热辐射与辐射换热资料
- 格式:ppt
- 大小:2.47 MB
- 文档页数:33
第二编热量传输第十一章辐射换热辐射换热在金属热态成形产业中是常见的现象,如金属件在炉内的加热,熔化炉中的炉料与发热体之间的换热等。
第一节热辐射的基本概念一、热辐射与辐射换热物体中分子或原子受到激发而以电磁波的方式释放能量的现象叫辐射,电磁波所携带的能量叫辐射能。
由于电磁波可以在真空中传播,因而辐射能也可以在真空中传播,而导热与对流换热则只在存有物质的空间中才能发生。
激发物体辐射能量的原因或方法不同,产生的电磁波的波长和频率也不相同。
电磁波按波长的长短来划分有多种,如图11-1所示。
热辐射是由于热的原因而发生的辐射。
主要集中在红外线和可见光的波长范围内。
热辐射是物体的一种属性,只要物体的温度高于绝对温度0K,就会进行辐射。
因此热量不仅从高温物体辐射到低温物体,同样也从低温物体辐射到高温物体,但是两者辐射的能量不同。
物体在发射辐射能的同时,也在吸收辐射能。
辐射换热是指物体之间的相互辐射和吸收过程的总效果。
例如工业炉炉壁与周围物体之间由于炉壁温度较高,炉壁向周围辐射的能量多于吸收的能量,这样热量就从工业炉传给周围物体。
辐射换热不仅取决于两个物体之间的温度差,而且还取决于它们的温度绝对量。
对于导热来说,其热流密度与温度梯度成正比,而对辐射换热来说,热流密度(或辐射力)与辐射物体热力学温度的四次方成正比,即E∝T4。
二、吸收率、反射率、穿透率当热辐射的能量投射到物体表面上时,同可见光一样有吸收、反射和穿透的现象。
设辐射到物体表面的总能量为Q,其中一部分Qa在进入物体表面后被物体吸收,另一部分能量Qρ被物体反射,其余部分Qτ穿透物体,如教材150页图11-2所示。
根据能量守恒定律得或。
(11-1)令,,则式(11-1)可写成。
(11-2)式中α、ρ、τ——物体的辐射吸收率、反射率和穿透率。
固体及液体在表面下很短的一段距离内就能把辐射能吸收完毕,并把它转换成热能,使物体的温度升高。
对于金属导体,这段距离约为1μm;对于大多数非导电材料,这一距离也小于1mm。
热力学系统的热辐射与辐射换热热辐射是一个热力学系统中的重要现象,它是指物体通过电磁波辐射能量的过程。
在热力学中,热辐射是一种能量传递方式,它与传导和对流相互作用,共同影响着热系统的热平衡和能量转换。
辐射换热是指热辐射通过物体表面与周围物体发生的能量交换。
在热力学系统中,辐射换热是热系统与环境之间的关键热交换方式之一。
本文将从热辐射的基本原理、辐射换热的特性和影响因素等方面阐述热力学系统中的热辐射与辐射换热的相关知识。
一、热辐射的基本原理热辐射是由物体的热运动引起的,所有物体在温度不为零时都会以某种形式发射热辐射。
热辐射的特征是以电磁波的形式传播,波长范围从长波红外线到短波紫外线。
根据“黑体辐射”的理论,完美的黑体是指吸收所有辐射能量的物体,而不反射或透射任何辐射。
根据黑体辐射的性质,斯特法能定律描述了热辐射的强度和波长之间的关系。
同时,普朗克提出了量子化假设,解释了辐射能量的离散化现象,即辐射能量以能量子的形式进行传输。
二、辐射换热的特性辐射换热是热系统与环境之间的重要热交换方式,具有以下特性:1. 无需介质传导:辐射换热是通过电磁波的传播实现的,与传导和对流不同,它不需要介质的存在来传递热量。
2. 波长和温度关系:热辐射的强度与物体表面的温度有关,而且随着温度的升高,发出的辐射能量也会增加。
根据斯特法能定律,高温物体主要辐射短波辐射,而低温物体主要辐射长波辐射。
3. 吸收与反射:物体表面对热辐射的吸收和反射特性也会影响辐射换热过程。
高吸收率的物体能够有效地吸收外界的辐射能量,并转化为热量。
相反,高反射率的物体则会减少吸收辐射能量的能力。
三、影响辐射换热的因素辐射换热的强度主要受以下因素的影响:1. 温度差异:温度差异是推动辐射换热的主要力量之一。
温度差异越大,辐射换热的强度也会相应增加。
2. 表面特性:物体表面的特性直接影响辐射换热的效果。
粗糙表面相对于光滑表面来说,具有更高的吸收和发射能力,因此可以更好地进行辐射换热。