2.3最小方差无偏估计和有效估计
- 格式:pdf
- 大小:280.29 KB
- 文档页数:16
参数估计量的评价标准参数估计是统计分析中的一个重要部分,它用于估计总体参数并对其进行推断。
在实际应用中,评价参数估计量的好坏对于研究和应用都具有重要意义。
为此,我们需要建立一套合理的评价标准。
一、偏差性评价1.1 无偏性:参数估计量的期望值应当等于真实总体参数值。
评价标准可采用期望偏差进行度量。
1.2 一致性:当样本容量趋于无穷时,参数估计量应当收敛于总体参数。
拟采用渐进性质进行评价。
1.3 偏差估计:对于系数的偏差,可以采用均方误差进行评价;对于偏见,可以采用自助法进行辨认。
1.4 偏差方差均衡:参数估计量应当在偏差和方差之间取得平衡,以实现对总体参数的有效估计。
二、效率性评价2.1 方差:参数估计量的方差应当尽可能小,以提高其精确性。
采用方差和标准差进行评价。
2.2 最小方差无偏估计:寻找最小方差无偏估计可作为评价标准,以使得估计的方差最小。
2.3 Cramer-Rao下界:在一定条件下,Cramer-Rao下界可作为评价参数估计量效率的标准。
2.4 均方误差:参数估计量的均方误差应尽可能小,以确保估计量的稳定性。
采用均方误差进行评价。
三、鲁棒性评价3.1 鲁棒性:对于异常值或离群值应有一定的容忍度,避免该值对估计结果的影响过大。
3.2 高效性:对于不同总体分布和样本容量,估计量应有一定的适用性,以保证其高效性。
3.3 高效抗干扰性:对于干扰值的处理应当尽可能减小估计结果的波动,以保证估计量的可靠性。
3.4 稳定性评价:在不同条件下,参数估计量是否具有稳定性是对其鲁棒性的重要评价标准。
四、信息熵评价4.1 信息量的相关性:估计参数量应具有较高的信息量,能够较好地反映总体参数的特征。
4.2 信息增益:参数估计量对于信息的增益应大于或等于0,以确保其估计结果有意义。
4.3 信息熵与估计效果的关系:信息熵的大小与估计结果的准确度应呈正相关的关系。
4.4 信息效用评价:对于样本容量的不同和信息量的不同,参数估计量应有一定的信息效用。
最小方差无偏估计⏹最小方差无偏估计的定义⏹RBLS定理⏹计算实例1. 最小方差无偏估计的定义对于未知常数的估计不宜采用最小均方估计,但可以约束偏差项为零的条件下,使方差最小。
定义:最小方差无偏估计定义为约束估计是无偏的条件下,使方差{}{}22ˆˆˆˆ()[()]()minVar E E E θ=θ-θ=θ-θ→估计的均方误差为22ˆˆˆˆ(){[]}()[()]Mse E Var E θ=θ-θ=θ+θ-θ偏差项估计方差在前面讨论的有效估计量是无偏的,且方差达到CRLB,所以有效估计量是最小方差无偏估计。
如果有效估计量不存在,如何求最小方差无偏估计呢?这时可利用RBLS定理求解。
2. RBLS(Rao-Blackwell-Lehmann-Scheffe)定理如果是一个无偏估计、是一个充分统计量,那么是:(1) θ的一个可用的估计(a valid estimator);(2) 无偏;(3) 对所有的θ,方差小于等于的方差。
θ()T z ˆ(|())E T θ=θz θ如果充分统计量是完备的,则是最小方差无偏估计。
()T z ˆ(|())E T θ=θz 完备: 只存在唯一的T (z)的函数,使其无偏。
例1:高斯白噪声中未知常数的估计0,1,...,1i iz A w i N =+=-iw 其中是均值为零、方差为σ2高斯白噪声序列。
求最小方差无偏估计。
解:首先找一个无偏估计,很显然是无偏。
1A z =其次,求A 的充分统计量,由前面的例题可知,是A 的充分统计量。
