电力电子技术应用 莫正康 第2章
- 格式:ppt
- 大小:3.70 MB
- 文档页数:90
电力电子技术课程教学大纲SANY GROUP system office room 【SANYUA16H-SANYHUASANYUA8Q8-《电力电子技术》课程教学大纲一、课程教学目标:通过教学应使学生掌握半导体器件的工作原理、特性参数、驱动电路及保护方法;特别是掌握晶闸管的特性参数;掌握晶闸管的可控整流、直流变换、逆变、交流变换等变换的原理及波形。
二、课程设置说明:电力电子技术是由电力学、电子学和控制理论三门学科交叉形成的,在电力系统、电气工程和各类电子装置中应用广泛,是一门综合性很强的课程。
本课程学习之前,应具备高等数学、电路、电子技术、电机与电力拖动等方面的相关知识。
本门课程使用了多媒体课件教学,开设有多个教学实验三、课程性质:本课程是应用电子技术专业的主干必修课之一。
电力电子技术是弱电和强电之间的接口,是弱电控制强电的技术。
课程研究电力电子技术的分析与设计的基础知识,包括可控整流技术(单、三相,半控与全控,半波与全波)、电力电子器件及参数、有源逆变技术、触发电路、交流调压、无源逆变技术等。
通过对本课程的学习,使学生了解并掌握分析电力电子装置与设备设计的基本理论与基本方法,为相关后续课程的学习打下坚实的基础。
四、教学内容、基本要求和学时分配:本课程的教学内容包括:熟悉和掌握晶闸管、电力MOSFET、IGBT等电力电子器件的结构、原理、特性和使用方法;熟悉和掌握各种基本的整流电路、直流斩波电路、交流-交流电力变换电路和逆变电路的结构、工作原理、波形分析和控制方法。
掌握PWM技术的工作原理和控制特性,了解软开关技术的基本原理。
了解电力电子技术的应用范围和发展动向。
掌握基本电力电子装置的实验和调试方法。
第一章电力二极管与晶闸管(8学时)教学重点:电力二极管和晶闸管的工作原理、特性与参数教学内容:电力二极管、晶闸管、晶闸管的派生器件:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管。
第二章全控型电力电子器件(8学时)教学重点:门极可关断晶体管和电力晶体管教学内容:门极可关断晶闸管(GTO)、(GTO)电力晶体管、电力场控晶体管、绝缘栅双极型晶体管、静电感应晶体管、静电感应晶闸管。
电力电子课后答案 第二章2.2 使晶闸管导通的条件是什么?维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答: 使晶闸管导通的条件是:晶闸管承受正相阳极电压,并在门极施加触发电流(脉冲)。
或者U AK >0且U GK >0;维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
2.3图2-1中阴影部分表示流过晶闸管的电流波形,各波形的电流最大值均为m I , 试计算各波形的电流平均值1d I 、2d I 、3d I 与电流有效值1I 、2I 、3I ,和它们的波形系数1f K ,2f K ,3f K 。
题图2.1 晶闸管导电波形解: a) 1d I=41sin()(1)0.27222m m m I I t I ππωππ=+≈⎰ 1I0.48m I =≈ 111/0.48/0.27 1.78f d m m K I I I I ===b) 2d I=41sin ()1)0.542m m m I I td wt I ππϖ=+=∏⎰2I0.67m I =≈ 222/0.67/0.54 1.24f d m m K I I I I ===c) 3d I =2011()24m m I d t I πωπ=⎰3I12m I =333/0.5/0.252f d m m K I I I I ===2.4. 如果上题中晶闸管的通态平均电流为100A ,考虑晶闸管的安全裕量为1.5,问其允许通过的平均电流和应的电流最大值各为多少? 解:由上题计算结果知:(额定电流I T(A V)=100A 的晶闸管,允许的电流有效值I=157A ) a)()111.57 1.57*10058.8()1.5 1.5*1.78T AV d f I I A K ===11/58.8/0.27217.78()m d f I I K A ===b)()221.57 1.57*10084.4()1.5 1.5*1.24T AV d f I I A K ===222/84.4/0.54156.30()m d f I I K A ===c)()331.57 1.57*10052.3()1.5 1.5*2T AV d f I I A K ===323/52.3/0.25209.2()m d f I I K A ===2.5.GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能?答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益1α和2α,由普通晶阐管的分析可得,121=+αα是器件临界导通 的条件。
