解】解:绝对值小于3的负整数是1-,2-共个.【分析】本题考查的是绝对值有关知识,掌握一个负数绝对值是它的相反数是解题关键 . 6.(2020·高台县城关初级中学)下列说法正确的是( )A .5-的相反数是15-B .5-的绝对值是-5C .5-的倒数是15-D .5-的倒数是15【答案】C【分析】根据倒数、相反数和绝对值的定义即可求得. 【详解】A. 5-的相反数是5,故错误; B. 5-的绝对值是5,故错误;C. 5-的倒数是15-,故正确;D. 5-的倒数是15-,故错误;故选C【点睛】本题考查倒数、相反数和绝对值的定义,掌握相关知识点是解题关键. 7.(2020·全国七年级课时练习)193-⨯的结果是( ) A .3- B .3C .13-D .13【答案】A【分析】根据有理数的乘法法则计算可得. 【详解】1199333⎛⎫-⨯=-⨯=- ⎪⎝⎭故选A .【点睛】本题考查了有理数的乘法,是基础题型,符号问题是本题的易错点. 8.(2020·邢台市第七中学)17-可以表示一个数是倒数,这个数是( ) A .17B .17-C .7D .7-【答案】D【分析】根据倒数的意义求解即可,即列出117⎛⎫÷- ⎪⎝⎭并且求解.【详解】根据题意,得1177⎛⎫÷-=- ⎪⎝⎭故选D .【点睛】本题考查了倒数的求法,若两个数互为倒数,则乘积为1.9.(2019·武汉六中上智中学七年级月考)若a b =,则a 与b 的关系是( ) A .a =b B .a =-b C .a =b =0 D .a =b 或a =-b【答案】D【分析】两个数相等,两个数的绝对值也相等,两个数互为相反数,绝对值相等,据此求解即可. 【详解】∵a b = ∴a b =或=-a b 故选D .【点睛】本题考查了绝对值的化简,求一个数的绝对值,题目较为基础,熟记求一个数绝对值的规律是本题的关键.10.(2020·成都市第四十中学校)在 2(2)-,22- ,(10)+- ,12- ,0- , 4--中,负整数有( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】将题目中每个数进行求值,然后挑选负整数即可.【详解】2(2)4-=,224-=-,(10)10+-=-,00-=,44--=-,12- ∴共有224-=-,(10)10+-=-,44--=-一共3个负整数 故选C .【点睛】本题考查了有理数的分类,关键是将题目中每个数进行求值,然后进行比对 11.(2020·全国七年级课时练习)若实数m n ,互为倒数,则下列等式中成立的是( )A .m n 0-=B .mn 1=C .m n 0+=D .mn 1=-【答案】B【分析】根据倒数的意义,可得答案. 【详解】m n 0-=,得m n =,故A 错误;mn 1=,得m 与n 互为倒数,故B 符合题意;m n 0+=,得m 与n 互为相反数,故C 错误; mn 1=-,得m 与n 互为负倒数,故D 错误;故选B .【点睛】本题考查了倒数的定义,两个数互为倒数,则乘积为1;两个数互为负倒数,则乘积为-1.12.(2020·邢台市第七中学)如图,水文观测中,常遇到水位的上升与下降的问题,如果今天的水位记为0cm ,规定水位上升为正,水位下降为负,几天后为正,几天前为负,那么()()43+⨯+的运算结果可表示水位每天上升4cm ,3天后的水位,按上面的规定,()()32-⨯-的运算结果可表示( )A .水位每天上升3cm ,2天前的水位B .水位每天上升3cm ,2天后的水位C .水位每天下降3cm ,2天前的水位D .水位每天下降3cm ,2天后的水位【答案】C【分析】()()32-⨯-中两个数均为负,因此分别表示水位下降和几天前,据此即可判断. 【详解】根据题意,(-3)表示水位每天下降3m ,(-2)表示两天前的水位 故选C .【点睛】本题考查了正负数的意义,习惯上将向上、向右、向前、向东、向南等表示为正向的量,将相反的向下、向左、向后、向西、向北等表示为负向的量.13.(2020·成都市第四十中学校)丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道 B .2道 C .3道 D .4道【答案】A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误; ②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题. 故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 14.(2020·合肥市第六十五中学七年级月考)下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个【答案】A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 15.(2020·全国七年级课时练习)若201863⨯=p ,则201864⨯的值可表示为( ) A .p 1+ B .p 63+C .p 2018+D .63p 64【答案】C【分析】将64变为(63+1),然后根据乘法分配律求解即可. 【详解】∵201863⨯=p ,∴201864⨯=()2018631⨯+=2018632018⨯+=p 2018+ 故选C .【点睛】本题考查了乘法分配律,重点是要将64变形,熟练掌握有理数乘法的运算律是本题的关键.16.(2020·内蒙古呼和浩特·)一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12 B .扩大到原来的10倍 C .缩小到原来的110D .扩大到原来的2倍【答案】A【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab 根据题意,得1110202a b ab = 故选A .