求数列的前n项和公式
- 格式:pptx
- 大小:515.49 KB
- 文档页数:16
数列前n项和的求和公式
前n项求和公式:Sn=na1+0.5n(n-1)d,数列求和对按照一定规律排列的数进行求和。
求Sn实质上是求{an}的通项公式,应注意对其含义的理解。
常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。
数列是高中代数的重要内容,又是学习高等数学的基础。
在高考和各种数学竞赛中都占有重要的地位。
数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
求数列前N 项和的七种方法点拨:1.公式法等差数列前n 项和:n(a 1+a n ) y 亠 n(n +1) _, Si — — na q 十 d2 ' 2特别的,当前n 项的个数为奇数时,S 2k 岀=(2k +1)_a k 41,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1 时,q H 1, s n = a1 " q),特别要注意对公比的讨论。
其他公式:用常用公式)1 1迂R _ 1丄 1一丄—2n21、S nn=Z k kd :3、S n [例1]弓(卄)2、 n =送k 3 k=12 计+1)] 2 1S n=!: k =-n(n+1)(2n+1)6—1 2 3 已知 log 3 X = - 7,求 X + X + X +…+log 23 x n +…的前n 项和.解:由log 3—1 =log 3 X = —log s 2 = log 2 3 1 x =— 2 由等比数列求和公式得S n = X + X 2 +(利_ x(1 -x n) —1-x[例 2]设 S n = 1+2+3+ …+n , n € N *,求 f (n)= S n(n + 32)S n屮 的最大值.解: 由等差数列求和公式得 1 1S n = — n(n +1) , S n* = -(n +1)(n + 2)2 2 (利用常用公式)f(n)= S n(n + 32)盼 2n 2 + 3 4n+64□ +34+^ (屛--)2+5O 50 •••当亦=2,即 n = 8 时,f(n)max\l n 50 2.错位相减法这种方法是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列 {a n • b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列[例 3]求和:S n =1+3x+ 5x 2+7x 3 + ”””+(2n - 1)x n " 解:由题可知,{ (2 n- 1)x n 』}的通项是等差数列{2n — 1}的通项与等比数列{x n」}的 通项之积设 xS n =1x+3x 2+5x 3+7x 4 + …+(2门_〔以 ①一②得(1-x)S n =1+2X +2X 2+2x 3+2x 4 + …+2x n 」一(2 门_ 1)x n(错位相减)nJ1 — x n再利用等比数列的求和公式得: (1 -x )S n =1+2x ・ -(2 n -1)x n1-x G (2n - 1)x n +—(2n + 1)x n +(1 +x)Sn =(1-x)2[例4]求数列贪…前n项的和.解:由题可知,{2n2n }的通项是等差数列{2n }的通项与等比数列{右}的通项之积 设S =2+土 十-6+ …+空以6--2小32n(错位相减)练习:求:S n =1+5x+9x 2+ ....... +(4n-3)x n "1解:Si=1+5x+9)(+ ........ +(4n-3)x n-1①两边同乘以X ,得23X S n =x+5 X +9x + ...... +(4 n-3)x①-②得,(1-x ) S=1+4(X+ X 2+X 3+当 x=1 时,S=1+5+9+ ......... + (4n-3)3.反序相加法求和再把它与原数列相加,就可以得到n 个(印+ a n )•[例 5]求sin 21 +sin 22 + sin 23 + …+sin 288 +sin 289 的值20 20 2 0 2 0 2解:设 S =sin 1 +sin 2 +sin 3 + …+sin 88 +sin 89将①式右边反序得S =si n 289 +si n 2 88 +…+sin3 +sin2 +si n 1(反序)2 2又因为 sinx=cos(90 -x),sin x + cosx=1 ①(反序相加)2S=(sin 21 +cos 21)+(sin 2 2 + cos 22 ) + …+ (sin 289 +cos 289 ) = 89S= 44.5担=;2(设制错位)十243 十2642n+(^1)Sn2+&p.,2_2n 22=2S n =41-产 n +2-尹2n 2n + =2n-n nx ) - (4n-3) x当X 工1时,S= I4x(1-x n)1-x(4n-3)这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),4.分组法求和有一类数列,既不是等差数列, 也不是等比数列, 若将这类数列适当拆开, 可分为几个组求和)将其每一项拆开再重新组合得(分组)=2(13 +23+…+n 3) +3(12 +22+ …+门2)+(1 + 2+…+n)2 2n 2(n +1)2 十 n(n +1)(2n +1)十 n(n + 1)(分组求和)n(n +1)2( n +2)等差、等比或常见的数列,然后分别求和,再将其合并即可[例6]求数列的前n 项和:1+1, 1+4, [ +7,…,n-2 ,-a a a 解: 1 1 1设 S n = (1 +1) +(- +4) +(p +7) + …”+(—+3n -2)a a a将其每一项拆开再重新组合得S n = (1 + 1a+…+1n」)+(1 +4 + 7+…+3n -2) a(分组)当a= 1时, S n=n+(3n—1)n(3n+ 1)n(分当a H 1时,-7 十(3n —1)n2a -a 1』+ (3n -1)n a —1[例7]求数列{n (n+1)(2n+1)}的前n 项和.解:设 a k =k(k +1)(2k +1) =2k 3+ 3k 2+kS n =2 k(k+1)(2k+1)=k 吕nZ (2k 3+3k 2+k)kTS nn2Z k3k 3 n+32:[例10]在数列{a n }中,a n =n +1 n +1 乙+…,又b n =—2一,求数列{b n }的前an r a n +n +11 1 1 1练习:求数列12,24,38^**(^2^)^*啲前n 项和。
数列求n项和的方法数列是数学中的一个重要概念,它是由一系列按照一定规律排列的数所组成的序列。
在数列中,常常需要求出前n项的和,也就是数列的部分和。
下面将介绍几种常见的求解数列部分和的方法。
