04刚体的转动
- 格式:ppt
- 大小:309.01 KB
- 文档页数:9
【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。
(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。
[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。
2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。
若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。
(B )[知识点]转动惯量的计算。
[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。
17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
第三章 刚体的转动出发点:牛顿质点运动定律刚体的运动分为:平动,定轴转动,定点转动,平面平行运动,一般运动。
§3-1 刚体的平动,转动和定轴转动一 刚体的定义:在无论多大力作用下物体形状和大小均保持不变。
(理想模型)二 平动:在运动过程中,若刚体上任意一条直线在各个时刻的位置始终彼此平行,则这种运动叫做平动。
特征:1 平动时刚体中各质点的位移,速度,加速度相等。
2 动力学特征:将刚体看成是一个各质点间距离保持不变的质点组。
受力:内力和外力对每一个质元:满足牛顿运动定律+=Mi i 对刚体而言:∑(+fi )=∑Mi i⇒∑+∑=∑Mi i显然∑=0 ⇒∑=∑Mi I=∑Mi故:∑F ==M a即:刚体做平动时,其运动规律和一质点相当,该质点的质量与刚体的质量相等,所受的力等于刚体所受外力的矢量和。
三 转动和定轴转动定轴转动的运动学特征:用角位移、角速度、角加速度加以描述,且刚体中各质点的角位移 、角速度、角加速度相等。
ω=dt d θ, α=dtd ω对匀速、匀变速转动可参阅P210表4-2 角量与线量的关系:v=R ωa t=R αa n=ω2R更一般的形式:角速度矢量的定义:=ωγ⨯ , =dtd 显然,定轴转动的运动学问题与质点的圆周运动相同。
例:一飞轮在时间t 内转过角度θ=t b at 3+-c t 4,式中abc 都是常量。
求它的角加速度。
解: 飞轮上某点的角位置可用θ表示为θ=t b at 3+-c t 4,将此式对t 求导数,即得飞轮角速度的表达式为ω=(dtdt b at 3+-c t 4)=a+3b t 2-4c t 3角加速度是角速度对t 导数,因此得α =dt d ω=d td ( a+3b t 2-4c t 3)=6bt-12c t 2由此可见,飞轮作的是变加速转动。
§3-2 力距 刚体定轴转动定律一 力矩:设在转动平面内,=⨯是矢量,对绕固定轴转动,只有两种可能的方向,用正负即可表示,按代数求和(对多个力)。
举例说明刚体的转动刚体的转动是物理学中的一个重要概念,描述了一个物体围绕某一点或某一轴线进行旋转运动的特性。
在我们的日常生活中,刚体的转动现象并不罕见,比如旋转门、旋转木马、钟表指针的转动等。
本文将通过具体的例子,详细解释刚体转动的原理、特点以及应用。
一、刚体转动的原理和特点刚体转动的原理可以归结为力矩的作用。
当一个力作用于刚体上,并且力的作用点不在刚体的质心上时,就会产生一个力矩,使刚体绕质心旋转。
刚体转动的特点包括:1.角动量守恒:在没有外力矩作用下,刚体的角动量保持不变。
2.转动惯量:刚体转动时的惯性大小与其质量分布和旋转轴的位置有关,用转动惯量来描述。
3.旋转方向:刚体转动时,可以顺时针或逆时针方向旋转。
二、刚体转动的应用举例1.旋转门旋转门是一种常见的刚体转动应用。
它通常由一扇或多扇门组成,围绕中心点旋转。
当人们推动旋转门时,门受到推力作用,产生一个力矩,使门绕中心点旋转。
旋转门的转动惯量和旋转方向取决于门的质量分布和推力的方向。
2.钟表指针的转动钟表指针的转动也是刚体转动的典型例子。
钟表的时针、分针和秒针都围绕表盘中心旋转。
当钟表内部的齿轮机构驱动指针时,指针受到力矩作用,开始绕中心旋转。
不同长度的指针具有不同的转动惯量,因此它们旋转的速度也不一样。
3.地球的自转和公转地球自转和公转也是刚体转动的例子。
地球绕自身轴线自转一周需要24小时,形成了昼夜交替的现象。
同时,地球还绕太阳公转一周需要365.25天,形成了四季变化。
地球的自转和公转都是刚体绕固定轴线的旋转运动。
三、刚体转动的物理分析通过对以上几个实例的分析,我们可以得知刚体的转动涉及到了力矩、角动量以及转动惯量等重要物理量。
首先,力矩是导致刚体转动的直接原因,它的方向决定了刚体的旋转方向。
其次,角动量是描述刚体转动状态的物理量,它在没有外力矩作用下保持恒定。
最后,转动惯量反映了刚体对于转动的抵抗程度,与刚体的质量分布及旋转轴位置密切相关。