物探方法的应用范围及适用条件
- 格式:xls
- 大小:27.00 KB
- 文档页数:3
综合物探的基本原理及应用范围综合物探(Comprehensive Geophysical Exploration)是一种运用地球物理探测方法,通过对地下地球的物理性质进行测量和分析,获取地下信息的科学技术。
它包括多种探测方法的综合应用,如地震勘查、电法勘查、重力勘查、磁法勘查、电磁勘查等。
综合物探的基本原理是通过测量地下储层的物理性质和特征来推断地下结构和岩层的变化,从而为石油、地质、水文地质、土壤和环境等领域提供重要的地下信息。
综合物探的应用范围非常广泛,主要包括以下几个方面:1. 石油勘探与开发:综合物探在石油勘探中起着非常重要的作用。
通过电法勘探、地震勘探和重力勘探等方法,可以获取地下储层的地质构造、岩性、含油气性状和深度等信息,为石油勘探提供重要的地质依据。
此外,综合物探还可以在油气田开发中用于油藏评价、油井定位和油气水井监测等方面。
2. 地质调查与矿产资源勘查:综合物探在地质调查和矿产资源勘查中也有广泛的应用。
地震勘探可以用于找矿,判断地下岩层变化,识别地层断层、褶皱和构造盆地等。
磁法和电磁法勘探可以检测地下矿体的地质构造、磁性和电性异常,为找矿提供重要的依据。
此外,重力勘探可以在沉积盆地和火山锥地形中识别岩石、矿物质和重力异常等。
3. 水文地质勘查与地下水资源开发:综合物探在水文地质勘查和地下水资源开发中扮演着重要角色。
磁法和电法勘探可以鉴别地下水潜在区域、测定地下水位和饱和带的厚度等信息。
地震勘探可以评估地下水资源的质量、规模和可利用性等。
此外,重力勘探也可以用于识别地壳运动和地下断层对地下水的影响。
4. 工程勘察与环境监测:综合物探在工程勘察和环境监测方面有广泛的应用。
地震勘探可以用于检测土质和地下岩层的物理性质,及地下水位和地下水位脉动状况、各层的承载力。
电法勘探可以评估地下水位和土壤渗透率,以及检测地下土壤和岩层的电阻率变化。
磁法勘探可以检测地下的均一性、非均一性,及其引起的环境污染问题。
地质勘查中的物探技术应用在当今的地质勘查领域,物探技术发挥着至关重要的作用。
它犹如地质学家的“透视眼”,能够帮助我们深入了解地球内部的结构和物质分布,为资源勘探、工程建设、环境保护等提供关键的信息支持。
物探技术,简单来说,就是通过观测和分析各种物理场的分布和变化,来推断地下地质情况的一种勘查方法。
常见的物理场包括重力场、磁场、电场、地震波场等。
不同的物探技术基于不同的物理原理,具有各自的特点和适用范围。
重力勘探是一种古老而有效的物探方法。
它基于地球重力场的变化来研究地质构造和矿产分布。
在重力勘探中,测量仪器会精确地测量重力加速度的微小变化。
当地下存在密度不均匀的地质体时,比如大型的金属矿体或者岩石密度差异较大的地层,就会引起重力异常。
通过对这些重力异常的分析和解释,地质学家可以推测地下地质体的形状、大小和位置。
这种方法在寻找深部隐伏矿体、研究区域地质构造等方面有着广泛的应用。
磁法勘探则是利用地球磁场的变化来探测地下磁性物质的分布。
许多金属矿床,如磁铁矿,具有较强的磁性,会引起局部磁场的异常。
通过测量磁场的强度和方向,并对磁异常进行分析,能够有效地圈定磁性矿体的范围,为进一步的勘查工作提供依据。
此外,磁法勘探还可以用于研究地质构造,如断裂带、岩浆岩的分布等。
电法勘探是基于地下介质电学性质差异的一种物探技术。
常见的有电测深法、电剖面法和激发极化法等。
电测深法通过测量不同深度的电阻率来了解地下地层的垂向分布情况;电剖面法则用于探测地层的横向变化。
激发极化法可以有效地探测金属硫化物矿床,因为这类矿床在电流作用下会产生明显的激发极化效应。
电法勘探在寻找地下水、解决工程地质问题等方面发挥着重要作用。
地震勘探是目前应用最为广泛的物探技术之一。
它通过人工激发地震波,并接收和分析地震波在地下传播过程中的反射和折射信号,来构建地下地质结构的图像。
地震勘探能够提供高精度的地下地层和构造信息,对于油气勘探、煤炭资源勘查等具有重要意义。