【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可. 17.(2020·莆田市秀屿区实验中学)下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=【答案】C【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误; ()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.18.(2020·重庆一中七年级月考)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①(1)(1)(1)0a b c ---<;②a b b c a c -+-=-;③()()()0a b b c c a +++>;④1a bc <-,其中正确的结论有( )个 A .4个 B .3个C .2个D .1个【答案】B【分析】根据三点与1的位置关系即可判断①;对于②,根据a 、b 、c 的位置关系化简方程左端,判断是否等于右端即可;对于③,首先判断三个式子的正负,然后判断积的符号;对于④,首先判断1−bc 的符号,然后和a 比较即可 . 【详解】①∵a<1,b<1,c<1 ∴a-1<0,b-1<0,c-1<0∴(1)(1)(1)0a b c ---<,故①正确; ②∵a<b ,b<c ,a<c ∴a-b<0,b-c<0,a-c<0∴a b b c b a c b c a -+-=-+-=-,a c c a -=- ∴a b b c a c -+-=-,故②正确; ③∵a+b<0,b+c>0,a+c<0∴()()()0a b b c c a +++>,故③正确; ④∵a<-1 ∴|a|>1 ∵0<b<c<1 ∴0<bc<1 ∴1-bc<1∴|a|>1-bc ,故④错误; 故选B【点睛】本题考查了数轴,有理数,绝对值的化简,题目较难,英重点关注数轴上点和已知数的位置关系,然后进行推导求解.二、填空题19.(2021·全国七年级)把下列各数填入相应的大括号里:-3,3.14,-0.1,80,-25%,0,11 17正数集合:{_____________________};整数集合:{_____________________};负数集合:{_____________________};正分数集合:{_____________________}.【答案】3.14,80,1117-3,80,0 -3,-0.1,-25% 3.14,1117【分析】根据正数、负数、整数、正分数的意义逐个进行判断.【详解】正数有:3.14,80,1117,……整数有:-3,80,0,……负数有:-3,-0.1,-25%,……正分数有:3.14,1117,……【点睛】本题考查有理数的分类,理解有理数的分类方法是正确判断的前提. 20.(2021·江苏七年级专题练习)如果规定向东走为正,那么“-2米”表示: ______.【答案】向西走2米【分析】根据正负数的意义找到表示正数的量,再找到与它相反意义的量即可得到答案.【详解】解:如果规定向东走为正,那么“-2米”表示的意义是向西走2米.故答案为:向西走2米.【点睛】本题考查正负数的意义,正数与负数表示相反意义的两个量,关键在于看清规定哪一个为正,则和它相反意义的量即为负.21.(2021·全国七年级)若x的相反数是它本身,则x ______.【答案】0【分析】根据正数的相反数是负数,负数的相反数是正数,零的相反数是零即可求解.【详解】由x的相反数是它本身可知:x=0.故答案为:0.【点睛】本题考查相反数的概念,掌握相反数的概念为解题关键.22.(2020·成都市双庆中学校七年级月考)比较大小:(用“>”“<”“=”连接)(1)56⎛⎫+- ⎪⎝⎭_____67--(2) 3.14-______π-【答案】>>【分析】(1)将左右两端同时化简,然后通分进行比较即可;(2)根据两个负数比较大小,绝对值大的反而小进行判断即可.【详解】(1)55356642⎛⎫+-=-=-⎪⎝⎭66367742--=-=-35364242<5667∴->-(2) 3.14π>3.14π∴->-.【点睛】本题考查了有理数的比较大小,正数比负数大,而两个负数比较大小时,绝对值大的反而小.23.(2019·长沙市望城区长郡月亮岛学校七年级期中)4-的相反数的倒数是______.【答案】1 4 -【分析】首先化简绝对值,然后求相反数,最后求倒数即可.【详解】∵44-=∴4的相反数为-4∴-4的倒数是14 -,故答案为:14 -.【点睛】本题考查了相反数、倒数,解决本题的关键是熟记相反数、倒数的定义.24.(2021·全国)1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:如果正整数m 最少经过6步运算可得到1,则m 的值为__.【答案】10或64【分析】根据得数为1,可倒推出第5次计算后得数一定是2,第4次计算后得4,依此类推,直至倒退到第1次前的数即可. 【详解】解:如图,利用倒推法可得:由第6次计算后得1,可得第5次计算后的得数一定是2,由第5次计算后得2,可得第4次计算后的得数一定是4,由第4次计算后得4,可得第3次计算后的得数是1或8,其中1不合题意,因此第3次计算后一定得8由第3次计算后得8,可得第2次计算后的得数一定是16,由第2次计算后得16,可得第1次计算后的得数是5或32,由第1次计算后得5,可得原数为10,由第1次计算后32,可得原数为64,故答案为:10或64. 【点睛】考查有理数的运算,掌握计算法则是正确计算的前提,理解题意是重中之重. 三、解答题25.(2020·安徽淮北·七年级月考)计算:611111122234⎛⎫⎛⎫-÷-++-⨯ ⎪ ⎪⎝⎭⎝⎭【答案】9【分析】根据有理数的混合运算法则及幂的运算法则求解.