1()N i i T z -==∑z 3. 计算举例接着求条件数学期望()ˆ|()AE A T =z 由高斯随机变量理论:1(|)()(,)(())(())E x y E x Cov x y Var y y E y -=+-2()~(,)T N NA N σz 而1121100(,())()N N i i i i Cov A T E z A z NA E w w --==⎧⎫⎧⎫⎛⎫=--==σ⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭∑∑z ()11221001ˆ|()()N N i i i i A E A T A N z NA z N ---==⎛⎫==+σσ-= ⎪⎝⎭∑∑z由于完备的充分统计量只存在一个唯一的函数使其无偏,所以最小方差无偏估计量也可以通过下面的方法求解:假定T(z)是完备的充分统计量,那么ˆ(())g T θ=z 在刚才的例题中,10()N ii T z -==∑z 2.1.3 计算举例例2: 假定观测为其中为独立同分布噪声,且,求均值θ=β/2的最小方差无偏估计。
数理统计8:点估计的有效性、⼀致最⼩⽅差⽆偏估计(UMVUE)、零⽆偏估计法在之前的学习中,主要基于充分统计量给出点估计,并且注重于点估计的⽆偏性与相合性。
然⽽,仅有这两个性质是不⾜的,⽆偏性只能保证统计量的均值与待估参数⼀致,却⽆法控制统计量可能偏离待估参数的程度;相合性只能在⼤样本下保证统计量到均值的收敛性,但却对⼩样本情形束⼿⽆策。
今天我们将注重于统计量的有效性,即⽆偏统计量的抽样分布的⽅差。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:⼀致最⼩⽅差⽆偏估计⾸先考虑这样的问题:如何刻画⼀个统计量的有效程度?注意到,⼀个统计量的取值既可能⾼于待估参数,亦可能低于待估参数,要综合考虑统计量对待估参数误差,需要⽤平⽅均衡这种双向偏差,因此,提出均⽅误差的概念:若ˆg(X)是g(θ)的估计量,则ˆg(X)的均⽅误差定义为MSE(ˆg(X))=E[ˆg(X)−g(θ)]2.对于确定的统计量ˆg(X)⽽⾔,MSE(ˆg(X))是θ的函数。
显然,⼀个统计量的均⽅误差越⼩,它就越在待估参数真值附近环绕,由此,⽤统计量的⼀次观测值作为待估参数的估计就有着越⼤的把握。
如果对于g(θ)的两个估计量ˆg1(X)和ˆg2(X),恒有MSE(ˆg1(X))≤MSE(ˆg2(X)),且严格不等号⾄少在某个θ处成⽴,就称ˆg1(X)在均⽅误差准则下优于ˆg2(X)。
如果我们能找到均⽅误差最⼩的统计量ˆg(X),就相当于找到了均⽅误差准则下的最优统计量。
不过,均⽅误差是θ的函数,这就导致了某些统计量在θ=θ1时均⽅误差⼩,在θ=θ2时均⽅误差⼤,⼀致最⼩均⽅误差估计量便不存在,需要增加约束条件,找到更可能存在的“最优”。
基于此,我们提出⼀致最⼩⽅差⽆偏估计(UMVUE)的概念,它将g(θ)的估计量限制在了⽆偏估计之中,这使得UMVUE的存在可能性得以提⾼。
并且,由于E(ˆg(X))=g(θ),所以MSE(ˆg(X))=E(ˆg(X)−g(θ))2=E[ˆg(X)−E(ˆg(X))]2=D(ˆg(X)),即⽆偏估计的均⽅误差就是⽆偏估计的⽅差。
最小方差无偏估计量
最小方差无偏估计量是一种最有效的估计量,它能够有效地减少变量的变异性和误差,并提供较低的偏差。
它在统计学,机器学习和其他数据分析领域都具有重要意义。
MVUE诞生于20世纪70年代,由MarkLee发明,据说它是由卡斯梅尔比例采样而获得的,因此也被称为“卡斯梅尔估计”。
它的目的是确定一个量值,使得估计量在平均意义上偏离最小。
MVUE的定义可以理解为:“均方根偏差(RMSE)最小的评估量,它所产生的偏差无偏”。
它是一个非常强大的估计量,它能够有效地减少数据的变异性和误差,找到最能够描述样本的量值。
MVUE有许多优点:例如,它不受数据的偏性影响;它有极大的信度及准确度;它能够有效地降低RMSE,并提供最低的偏差;另外它还消除了可能存在的任何不一致性。