地球物理勘探一、物探及其分类二、物探方法简介三、物探方法的特点:四、物探方法的应用范围与应用条件五、物探在工程勘探中的应用一、物探及其分类1、地球物理勘探地球物理勘探,简称物探,是以地下岩体的物理性质的差异为基础,通过探测地表或地下地球物理场,分析其变化规律,来确定被探测地质体在地下赋存的空间范围(大小、形状、埋深等)和物理性质,达到寻找矿产资源或解决水文、工程、环境问题为目的的一类探测方法。
物理性质:岩体的物理性质主要有密度、磁性、电性、弹性、放射性等。
主要物性参数密度、磁场强度、磁化率、电阻率、极化率、介电常数、弹性波速、放射性伽马强度等。
地球物理场:物理场可理解为某种可以感知或被仪器测量的物理量的分布。
地球物理场是指由地球、太空、人类活动等因素形成的、分布于地球内部和外部近地表的各种物理场。
可分为天然地球物理场和人工激发地球物理场两大类。
天然场;天然存在和形成的地球物理场主要有地球的重力场、地磁场、电磁场、大地电流场、大地热流场、核物理场(放射性射线场)等人工场:由人工激振产生弹性波在地下传播的弹性波场、向地下供电在地下产生的局部电场、向地下发射电磁波激发出的电磁等,发球人工激发的地球物理场。
人工场源的优点是场源参数书籍、便于控制、分辨率高、探测效果好,但成本较大。
地球物理场还可分为正常场和异常场。
正常场:是指场的强度、方向等量符合全球或区域范围总体趋势、正常水平的场的分布。
异常场:是由探测对象所引起的局部地球物理场,往往叠加于正常场之上,以正常场为背景的场的局部差异和变化。
例如富存在地下的磁铁矿体或磁性岩体产生的异常磁场,叠加在正常磁场之中;铬铁矿的密度比围岩的密度大,盐丘岩体的密度比围岩的密度小,分别引起重力场局部增强或减弱的异常现象。
2、地球物理勘探分类二、物探方法简介1、重力勘探重力勘探是研究地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。
电阻率测深法点),通过逐次加大供电电极,AB极距的大小,测量同—点的、不同AB极距的视电阻率ρS 值,研究这个测深点下不同深度的地质断面情况。
电测深法多采用对称四极排列,称为对称四极测深法。
在AB极距离短时,电流分布浅,ρS曲线主要反映浅层情况;AB极距大时,电流分布深,ρS曲线主要反映深部地层的影响。
ρS曲线是绘在以AB/2和ρS为坐标的双对数坐标纸上。
当地下岩层界面平缓不超过20度时,应用电测深量板进行定量解释,推断各层的厚度、深度较为可靠。
二、应用领域:电测深法在水文地质、工程地质和煤田地质工作中应用较多。
除对称四极测深法外,还可以应用三极测深、偶极测深和环形测深等方法。
高密度电阻率法的控制,实现电阻率法中各种不同装置、不同极距的自动组合,从而一次布极可测得多种装置、多种极距情况下多种视电阻率参数的方法。
对取得的多种参数经相应程序的处理和自动反演成像,可快速、准确地给出所测地电断面的地质解释图件,从而提高了电阻率方法的效果和工作效率。
高密度电法实际上是集中了电剖面法和电测深法。
其原理与普通电阻率法相同.所不同的是在观测中设置了高密度的观测点。
是一种阵列勘探方法。
二、应用领域:在条件适当时,此方法对工程物探以及探测煤矿的老硐,探测古墓墓穴等有较好的效果。
三、优缺点:与常规电阻率法相比.高密度电法具有以下优点:1.电极布置一次性完成.不仅减少了因电极设置引起的故障和干扰,并且提高了效率:2.能够选用多种电极排列方式进行测量,可以获得丰富的有关地电断面的信息;3.野外数据采集实现了自动化或半自动化,提高了数据采集速度,避免了手工误操作。
随着地球物理反演方法的发展,高密度电法资料的电阻率成像技术也从一维和二维发展到三维,极大地提高了地电资料的解释精度。
激发极化法一、基本原理:是根据岩石、矿石的激发极化效应来寻找金属和解决水文地质、工程地质等问题的一组电法勘探方法。
它又分为直流激发极化法(时间域法)和交流激发极化法(频率域法(SIP))。