【详解】 解:61111112223471(2)1212279⎫⎫⎛⎛-÷-++-⨯ ⎪ ⎪⎝⎝⎭⎭=-⨯-+⨯=+= 【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则,选择简便的运算过程是解决这类问题的关键.26.(2020·江苏省锡山高级中学实验学校)计算(1)()()()6793----++ (2)()()()16.52132⎛⎫-⨯-÷-÷- ⎪⎝⎭(3)3778148127⎛⎫-++⨯ ⎪⎝⎭ (4)()2411263⎛⎫---+⨯- ⎪⎝⎭ 【答案】(1)5-;(2)2;(3)13-;(4)7- 【分析】(1)去括号,然后按照有理数加减混合运算法则计算即可;(2)首先将分数化为假分数,除法变为乘法,然后应用乘法交换律即可求解;(3)根据乘法分配律计算,然后计算加减即可求解;(4)首先计算乘方和乘法,然后计算加减即可求解.【详解】(1)原式=()6793-+-+ =5-(2)原式=()()13122213⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=()()13122213⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=2(3)原式=7878784787127-⨯+⨯+⨯ =2213-++ =13- (4)原式=142---=7-【点睛】本题考查了有理数的混合运算,乘方运算,和有理数乘法运算律,关键是掌握运算法则.27.(2020·四川七年级期中)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.(1)a b +=________,cd = _______,m =________.(2)求5236a b cd m +++-的值. 【答案】(1)0;1;2±;(2)6或2-.【分析】(1)根据互为相反数的两个数和为0,互为倒数的两个数积为1,互为相反数的两个数绝对值相等,即可求得;(2)根据(1),求解即可;【详解】(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴0a b +=,1cd =,2m =±.故答案为:0;1;2±.(2)若2m =,则原式0512236=+⨯+⨯-=.若2m =-,则原式0512(2)32=+⨯+⨯--=-.【点睛】本题考查互为相反数的两个数和为0、互为倒数的两个数积为1、互为相反数的两个数绝对值相等,掌握知识点是解题关键.28.(2021·全国)阅读理解:小红和小明在研究绝对值的问题时,碰到了下面的问题: “当式子|x +1|+|x ﹣2|取最小值时,相应的x 取值范围是 ,最小值是 ”. 小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x <﹣1,﹣1≤x ≤2和x >2,经研究发现,当﹣1≤x ≤2时,|x +1|+|x ﹣2|值最小为3.请你根据他们的解题解决下面的问题:①当式子|x ﹣2|+|x ﹣4|+|x ﹣6|取最小值时,相应x = ,最小值是 . ②已知y =|2x +8|﹣|4x +2|,求相应的x 的取值范围及y 的最大值,写出解答过程.【答案】阅读理解:﹣1≤x ≤2,3;①4,4;②x 12=-时,y 有最大值y =7【分析】阅读理解:根据线段上的点与线段的端点的距离最小,可得答案;①根据线段上的点与线段的端点的距离最小,可得答案;②根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.【详解】解:阅读理解:当式子|x +1|+|x ﹣2|取最小值时,相应的x 取值范围是﹣1≤x ≤2,最小值是3,故答案为﹣1≤x ≤2,3;①当式子|x ﹣2|+|x ﹣4|+|x ﹣6|取最小值时,相应的x =4,最小值是4;故答案为4,4;②当x 12≥-时y =﹣2x +6,当x 12=-时,y 最大=7;当﹣4≤x 12≤-时,y =6x +10,当x 12=-时,y 最大=7;当x ≤﹣4,时y =2x ﹣6,当x =﹣4时,y 最大=﹣14,所以x 12=-时,y 有最大值y =7.【点睛】本题考查了绝对值,线段上的点与线段的端点的距离最小,(2)分类讨论是解题关键.29.(2020·四川)请你参考右边小明的讲解,利用运算律进行简便计算:(1)()99837⨯-.(2)41399918999999118555⎛⎫⨯+⨯--⨯ ⎪⎝⎭. 【答案】(1)36926-,(2)99900-.【分析】(1)将式子变形为()()1000237-⨯-,再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.【详解】(1)原式=()()1000237-⨯-=3700074-+=36926-.(2)原式=41318118999555⎛⎫--⨯ ⎪⎝⎭-⨯=100999-.=99900【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。
2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。
2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。