电力电子技术第二章总结第一篇:电力电子技术第二章总结2016 电力电子技术作业:第二章总结班级:XXXXXX学号:XXXXXXX姓名:XXXXXX 第二章电力电子器件总结 1.概述不可控器件——电力二极管(Power Diode)GPD FRD SBD 半控型器件——晶闸管(Thyristor)FST TRIAC LTT 典型全控型器件 GTO GTR MOSFET IGBT 其他新型电力电子器件 MCT SIT SITH IGCT 功率集成电路与集成电力电子模块 HVIC SPIC IPM 1.1相关概念主电路(Main Power Circuit):在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。1.2特点电功率大,一般都远大于处理信息的电子器件。一般都工作在开关状态。由信息电子电路来控制,而且需要驱动电路(主要对控制信号进行放大)。功率损耗大,工作时一般都需要安装散热器。通态损耗,断态损耗,开关损耗(开通损耗关断损耗)开关频率较高时,可能成为器件功率损耗的主要因素。电力电子器件在实际应用中的系统组成一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。关键词电力电子系统电气隔离检测电路保护电路三个端子1.3电力电子器件的分类按能够被控制电路信号控制的程度不同可分为半控型器件(开通可控,关断不可控)全控型器件(开通,关断都可控)不可控器件(开通,关断都不可控)按照驱动信号的性质不同可分为电流驱动型电压驱动型按照驱动信号的波形(电力二极管除外)不同可分为脉冲触发型电平控制型按照载流子参与导电的情况不同可分为单极型器件(由一种载流子参与导电)双极型器件(由电子和空穴两种载流子参与导电)复合型器件(由单极型器件和双极型器件集成混合而成,也称混合型器件)关键词控制的程度驱动信号的性质、波形载流子参与导电的情况工作原理基本特性主要参数2不可控器件——电力二极管(Power Diode)2.1结构与工作原理电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。PN节(PN junction):采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。N型半导体(N为Negative的字头,由于电子带负电荷而得此名):即自由电子浓度远大于空穴浓度的杂质半导体。P型半导体(P为Positive的字头,由于空穴带正电而得此名):即空穴浓度远大于自由电子浓度的杂质半导体。正向电流IF :当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流。反向截止状态:当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过的状态。反向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态。雪崩击穿齐纳击穿(可以恢复)热击穿(不可恢复)P-i-N结构电导调制效应(Conductivity Modulation):当正向电流较小时,管压降随正向电流的上升而增加;当正向电流较大时,电阻率明显下降,电导率大大增加的现象。关键词少子扩散运动空间电荷区(耗尽层、阻挡区、势垒区)结电容CJ:PN结中的电荷量随外加电压而变化,呈现电容效应。(微分电容)扩散电容CD:扩散电容仅在正向偏置时起作用。正向电压较高时,扩散电容为结电容主要成分。势垒电容CB:势垒电容只在外加电压变化时才起作用,外加电压频率越高,势垒电容作用越明显。在正向偏置时,当正向电压较低时,势垒电容为主。作用:结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作。2.2基本特性静态特性(伏安特性)门槛电压UTO 正向电压降UF反向漏电流是由少子引起的微小而数值定。动态特性结电容零偏置,正向偏置,反向偏置不能立即转换状态过渡过程正向偏置时延迟时间:td=t1-t0电流下降时间:tf = t2-t1 反向恢复时间:trr= td + tf恢复特性的软度:Sr= tf / td,或称恢复系数,Sr越大恢复特性越软。由零偏置转换为正向偏置过冲UFP : 原因:1)电导调制效应起作用所需的大量少子需要一定的时间来储存,在达到稳态导通之前管压降较大。2)正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越大,UFP越高。正向恢复时间:tfr2.3主要参数正向平均电流IF(AV)正向压降UF 反向重复峰值电压URRM 最高工作结温TJM 反向恢复时间trr 浪涌电流IFSM2.4主要类型普通二极管(General Purpose Diode)快恢复二极管(Fast Recovery Diode,FRD)肖特基二极管(Schottky Barrier Diode, SBD)3半控型器件——晶闸管(Silicon Controlled Rectifier,SCR)3.1结构和工作原理内部是PNPN四层半导体结构如图a)P1 区引出阳极A、N2 区引出阴极K、 P2 区引出门极G 工作原理可以用双晶体管模型解释如右图b)。