精心整理地球物理勘探一、物探及其分类 二、物探方法简介 三、物探方法的特点:四、物探方法的应用范围与应用条件 1各种物理场。
可分为天然地球物理场和人工激发地球物理场两大类。
天然场;天然存在和形成的地球物理场主要有地球的重力场、地磁场、电磁场、大地电流场、大地热流场、核物理场(放射性射线场)等人工场:由人工激振产生弹性波在地下传播的弹性波场、向地下供电在地下产生的局部电场、向地下发射电磁波激发出的电磁等,发球人工激发的地球物理场。
人工场源的优点是场源参数书籍、便于控制、分辨率高、探测效果好,但成本较大。
地球物理场还可分为正常场和异常场。
正常场:是指场的强度、方向等量符合全球或区域范围总体趋势、正常水平的场的分布。
异常场:是由探测对象所引起的局部地球物理场,往往叠加于正常场之上,以正常二、物探方法简介1、重力勘探重力勘探是研究地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。
重力异常是由密度不均匀引起的重力场的变化,并叠加在地球的正常重力场上。
2、磁法勘探磁法勘探是研究由地下岩层与其相邻层之间、各类地质体与围岩之间的磁性差异而引起的地磁场强度的变化(即“磁异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。
磁异常是由磁性矿石或岩石在地磁场作用下产生的磁性叠加在正常3等。
4、地震勘探地震勘探是一种使用人工方法激发地震波,观测其在岩体内的传播情况,以研究、探测岩体地质结构和分布的物探方法。
确定分界面的埋藏深度、岩石的组成成分和物理力学性质。
根据所利用弹性波的类型不同,地震勘探的工作方法可分为:反射波法、折射波法、透射波法和瑞雷波法。
5、放射性勘探地壳内的天然放射元素蜕变时会放射出α、β、γ射线,这些射线穿过介质便会产生游离、荧光等特殊的物理现象。
放射性勘探,就是借助研究这些现象来寻找放射性元素矿床和解决有关地质问题、环境问题的一种物探方法。
测绘技术中常见的物探测量方法测绘技术在现代社会中扮演着非常重要的角色,它可以提供准确的地理空间数据用于城市规划、土地管理、资源调查等领域。
而物探测量方法则是测绘技术中的一种重要手段,用于探测地下的物质分布和构造情况。
本文将介绍几种在测绘技术中常见的物探测量方法,包括电法、磁法、重力法和地声波法。
电法是一种利用电荷运动特性进行探测的方法。
它通过在地表或井孔中放置电极,并施加恒定电流或电压,来观测地下不同岩土层的电导率变化。
电法测量时需要考虑地下岩土层的电阻率和电荷迁移的规律。
在实际应用中,电法可以用于识别和定位地下的各种岩石、矿石和水体,特别适用于找寻金属矿床、水源和地下水流方向等。
磁法是一种利用物体磁性差异进行探测的方法。
地球上的物质大多数具有磁性,通过在地表或井孔中放置磁场探测仪器,可以测量地下岩土层的磁场强度和方向变化。
磁法测量中需要考虑地下岩土层的磁化率和磁场传播的规律。
磁法在勘探地下矿床、识别地下构造、寻找埋藏物和建筑工程勘探等方面有着广泛应用。
重力法是一种利用物体质量差异进行探测的方法。
地球上的物质质量分布是不均匀的,通过在地表或井孔中放置重力仪器,可以测量地下岩土层的重力场强度变化。
重力法测量中需要考虑地下岩土层的密度和重力场传播的规律。
重力法常用于探测地下体积密度差异较大的物质,如矿床、岩石体、洼地和地下水体等。
地声波法是一种利用地震波传播特性进行探测的方法。
地球上的地震波会在地下不同介质中传播,并受到不同介质界面的反射和折射。
通过在地表或井孔中放置地震探测仪器,可以测量地下岩土层的地震波速度和传播路径。
地声波法测量中需要考虑地下岩土层的弹性模量和地震波传播的规律。
地声波法广泛应用于勘探地下地质构造、油气储层、地下水资源等。
虽然以上介绍的物探测量方法在测绘技术中都有重要的应用,但每种方法都有其适用范围和局限性。
因此,在实际应用中通常会根据需要综合应用多种方法,并进行数据处理和解释,以获取更准确、全面的地下信息。