2020-2021学年七年级上学期期末考试数学试题一.选择题1.2020的相反数是()A.2020B.﹣2020C.D.﹣2.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 4.单项式﹣32xy2z3的次数和系数分别为()A.6,﹣3B.6,﹣9C.5,9D.7,﹣95.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0 6.按如图所示的运算程序,能使输出的结果为10的是()A.x=3,y=﹣2B.x=﹣3,y=2C.x=2,y=3D.x=3,y=﹣3 7.关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,则m的值为()A.0B.2C.﹣D.﹣28.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm9.已知代数式a+2b的值是5,则代数式2a+4b+1的值是()A.5B.10C.11D.不能确定10.仔细观察,探索规律:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…则22020+22019+22018+…+2+1的个位数字是()A.1B.3C.5D.7二.填空题11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2019=.12.已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.13.已知A,B,C三点在同一条直线上,AB=8,BC=6,M,N分别是AB、BC的中点,则线段MN的长是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.15.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).16.如果m﹣n=5,那么﹣3m+3n﹣7的值是.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2020n+c2021的值为.18.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是元.三.解答题(共19小题)19.计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.20.先化简,再求值:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)的值,其中x=1,y=﹣2.21.解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).22.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x是最大的负整数,将x代入(1)问的结果求值.25.我校九年级163班所有学生参加体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级163班参加体育测试的学生共有多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求出等级C对应的圆心角的度数;(4)若规定达到A、B级为优秀,我校九年级共有学生850人,估计参加体育测试达到优秀标准的学生有多少人?26.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.27.观察下表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣24﹣8a﹣3264…第2行06﹣618﹣3066…第3行﹣12﹣48﹣16b…(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.28.如图在数轴上有A,B两点,点A表示的数为﹣10,点O表示的数为0,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O 向右运动(点M,点N同时出发).(1)数轴上点B表示的数是.(2)经过几秒,点M,N到原点的距离相等?(3)点N在点B左侧运动的情况下,当点M运动到什么位置时恰好使AM=2BN?参考答案一.选择题1.【解答】解:2020的相反数是:﹣2020.故选:B.2.【解答】解:A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选:B.3.【解答】解:47.24亿=4724 000 000=4.724×109.故选:B.4.【解答】解:该单项式的次数为6,系数为﹣9,故选:B.5.【解答】解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.6.【解答】解:由题意得:x2+|2y|=10,当x=2,y=3满足x2+|2y|=10,故选:C.7.【解答】解:由3y﹣3=2y﹣1,得y=2.由关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,得2m+2=m,解得m=﹣2.故选:D.8.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN =BM﹣BN=5﹣2=3cm.故选:C.9.【解答】解:给a+2b=5两边同时乘以2,可得2a+4b=10,则2a+4b+1=10+1=11.故选:C.10.【解答】解:利用题中的式子得(x﹣1)(x2020+x2019+x2018+…+x+1)=x2021﹣1;当x=2时,22020+22019+22018+…+2+1=22021﹣1;∵21=2,22=4,23=8,24=16,25=32,而2021=505×4+1,∴22021的个位数字为2,∴22021﹣1的个位数字为1,即22020+22019+22018+…+2+1的个位数字是1.故选:A.二.填空题11.【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,故(a﹣b)2019=(3﹣2)2019=1.故答案为:1.12.