工作过程关键词: IG V2 Ic2 Ic1 正反馈触发门触发电路其他几种可能导通的情况阳极电压升高至相当高的数值造成雪崩效应阳极电压上升率du/dt过高光触发结温较高只有门极触发是最精确、迅速而可靠的控制手段。3.2基本特性静态特性正常工作特性当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。伏安特性如右图所示包括正向特性和反向特性正向转折电压Ubo 维持电流IH反向最大瞬态电压URSM 反向重复峰值电压URRM 断态重复峰值电压UDRM 断态最大瞬时电压UDSM动态特性如右图所示延迟时间td(0.5~1.5μs)上升时间tr(0.5~3μs)开通时间tgt=td+tr 反向阻断恢复时间trr 正向阻断恢复时间tgr 关断时间tq=trr+tgr3.3主要参数(包括电压定额和电流定额)电压定额断态重复峰值电压UDRM 反向重复峰值电压URRM 通态(峰值)电压UT通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压2~3倍。电流定额通态平均电流 IT(AV)维持电流IH 擎住电流 IL 浪涌电流ITSM 动态参数开通时间tgt和关断时间tq 断态电压临界上升率du/dt 通态电流临界上升率di/dt3.4晶闸管的派生器件快速晶闸管(Fast Switching Thyristor, FST)双向晶闸管(Triode AC Switch——TRIAC or Bidirectional Triode Thyristor)逆导晶闸管(Reverse Conducting Thyristor, RCT)光控晶闸管(Light Triggered Thyristor, LTT)典型全控型器件4门极可关断晶闸管(Gate-Turn-Off Thyristor, GTO)晶闸管的一种派生器件,但可以通过在门极施加负的脉冲电流使其关断,因而属于全控型器件。4.1结构与工作原理其结构原理可以参考晶闸管数十个甚至数百个小GTO单元4.2基本特性静态特性和普通晶闸管类似动态特性储存时间ts 下降时间tf 尾部时间tt4.3主要参数最大可关断阳极电流IATO 电流关断增益βoff 开通时间ton 关断时间toff5电力晶体管(Giant Transistor, GTR)5.1结构和工作原理与普通的双极结型晶体管基本原理是一样的。最主要的特性是耐压高、电流大、开关特性好。达林顿接法单元结构并联三层半导体两个PN结5.2基本特性右图所示静态特性右图所示动态特性右图所示5.3主要参数电流放大倍数β直流电流增益hFE集电极与发射极间漏电流Iceo 集电极和发射极间饱和压降Uces开通时间ton和关断时间toff 最高工作电压BUceo:基极开路时集电极和发射极间的击穿电压实际使用GTR时,为了确保安全,最高工作电压要比BUceo低得多。集电极最大允许电流IcM集电极最大耗散功率PcM6电力场效应晶体管(Metal Oxide Semiconductor FET, MOSFET)6.1结构和工作原理SDDGN+PN+N+沟道PN+N-GGN+SSDN沟道P沟道a)b)6.3基本特性图1-19静态特性动态特性MOSFET的开关速度和其输入电容的充放电有很大关系,可以降低栅极驱动电路的内阻Rs,从而减小栅极回路的充放电时间常数,加快开关速度。6.4主要参数跨导Gfs、开启电压UT以及开关过程中的各时间参数。漏极电压UDS漏极直流电流ID和漏极脉冲电流幅值IDM栅源电压UGS极间电容 CGS、CGD和CDS。漏源间的耐压、漏极最大允许电流和最大耗散功率决定了电力MOSFET的安全工作区。7绝缘栅双极晶体管(Insulated-gate Bipolar Transistor, IGBT or IGT)综合了GTR和MOSFET的优点场控器件7.1结构和工作原理内部结构图其开通和关断是由栅极和发射极间的电压UGE决定的。7.2基本特性静态特性转移特性输出特性动态特性开通过程开通延迟时间td(on)电流上升时间tr 电压下降时间tfv 开通时间ton= td(on)+tr+tfvtfv分为tfv1和tfv2两段。关断过程关断延迟时间td(off)电压上升时间trv 电流下降时间tfi关断时间toff = td(off)+trv+tfitfi分为tfi1和tfi2两段7.3主要参数最大集射极间电压UCES 最大集电极电流最大集电极功耗PCM 8其他新型电力电子器件MOS控制晶闸管MCT 静电感应晶体管SIT 静电感应晶闸管SITH 集成门极换流晶闸管IGCT基于宽禁带半导体材料的电力电子器件第二篇:电力电子技术总结电力电子技术总结1晶闸管是三端器件,三个引出电极分别是阳极,门极和阴极。
1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。