工程施工物探检测是指在工程建设过程中,利用地球物理勘探技术对地质条件、地下管线、地下障碍物等进行探测和分析的一种方法。
物探检测技术在工程施工中具有重要作用,可以帮助施工人员了解地质状况,避免施工过程中出现意外情况,确保工程顺利进行。
本文将简要介绍工程施工物探检测的方法、应用范围及重要性。
一、工程施工物探检测方法1. 地震勘探:地震勘探是利用地震波在地下传播的原理,通过观测地震波的传播速度、反射、折射等特性来推断地下地质结构的一种方法。
地震勘探在工程施工中可以用来探测地下断层、岩层分布等地质情况。
2. 电法勘探:电法勘探是利用地下岩石的电性差异来探测地下地质结构的一种方法。
电法勘探包括直流电法、交流电法、电磁法等,可用于探测地下管线、地下洞室、地下水位等地质情况。
3. 磁法勘探:磁法勘探是利用地下岩石的磁性差异来探测地下地质结构的一种方法。
磁法勘探可以用来探测地下磁性矿物分布、古磁场等地质情况。
4. 重力勘探:重力勘探是利用地下岩石的质量差异和地球重力场的关系来探测地下地质结构的一种方法。
重力勘探可以用来推断地下岩层的密度、厚度等地质情况。
5. 钻探:钻探是利用钻机在地下进行钻孔,通过取芯、观察岩芯样品等方法来了解地下地质状况的一种直接勘探方法。
钻探在工程施工中可以用来确定地下管线、地下洞室、地下水位等地质情况。
二、工程施工物探检测应用范围1. 道路工程:在道路工程中,物探检测可以用来探测地下管线、地下洞室等障碍物,避免施工过程中损坏现有管线和设施,确保道路工程的顺利进行。
2. 桥梁工程:在桥梁工程中,物探检测可以用来探测地下地质结构,为桥梁基础设计和施工提供可靠的地质数据。
3. 隧道工程:在隧道工程中,物探检测可以用来探测地下断层、岩层分布等地质情况,为隧道设计和施工提供可靠的地质数据。
4. 水利工程:在水利工程中,物探检测可以用来探测地下管线、地下洞室等障碍物,避免施工过程中损坏现有管线和设施,确保水利工程的顺利进行。
物探方法的应用简析廖先平一、前言地球物理找矿方法又称地球物理探矿方法(简称物探)是通过研究地球物理场或某些物理现象,如地磁场、地电场、重力场等,以推测、确定欲调查的地质体的物性特征及其与周围地质体之间的物性差异(即物探异常),进而推断调查对象的地质属性,结合地质资料分析,以实现推测矿床(体)的目的。
下图是某某地区采用中间梯度法(电阻率法)的成果图,此图反映了深部低阻异常区在地表的投影及低阻带界线范围。
物探方法不仅可以提供找矿信息,而且还可以用于划分岩性特征,下图是根据高精度磁测可将玲珑花岗岩划分为两大类即中粗粒花岗岩及片麻状花岗岩。
二、物探的特点1、必须实行两个转化才能完成找矿任务。
先将地质问题转化成地球物理探矿的问题,才能使用物探方法去观测。
在观测取得数据之后(所得异常),只能推断具有某种或某几种物理性质的地质体,然后通过综合研究,并根据地质体与物理现象间存在的特定关系,把物探的结果转化为地质的语言和图示,从而去推断矿产的埋藏情况以及与成矿有关的地质问题,最后通过探矿工作的验证,肯定其地质效果。
2、物探异常具有多解性。
产生物探异常现象的原因,往往是多种多样的。
这是由于不同的地质体可以有相同的物理场,故造成物探异常推断的多解性。
如磁铁矿、磁黄铁矿、超基性岩,都可引起磁异常。
所以工作中采用单一的物探方法,往往不易得到较肯定的地质结论。
一般情况应合理地综合运用几种物探方法,并与地质研究紧密结合,才能得到较为肯定的结论。
3、每种物探方法都有要求严格的应用条件和使用范围。
矿床地质、地球物理特征及自然地理条件因地而异,因而影响物探方法的有效性。
三、物探工作的前提在确定物探任务时,除地质研究的需要外,还必须具备物探工作前提,才能达到预期的目的。
物探工作前提主要有下列几方面:1、物性差异:被调查研究的地质体与周围地质体之间,要有某种物理性质上的差异。
2、被调查的地质体要具有一定的规模和合适的深度,用现有的技术方法能发现它所引起的异常。
测绘技术中的物探方法与应用简介随着科技的不断进步,测绘技术在各个领域中的应用也越来越广泛。
