数列通项公式和前n项和的常见解题方法
- 格式:doc
- 大小:159.50 KB
- 文档页数:2
求通项公式的方法一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 这种类型使用累加法 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求变式练习:已知{}n a 满足11=a ,)1(11+=-+n n a a n n ,求}{n a 的通项公式 二、)(1n f a a n n ⋅=+型数列,(其中()f n 不是常值函数)这种类型使用累乘法 例2.已知数列{n a }满足n a a nn =+1(n ∈N +),1a =1,求n a . 三、q pa a n n +=+1型数列 待定系数法,构造1n b a p +-是等比数列,公比为p ,首项为11b a p +-。
例3. 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。
变式练习:已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式. 四、()n f pa a n n +=+1型数列(p 为常数),此类数列可变形为()111++++=n n n n n p n f p a p a 例4已知数列{}n a 满足1111,32n n n a a a ++==+,求n a .变式练习:已知{}n a 满足11122,2+++==n n n a a a ,求n a 。
五、“已知n S ,求n a ”型方法是利用111,2n n n S n a S S n -=⎧=⎨-≥⎩,把已知条件转化成递推式。
例:已知数列{}n a ,n S 表示其前n 项和,若满足231n n S a n n +=+-,求数列{}n a 的通项公式。
五、CBa Aa a n n n +=型数列(C B A ,,为非零常数) 这种类型的解法是将式子两边同时取倒数,把数列的倒数看成是一个新数列,便可顺利地转化为1n n a pa q +=+型数列。
数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。
例如:已知数列{an}中,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。
例如:已知数列{an}中,S2=6,S4=20,求a3。
答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。
例如:已知数列{an}为等差数列,a1=2,d=4,求a5。
答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。
例如:已知数列{an}为等比数列,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。
例如:已知数列{an}中,S4=20,求a3。
答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。
例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。
答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。
求前N项和方法技巧及公式前N项和是指将一个数列的前N项相加得到的和。
计算前N项和可以使用不同的方法和技巧,包括数学公式、推导公式和逐项相加等。
一、数学公式法对于一些特定的数列,存在求前N项和的数学公式,可以直接使用这些公式计算前N项和,而无需逐项相加。
1.等差数列的前N项和公式对于等差数列,其通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
前N项和公式如下:Sn = (a1 + an) * N / 2 = N * (a1 + a1 + (N-1)d) / 2 = N *(2a1 + (N-1)d) / 22.等比数列的前N项和公式对于等比数列,其通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
前N项和公式如下:Sn=a1*(1-r^N)/(1-r)3.平方数序列的前N项和公式对于平方数序列,其通项公式为an = n^2,其中n为正整数。
前N项和公式如下:Sn=n*(n+1)*(2n+1)/6二、推导公式法对于一些特殊的数列,我们可以通过推导得到求前N项和的公式。
推导过程中可以使用数学归纳法、代数运算等方法。
1.等差数列的前N项和公式的推导设等差数列的首项为a,公差为d,第N项为an,则有:an = a + (N-1)dSn=a+(a+d)+(a+2d)+...+(a+(N-1)d)根据等差数列的性质,可以将Sn分为两部分:Sn=(a+(N-1)d)+(a+(N-2)d)+...+(a+d)+a将两式相加,可得:2Sn=(N*a)+(N*a+(N-1)*d)+...+((N-1)d+a)+(Nd)化简后得到等差数列的前N项和公式。
2.等比数列的前N项和公式的推导设等比数列的首项为a,公比为r,第N项为an,则有:an = a * r^(N-1)Sn=a+a*r+a*r^2+...+a*r^(N-1)Sn*r=a*r+a*r^2+...+a*r^N将两式相减Sn*(1-r)=a*(1-r^N)化简后得到等比数列的前N项和公式。
数列通项公式和前n 项和的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒,∵0≠d , ∴d a =1①∵255a S = ∴211)4(2455d a d a +=⋅⨯+② 由①②得:531=a ,53=d , ∴n n a n 5353)1(53=⨯-+=二、累加法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例2 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以n a a n 111-=-, 211=a ,nn a n 1231121-=-+=∴三、累乘法(逐商相乘法):把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例4. 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴四、待定系数法:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
专题一:数列通项公式的求法 一.观察法(关键是找出各项与项数n 的关系.)例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,52,21,32,1一、 公式法公式法1:特殊数列公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n例2:已知数列}{n a 的前n 项和n S 的公式12-+=n n S n ,求}{n a 的通项公式.例3:已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.三、 累加法 【型如)(1n f a a n n +=+的递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得。
例: 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a例4:已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.四、累乘法 【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例5:在数列{n a }中,1a =1, n n a n a n ⋅=⋅++1)1( ,求n a 的表达式.五、构造特殊数列法 【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例6:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .六、迭代法【一般是递推关系含有的项数较多】例7:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ①2≥n 时, )2(2121-=+++-n a a a n ②由①-②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{n a }的通项公式。
数列通项公式的常见求法一.公式法1、等差数列公式 例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;2、等比数列公式例2.(2011重庆理)设{}n a 是公比为正数的等比数列,12a =,324a a =+。