解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。
在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。
因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A)此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化2U;②当负载是电阻或电感时,其问题吗?试说明:①晶闸管承受的最大反向电压为22输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
《电力电子技术》习题解答第2章 思考题与习题2.1晶闸管的导通条件是什么? 导通后流过晶闸管的电流和负载上的电压由什么决定? 答:晶闸管的导通条件是:晶闸管阳极和阳极间施加正向电压,并在门极和阳极间施加正向触发电压和电流(或脉冲)。
导通后流过晶闸管的电流由负载阻抗决定,负载上电压由输入阳极电压U A 决定。
2.2晶闸管的关断条件是什么? 如何实现? 晶闸管处于阻断状态时其两端的电压大小由什么决定?答:晶闸管的关断条件是:要使晶闸管由正向导通状态转变为阻断状态,可采用阳极电压反向使阳极电流I A 减小,I A 下降到维持电流I H 以下时,晶闸管内部建立的正反馈无法进行。
进而实现晶闸管的关断,其两端电压大小由电源电压U A 决定。
2.3温度升高时,晶闸管的触发电流、正反向漏电流、维持电流以及正向转折电压和反向击穿电压如何变化?答:温度升高时,晶闸管的触发电流随温度升高而减小,正反向漏电流随温度升高而增大,维持电流I H 会减小,正向转折电压和反向击穿电压随温度升高而减小。
2.4晶闸管的非正常导通方式有哪几种?答:非正常导通方式有:(1) I g =0,阳极电压升高至相当高的数值;(1) 阳极电压上升率du/dt 过高;(3) 结温过高。
2.5请简述晶闸管的关断时间定义。
答:晶闸管从正向阳极电流下降为零到它恢复正向阻断能力所需的这段时间称为关断时间。
即gr rr q t t t +=。
2.6试说明晶闸管有哪些派生器件?答:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管等。
2.7请简述光控晶闸管的有关特征。
答:光控晶闸管是在普通晶闸管的门极区集成了一个光电二极管,在光的照射下,光电二极管电流增加,此电流便可作为门极电触发电流使晶闸管开通。
主要用于高压大功率场合。
2.8型号为KP100-3,维持电流I H =4mA 的晶闸管,使用在图题2.8所示电路中是否合理,为什么?(暂不考虑电压电流裕量)图题2.8答:(a )因为H A I mA K VI <=Ω=250100,所以不合理。
S = 0.451/ 2 1 + cosacosa = lUa ]0.45S 一2x500.45x220一1心0第2章可控整流器与有源逆变器习题解答2-1具有续流二极管的单相半波可控整流电路,电感性负载,电阻为5Q,电感为,电源电压S为220V,直流平均电流为10A,试计算晶闸管和续流二极管的电流有效值,并指出其电压定额。
解:由直流输出电压平均值S的关系式:己知直流平均电流为10A,故得:Ud = IdR = 10x5 = 504可以求得控制角a为:则 a =90° o所以,晶闸管的电流有效值求得,I丄j= F %/d 二丄”2兀’\ 2兀\ 2龙 2续流二极管的电流有效值为:I VDK =(三学“ =&66A晶闸管承受的最大正、反向电压均为电源电压的峰值Uy®, 考虑2〜3倍安全裕量,晶闸管的额定电压为(/爪=(2~3加=(2~ 3)x311 =622 -933V续流二极管承受的最大反向电压为电源电压的峰值加=屁2,考虑2~3倍安全裕量,续流二极管的额定电压为Sv =(2 ~ 3)t/.w =(2 ~ 3)x311 = 622 ~ 933V2-2具有变压器中心抽头的单相双半波可控整流电路如图2-44 所示,问该变压器是否存在直流磁化问题。
试说明晶闸管承受的最大反向电压是多少当负载是电阻或者电感时,其输出电压和电流的波形与单相全控桥时是否相同。
解:因为单相双半波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
分析晶闸管承受最大反向电压及输岀电压和电流波形的情况:(1)以晶闸管”2为例。
当灯导通时,晶闸管"A通过叮与2 个变压器二次绕组并联,所以'7承受的最大电压为2屁2。
(2)当单相全波整流电路与单相全控桥式整流电路的触发角G 相同时,对于电阻负载:(0〜a)期间无晶闸管导通,输出电压为0;(―兀)期间,单相全波电路中VT1导通,单相全控桥电路中V7;、导通,输出电压均与电源电压血相等;IS期间,均无晶闸管导通,输出电压为0;&+a~2/r)期间,单相全波电路中刃;导通,单相全控桥电路中VT2. V7;导通,输岀电压等于-"2。