物探方法作为测绘技术的重要组成部分,具有着不可替代的作用。
本文将简单介绍测绘技术中的物探方法以及其在实际应用中的一些例子。
一、物探方法的基本原理物探是指根据地下或海底的地质构造和物理性质,通过一系列仪器、设备和方法,对其进行探测、分析和反演的技术。
物探方法主要使用地球物理学原理,结合测量仪器和数据处理技术,对地下或海底的地质信息进行获取和解释。
常见的物探方法有重力法、地磁法、电法、电磁法、地震法等。
这些方法可以通过分析地下或海底不同位置上的物理参数,如重力场、磁场、电阻率、介质电磁性质等,推断相应地下结构和性质信息。
二、物探方法在地质勘探中的应用物探方法在地质勘探中有着非常广泛的应用。
例如,石油和天然气勘探中常用的重力法和地磁法可以用来寻找油气藏的存在与位置。
重力法通过测量地球重力场的微弱变化,识别出可能存在的油气储量的地下构造。
地磁法则是通过测量地球磁场的强度和方向变化,推断地下的构造和岩性特征,从而找到可能的油气藏。
电法和电磁法在地下水资源勘探中也有重要的应用。
电法通过测量地下介质的电阻率变化,可以判定地下水层的存在与性质。
电磁法则是通过测试地下电磁感应现象,获取下地下介质电磁性质和构造分布,进而确定潜在的地下水资源。
地震法则是通过发射震源波,记录并分析地下岩石层对震源波进行传播的情况,然后推断地下的构造和性质变化。
地震法在油气勘探、地震灾害预防以及地下工程等领域都有广泛应用。
三、物探方法在城市规划与工程中的应用除了在地质勘探中的应用,物探方法在城市规划与工程中也扮演着重要的角色。
例如,在城市道路和地铁建设中,物探可以用来探测地下埋设的管道、地下水位、地下空洞等信息。
通过对这些信息的获取和分析,可以避免工程施工中的意外事故,提高施工效率。
此外,物探方法还可以在地质灾害防治中起到关键作用。
在山体滑坡、地下溶洞、地下空洞等地质灾害发生前,通过物探方法对地下构造和性质进行探测,可以提前预警并采取相应的防治措施,保护人民生命财产安全。
物探化探计算技术物探化探计算技术是一种通过物理、化学等手段对地下信息进行采集、解析和处理的技术,广泛应用于石油、矿产、水资源等领域。
本文将从物探化探技术的意义、常见方法和应用案例等方面进行阐述。
一、物探化探技术的意义地球是一个具有多种复杂地质构造的行星,在地球深部的结构及其所承载的矿产资源和水资源等都是人们长期所关注的问题。
而为了更好地了解地下的构造和地质特征,人们开发了物探化探技术。
这种技术具有非破坏性、全方位探测、高精度定位和可大范围覆盖等特点,可以为石油勘探、矿产资源开发和地下水勘查等领域提供重要的信息,对社会经济的发展起到积极的促进作用。
二、物探化探计算技术的常见方法物探化探技术包括地磁、地电、电磁、重力、地震等多种手段,下面将就其中几种常见方法进行介绍。
1.地磁法地磁法是一种测量地表磁场分布的方法,适用于浅部地下物质的探测。
利用地球磁场的变化和地下物质的磁性差异,通过对磁场强度和方向的测量,可以对地下物质的分布和性质进行研究。
该方法常用于寻找铁矿、磁性物质、隐蔽断层、油区等。
2.地电法地电法是一种测量地表电场分布的方法,适用于深部地下物质的探测。
通过对地下电性不同的岩层和水体的电阻率进行测量,可以分析地下构造和含水性情况。
该方法常用于寻找矿床、水源、地下构造等。
3.电磁法电磁法是一种通过测量地表电磁场变化来获取地下物质信息的方法。
该方法适合于深度大、电性不同的地下物质探测。
利用电磁波在岩石中的传播特点,可探测出地下矿体、水体、油藏等物质的位置和规模。
该方法常用于寻找矿藏、油藏、水源等。
4.重力法重力法是一种测量地表重力场分布的方法,适用于浅部地下物质探测。
该方法通过测量地面单位面积上的重力值,来推断地下物质的密度变化,从而探测出地下物质的位置和规模。
该方法常用于寻找铁、铅、锡、钨、金等重矿藏、火山岩等。
5.地震法地震法是一种测量地表地震波传播情况的方法,适用于深部地下物质探测。
该方法通过发射地震波产生的振动,测量地下不同岩层的速度和反射情况,从而探测出地下物质的位置和形态。