MVUE被广泛应用于许多领域,例如它可以用于估计总体的均值和方差,也可以用于估计函数的极值,如此等等。
它被广泛用于机器学习中的参数估计和特征选择,也被用于估计统计量,如相关系数和卡方检验,等等。
总之,最小方差无偏估计量是一种强大且有效的估计量,可以有效地减少数据的变异性和误差,并提供较低的偏差,它在统计学,机器学习和其他数据分析领域都具有重要意义。
伽马分布的最小方差无偏估计量-概述说明以及解释1.引言1.1 概述伽马分布是一种重要的概率分布,广泛应用于统计学和概率论中。
它具有许多特点和应用场景,因此对其进行研究和参数估计是非常有意义的。
伽马分布在统计学中应用较为广泛,特别适用于描述一些不连续的正数型随机变量,例如等待时间、寿命或到达时间等。
伽马分布的概率密度函数具有两个参数,分别为形状参数和尺度参数,这使得它非常灵活,能够适应各种类型的数据。
对于伽马分布的参数估计,一般有多种方法可供选择,例如矩估计、最大似然估计和贝叶斯估计等。
其中,最小方差无偏估计量是一种常用的参数估计方法,它能够使估计量的方差最小化,并且在样本充分大时具有无偏性。
本文主要研究伽马分布的最小方差无偏估计量。
首先,将介绍伽马分布的定义和基本特点,包括概率密度函数的形式和参数的含义。
其次,将探讨伽马分布的参数估计方法,包括矩估计、最大似然估计和贝叶斯估计等。
最后,重点研究伽马分布的最小方差无偏估计量的推导和应用,通过数学推导和实例分析展示其优越性和实用性。
通过详细介绍伽马分布的特点、参数估计方法和最小方差无偏估计量的推导,本文旨在提供对这一概率分布的深入理解和研究。
理论推导和实际应用的结合将对统计学和概率论领域的研究和应用产生积极的影响。
同时,本文也将探讨研究的局限性和未来展望,为后续相关研究提供参考和启示。
2. 正文2.1 伽马分布的定义和特点2.2 伽马分布的参数估计方法2.3 伽马分布的最小方差无偏估计量3. 结论3.1 总结3.2 结论3.3 研究的局限性和未来展望1.2 文章结构本文将从三个方面对伽马分布的最小方差无偏估计量进行论述。
首先,我们将介绍伽马分布的定义和特点,包括其概率密度函数和分布函数的形式、参数的意义和范围,以及伽马分布的一些常见应用领域。
然后,我们将探讨伽马分布的参数估计方法,包括最大似然估计法、矩估计法和贝叶斯估计法,并比较它们的优缺点。
最后,我们将介绍伽马分布的最小方差无偏估计量,包括其定义、推导过程和数学性质,以及如何使用这个估计量进行参数估计。
如何选择有效估计和一致最小方差无偏估计在统计学中,估计是一项常见的任务。
估计是用样本数据来推断
一个或多个总体参数的过程。
通常需要比较不同的估计方法,以选择
最好的估计方法。
本文将介绍有效估计和一致最小方差无偏估计的定义、特点和使用方法。
1. 有效估计
有效估计是指一个估计方法产生的估计值的方差最小。
方差是估
计误差的度量,估计误差是真实参数值与估计值之差的绝对值。
因此,方差越小,估计误差越小。
有效估计被广泛用于无偏估计和最小方差
无偏估计的选择。
2. 一致最小方差无偏估计
一致最小方差无偏估计是指估计值与参数真值的差别尽可能小,
而方差也保持尽可能小。
一般而言,一致最小方差无偏估计需要满足
以下条件:
① 无偏性:估计值的期望值等于真实参数值;
② 一致性:随着样本量增加,估计值接近于真实参数值;
③ 最小方差性:估计值方差最小。
3. 如何选择估计方法
当我们需要选择估计方法时,我们需要考虑估计方法的特点和适用场景。
任何估计方法没有绝对优劣,它们的优缺点和适用条件都需要考虑。
对于无偏估计和最小方差无偏估计,我们应该选择有效估计和一致最小方差无偏估计。
如果数据分布不确定,我们可以使用参数估计法进行估计。
4. 总结
在统计学中,估计是一项重要的任务,我们可以利用不同的估计方法进行不同的推断。
有效估计和一致最小方差无偏估计是常见的估计方法,在选择估计方法时,我们需要考虑估计方法的特点和适用场景。