(Ⅰ)求{}n a 的通项公式3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ 求解。
一般先求出a1=S1,若计算出的an 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。
例3、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。
二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法 1、叠加法一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。
即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥; 例4、(2011四川理8)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a =A .0B .3C .8D .112、叠乘法一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。
即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 例6、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。
求数列前N 项和的方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1解:S n =1+5x+9x 2+······+(4n-3)x n-1 ①①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ②①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ nx )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。
数列通项公式、前n项和求法总结(全)⼀.数列通项公式求法总结:1.定义法 —— 直接利⽤等差或等⽐数列的定义求通项。
特征:适应于已知数列类型(等差或者等⽐).例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等⽐数列,255a S =.求数列{}n a 的通项公式.变式练习:1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式2. 在等⽐数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的⾸项、公⽐及前n 项和.2.公式法求数列{}n a 的通项n a 可⽤公式≥?-=?=-2111n S S n S a n n n 求解。
特征:已知数列的前n 项和n S 与n a 的关系例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。
(1)13-+=n n S n 。
(2)12-=n s n变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满⾜n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。
2. 已知数列{}n a 的前n 项和212n S n kn =-+(*k N ∈),且S n 的最⼤值为8,试确定常数k 并求n a 。
3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,22.求数列{}n a 的通项公式。
3.由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利⽤累加法求解。
例3. 已知数列{}n a 满⾜211=a ,a a n n +=+211,求n a 。
变式练习:1. 已知数列{}n a 满⾜11211n n a a n a +=++=,,求数列{}n a 的通项公式。
一、 观察法:已知数列的前几项,要求写出数列的一个通项公式
例1、求下列数列的一个通项公式。
①1
3572,4,8,165101520
-- ②1,0,1,0
③3,33,333,3333
④11,103,1005,10007
二、定义法:主要应用于可定性为等差或等比数列的类型,可直接利用等差或等比数列的通项公式进行求解。
例2、求下列数列的通项公式
①已知数列{}a n 中()
*112,3n n a a a n N +==+∈求通项公式。
②已知{}a n 中a 13=-且n n a a 21=+求此数列的通项公式。
③已知等比数列2,a ,a +4,…写出其通项a n 的表达式.
④已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N +
),则数列{}n a 的通项公式 三、 递推关系式形如1()n n a a f n +=+ (其中()f n 不是常数函数) 此类问题要利用累加法,
利用公式121321()()()n n n a a a a a a a a -=+-+-+⋅⋅⋅+-来求解.
例.若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
变式:(1)数列{a n }满足a 1=1且132(2),n n n a a n n a -=+-≥求
(2)数列{a n }满足a 1=1且11(2),2
n n n n a a n a -=+
≥求 四、 递推关系式形如1()n n a a f n += (其中()f n 不是常数函数)
此类问题要利用累乘法,利用公式321121n n n a a a a a a a a -=⋅⋅⋅ 来求解. 例.在数列{}n a 中,11=a ,n n n a a 21=+(*
N n ∈),求通项n a 。
变式:若1124,n n n a a a n
++==,求n a 五、 (构造数列法) 递推关系式形如
1n n a pa q +=+(,,1,0)q p p q ≠≠为常数且 此类问题可化为1()11n n q q a p a p p ++=+--,即数列{}1
n q a p +-是一个以p 为公比的等比数列. 例.已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式
变式:115,23n n n a a a a -==+且,求
六、利用前n 项和S n 求通项
利用{11,1
,2n n a n n S S n a -=-≥= ,一定要验证首项。
例:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。
(1)223n S n n =-。
(2)12-=n s n
(2)若数列{a n }的前n 项和S n =32
a n -3,求{a n }的通项公式.
数列求和的方法
1、公式法:
如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求.
常见的数列的前n 项和:123+++……+n=
1+3+5+……+(2n-1)=
111112482n n - S =1+++++ 2、分组求和法:
有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可.
例1、求和:()()()()123235435635235n n S n ----=-⨯+-⨯+-⨯++-⨯
针对训练1、求和:()()()()23123n n S a a a a n =-+-+-++-
3、裂项相消法:
把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭
,特别地当1k =时,()11111n n n n =-++
(21
k =,特别地当1k ==例2、数列{}n a 的通项公式为1(1)
n a n n =+,求它的前n 项和n S 针对训练3
的前n 项和n S . 针对训练4、求数列
1111...243546(1)(3)n n ++++∙∙∙++ 4、倒序相加法:
类似于等差数列的前n 项和的公式的推导方法。
如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法.
例3 求值:2222
22222222123101102938101
S =++++++++ 5、错位相减法:
类似于等比数列的前n 项和的公式的推导方法。
若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.
两式相减并整理即得
例4 求;,2
12,,25,23,2132 n n -的前n 项和 针对训练4、求和:()23230,1n n S x x x nx x x =++++≠≠。