【解答】解:|a+1|+|2013﹣b|=0,∴a+1=0,2013﹣b=0,a=﹣1,b=2013,∴a b=(﹣1)2013=﹣1,故答案为:﹣1.13.【解答】解:由AB=8,BC=6,M、N分别为AB、BC中点,得MB=AB=4,NB=BC=3.①C在线段AB的延长线上,MN=MB+NB=4+3=7;②C在线段AB上,MN=MB﹣NB=4﹣3=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长7或1.故答案为7或1.14.【解答】解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.15.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣816.【解答】解:当m﹣n=5时,﹣3m+3n﹣7=﹣3(m﹣n)﹣7=﹣3×5﹣7=﹣15﹣7=﹣22.故答案为:﹣22.17.【解答】解:∵m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,∴m=﹣1,n=0,c=1,∴m2019+2020n+c2021的=(﹣1)2019+2020×0+12021=﹣1+0+1=0故答案为:0.18.【解答】解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.三.解答题19.【解答】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=720.【解答】解:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)=5y2﹣x2+6x2﹣9xy﹣5x2﹣5y2=(5y2﹣5y2)+(﹣x2+6x2﹣5x2)﹣9xy=0+0﹣9xy=﹣9xy,∵x=1,y=﹣2,∴原式=﹣9×1×(﹣2)=18.21.【解答】解:(1)4﹣4x+12=18﹣2x,﹣4x+2x=18﹣4﹣12,﹣2x=2,x=﹣1.(2)2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1﹣x=3,x=﹣3.22.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.23.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD =∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC =2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.24.【解答】解:(1)根据题意知B=2x2﹣3x﹣2﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3,则A﹣B=(3x2﹣x+1)﹣(﹣x2﹣2x﹣3)=3x2﹣x+1+x2+2x+3=4x2+x+4;(2)∵x是最大的负整数,∴x=﹣1,则原式=4×(﹣1)2﹣1+4=4﹣1+4=7.25.【解答】解:(1)九年级163班参加体育测试的学生共有15÷30%=50(人);(2)D等级的人数为:50×10%=5(人),C等级人数为:50﹣15﹣20﹣5=10(人);补全统计图如下:(3)等级C对应的圆心角的度数为:×360°=72°;(4)估计达到A级和B级的学生共有:×850=595(人).26.【解答】解:设每人加工x个零件,﹣=1解得:x=100答:甲加工了100个,乙加工了100个.27.【解答】解:(1)第1行的第四个数a是﹣8×(﹣2)=16;第3行的第六个数b是64÷2=32;故答案为:16;32.(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2.故答案为:c+2.(3)解:根据题意,这三个数依次为x,x+2,x得,x+x+2+x=2562,解得:x=1024.28.【解答】解:(1)故答案为:30;(2)设经过x秒,点M,N到原点的距离相等,分两种情况:①当点M,N在原点两侧时,根据题意列方程:得:10﹣3x=2x,解得:x=2②当点M,N重合时,根据题意列方程,得:3x﹣10=2x,解得:x=10所以,经过2秒或10秒,点M,N到原点的距离相等;(3)设经过y秒,恰好使AM=2BN根据题意得:3y=2(30﹣2y)解得:.又所以当点M运动到数轴上表示的点的位置时,AM=2BN。
2020-2021学年华东师大新版七年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣3的相反数为()A.﹣3B.﹣C.D.32.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A.13.75×106B.13.75×105C.1.375×108D.1.375×109 3.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣4.某大楼地上共有12层,地下共有4层.某人乘电梯从地下2层升至地上9层,电梯一共升了()A.7层B.8层C.9层D.10层5.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥6.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a57.下列5个数中:2,1.0010001,,0,﹣π,有理数的个数是()A.2B.3C.4D.58.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°9.若x=3n+1,y=3×9n﹣2,则用x的代数式表示y是()A.y=3(x﹣1)2﹣2B.y=3x2﹣2C.y=x3﹣2D.y=(x﹣1)2﹣210.已知a+2b=5,则代数式3(2a﹣3b)﹣4(a﹣3b+1)+b的值为()A.14B.10C.6D.不能确定二.填空题(共5小题,满分15分,每小题3分)11.比较大小:﹣﹣(填“<”或“>”).12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.13.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有个.14.已知a表示一个一位数,b表示一个两位数,把a放到b的左边组成一个三位数,则这个三位数可以表示为.15.如图,用围棋子按某种规律摆成的一行“七”字,按照这种规律,第n个“七”字中的围棋子有个.三.解答题(共8小题,满分75分)16.计算题:(1)﹣23﹣[﹣0.2÷×(﹣2)2﹣|﹣5|];(2)(﹣+﹣)÷(﹣).17.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.18.阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?19.育杰中学七年级一班3名教师决定带领本班a名学生利用假期去某地旅游.甲旅行社的收费标准为:教师全价,学生半价;乙旅行社的收费标准为:不管老师还是学生一律八折优惠,这两家旅行社的全价都是每人500元.(1)请分别用含a的式子表示三名教师和a名学生选择这两家旅行社所需的费用;(2)当a=55时,选择哪一家旅行社更合算?20.如图,点C是AB上一点,点D是AC的中点,若AB=12,BD=7,求CB的长.21.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.22.如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM()∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF()由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.23.阅读并填空问题:在一条直线上有A,B,C,D四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A为端点的线段有AB,AC,AD3条,同样以B为端点,以C为端点,以D为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有条线段.那么,如果在一条直线上有5个点,则这条直线上共有条线段.如果在一条直线上有n 个点,那么这条直线上共有条线段.知识迁移:如果在一个锐角∠AOB内部画2条射线OC,OD,那么这个图形中总共有个角,若在∠AOB内画n条射线,则总共有个角.学以致用:一段铁路上共有5个火车端,若一列客车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备种不同的车票.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣3的相反数是3.故选:D.2.解:13.75亿这个数字用科学记数法表示为1.375×109.故选:D.3.解:单项式﹣的系数和次数是:﹣,5.故选:B.4.解:根据题意得:9﹣(﹣2)﹣1=10,则某人乘电梯从地下2层升至地上9层,电梯一共升了10层,故选:D.5.解:观察图形可知,这个几何体是三棱柱.故选:A.6.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.7.解:有理数有2,1.0010001,,0,共4个.故选:C.8.解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.9.解:∵x=3n+1,y=3×9n﹣2=3×32n﹣2,∴y=3(x﹣1)2﹣2.故选:A.10.解:∵a+2b=5,∴原式=6a﹣9b﹣4a+12b﹣4+b=2a+4b﹣4=2(a+2b)﹣4=10﹣4=6,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:|﹣|=,|﹣|=,﹣,故答案为:>.12.解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.13.解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1,左视图有两列,每列的方块数分别是:1,2,俯视图有三列,每列的方块数分别是:2,1,2,∴总个数为1+2+1+1+1=6个.故答案为6.14.解:这个三位数可以表示为100a+b.故答案是:100a+b.15.解:∵第1个图形有1+4×1+2=7个棋子,第2个图形有1+4×2+3=12个棋子,第3个图形有1+4×3+4=17个棋子,…∴第n个“七”字中的棋子个数是:1+4n+(n+1)=5n+2.故答案为:5n+2.三.解答题(共8小题,满分75分)16.解:(1)=﹣8﹣(﹣××4﹣5)=﹣8﹣(﹣1﹣5)=﹣8+6=﹣2;(2)===9﹣8+6=7.17.解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.18.解:(1)﹣3+6﹣2+1﹣5﹣2+9﹣6=﹣2km,答:将最后一位乘客送到目的地时,小李在迎泽公园门口西边2km处.(2)|﹣3|=3,|﹣3+6|=3,|﹣3+6﹣2|=1,|﹣3+6﹣2+1|=2,|﹣3+6﹣2+1﹣5|=3,|﹣3+6﹣2+1﹣5﹣2|=5,|﹣3+6﹣2+1﹣5﹣2+9|=4,|﹣3+6﹣2+1﹣5﹣2+9﹣6|=2.∵5>4>3=3=3>2=2>1,∴将第6位乘客送到目的地时,小李离迎泽公园门口最远.(3)(|﹣3|+|6|+|﹣2|+|1|+|﹣5|+|﹣2|+|9|+|﹣6|)×0.2=6.8m3答:这天上午小李接送乘客,出租车共消耗天然气6.8立方米.(4)[(6+5+9+6)﹣3×4]×1.2+8×5=56.8元,答:小李这天上午共得车费56.8元.19.解:(1)根据题意得:甲旅行社费用:(250a+1500)元;乙旅行社费用:(400a+1200)元;(2)当a=55时,250a+1500=15250,400a+1200=23200,∵15250<23200,∴选择甲旅行社更合算.20.解:∵AB=12,BD=7,∴AD=AB﹣BD=12﹣7=5.∵点D是AC的中点,∴AC=2AD=2×5=10.∴CB=AB﹣AC=12﹣10=2.21.解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.22.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,故答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.23.解:问题:如果在一条直线上有5个点,则这条直线上共有=10条线段.如果在一条直线上有n个点,那么这条直线上共有条线段.;知识迁移:在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角;学以致用:5个火车站共有线段条数×5×4=10,需要车票的种数:10×2=20(种).故答案为:10,,6,,20.。
七年级数学试卷参考答案
一、选择题
1-5 AACCA 6-10 ADDDA 11-15 BADAC 16 A
二、填空题(本大题有3个小题,共9分。
每小题3分,把答案写在题中横线上)。
17. -1 18. a+n﹣1 19.小于
三、解答题(本大题有7个小题,共6 9分,解答应写出必要的文字说明、证明过程或演算步骤)。
20.(本小题满分9分)
解:
(1)3×(-4)+18÷(-6)
=-12+(-3)=-15…………………………………………………………………4分
(2)(-2)2×5+(-2)3÷4
=-4×5+(-6)÷4=-20-二分之三
=负二十一又…………………………………………………………………9分
21. (本小题满分9分)
解:(1)16x﹣4=3x+3,
16x﹣3x=4+3,13x=7,
x=;……………………………………………………4分
(2)3x﹣6(x﹣1)+60=2(x+3),
3x﹣6x+6+60=2x+6,
3x﹣6x﹣2x=6﹣6﹣60,
﹣5x=﹣60,x=12.…………………………………………………9分
22. (本小题满分9分)
解:﹣2x2﹣[2y2﹣2(x2﹣y2)+6]
=﹣2x2﹣y2+(x2﹣y2)﹣3
=﹣x2﹣2y2﹣3,…………………………………………3分
当|3x﹣12|+(+1)2=0时,
,即,……………………………………………6分
∴原式=﹣42﹣2×(﹣2)2﹣3
=﹣16﹣8﹣3=﹣27.…………………………………9分
23(本小题满分9分)
解:是旋转得到的图形,
,…………………………………2分 ,,………………………………………4分
.………………………………………………………6分
.………………………9分
24. (本小题满分10分)
解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1) =﹣=+=1;…………………………………………………………4分 (2)
A =3b@(﹣a )+a⊕(2﹣3b ) =+=3b ﹣1,……………………………………………………6分
B =a@(﹣3b )+(﹣a )⊕(﹣2﹣9b ) =+=3b+1,……………………………………………………8分 则A <B .………………………………………………………………………………10分
25. (本小题满分11分)
解:(1)设购买男款书包x 个,则购买女款书包()140x -个
依题意得:()70501408600x x +-=…………………………………………2分 解得:80x = ………………………………………………………………………4分 则1401408060x -=-=(个)
答:购买男款书包80个,则购买女款书包60个;……………………………6分
(2)设实际购买书包共a 个
依题意得:121112126343a a ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭
………………………………………8分 解得:180a =
答:实际购买书包共180个. ………………………………………………………11分
26.(本小题满分12分)
解:
(1)由|m-12|+(6-n)2=0,得m=12,n=6,
所以AB=12,CD=6. ……………………………………………………2分
(2)当点C 在点B 的右侧时,如图1,
图1
因为点M,N 分别为线段AC,BD 的中点,
所以AM=AC=(AB+BC)=8,DN=BD=(CD+BC)=5,
又因为AD=AB+BC+CD=12+4+6=22,
所以MN=AD-AM-DN=9.
当点C在点B的左侧时,如图2,
图2
因为点M,N分别为线段AC,BD的中点,
所以MC=AC=(AB-BC)=4,BN=ND=BD=(CD-BC)=1,
所以MN=MC+BC+BN=4+4+1=9.
综上,线段MN的长为9. ……………………………………………………7分(3)②正确,且=2.理由如下:
因为点D与点B重合,所以BC=DC,
所以AC=AB-BC=AB-DC=6,所以AC=BC,
所以===2. ………………………………………………12分。