一、等差数列的部分和等差数列是指数列中每一项与它的前一项之差都相等的数列。
例如:1,3,5,7,9……就是一个公差为2的等差数列。
对于一个公差为d的等差数列,前n项和Sn可以通过以下公式求得:Sn = n * (a1 + an) / 2其中n表示数列的项数,a1表示数列的首项,an表示数列的第n 项。
这个公式的推导过程可以使用数学归纳法证明。
例如:求1, 3, 5, 7, 9……的前10项和。
首先,确定该数列的公差为2,首项为1,第10项为19。
将这些数据代入公式中,得到:S10 = 10 * (1 + 19) / 2 = 100因此,该等差数列的前10项和为100。
二、等比数列的部分和等比数列是指数列中每一项与它的前一项之比都相等的数列。
例如:1,2,4,8,16……就是一个公比为2的等比数列。
对于一个公比为q的等比数列,前n项和Sn可以通过以下公式求得:Sn = a1 * (1 - q^n) / (1 - q)其中n表示数列的项数,a1表示数列的首项,q表示数列的公比。
这个公式的推导过程可以使用等比数列的通项公式证明。
例如:求1, 2, 4, 8, 16……的前5项和。
首先,确定该数列的公比为2,首项为1。
将这些数据代入公式中,得到:S5 = 1 * (1 - 2^5) / (1 - 2) = 31因此,该等比数列的前5项和为31。
三、调和数列的部分和调和数列是指数列中每一项的倒数之和都为一个定值的数列。
例如:1,1/2,1/3,1/4,1/5……就是一个调和数列。
对于一个调和数列,前n项和Sn可以通过以下公式求得:Sn = 1 + 1/2 + 1/3 + …… + 1/n其中n表示数列的项数。
这个公式的推导过程可以使用数学归纳法证明。
求数列前n 项和8种的方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =时,1n S na =; (2)()1111nn a q q S q-≠=-,,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n 1)-(2n ...531=++++.例1 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n s n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f .二.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
求数列前N 项和的方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n )1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211n n 的前n 项和。
前n项求和公式方法前n项求和是数学中常见的问题,也是数学分析和离散数学中的重要内容。
在实际问题中,我们经常需要计算一系列数的和,而求和公式方法可以帮助我们快速、准确地得出结果。
本文将介绍前n项求和的常见方法,帮助读者更好地理解和运用这一数学工具。
一、等差数列求和公式。
等差数列是指数列中相邻两项之差保持不变的数列,其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
对于等差数列的前n项和Sn,我们可以利用等差数列求和公式来求解。
等差数列的前n项和公式为Sn=n(a1+an)/2,通过这一公式,我们可以快速求解等差数列的前n项和,而不必逐项相加。
二、等比数列求和公式。
等比数列是指数列中相邻两项之比保持不变的数列,其通项公式为an=a1q^(n-1),其中a1为首项,q为公比,n为项数。
对于等比数列的前n项和Sn,我们可以利用等比数列求和公式来求解。
等比数列的前n项和公式为Sn=a1(q^n-1)/(q-1),通过这一公式,我们可以快速求解等比数列的前n项和。
三、其他常见求和公式。
除了等差数列和等比数列的求和公式外,还有一些常见的数学序列和级数的求和公式,如调和级数、幂级数等。
这些求和公式在实际问题中也有着广泛的应用,可以帮助我们快速求解各种数学问题。
四、求和公式的应用。
前n项求和公式在实际问题中有着广泛的应用,如在物理、工程、经济学等领域都能看到其身影。
通过求和公式,我们可以快速计算各种数学模型中的累加和,从而得出有用的结论和推论。
因此,掌握前n项求和公式的方法对于解决实际问题具有重要意义。
五、总结。
通过本文的介绍,我们了解了前n项求和的常见方法,包括等差数列求和公式、等比数列求和公式以及其他常见求和公式。
这些方法在数学分析、离散数学以及实际问题中都有着广泛的应用,对于提高数学水平和解决实际问题具有重要意义。
希望读者通过本文的学习,能够更好地掌握前n项求和的方法,提高数学运算能力,为今后的学习和工作打下坚实的数学基础。
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1解:S n =1+5x+9x 2+······+(4n -3)x n-1 ①①两边同乘以x ,得x S n =x+5 x 2+9x 3+······+(4n -3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k====++∑∑∑(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
求前n 项和的几种方法求数列前N 项和的方法1. 公式法(1)等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公(2q=11q S ≠,(31、=S n 3、=S n [例1][例2]设2. 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n =11-x [4x(1-x n )1-x +1-(4n-3)x n ]3. 倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把[例5]求4. [例6]5. (1(3(5))2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵ n n n n tan )1tan()1cos(cos 1sin -+=+(裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1 -+-+-+-∴6. [[例7. [例练习:求5,55,555,…,的前n 项和。
高中数列求和公式总结大全
1. 等差数列求和公式:Sn = n/2 [2a + (n-1)d]其中,Sn表示前n 项和,a表示首项,d表示公差。
2. 等比数列求和公式:Sn = a(1-
q^n)/(1-q)其中,Sn表示前n项和,a表示首项,q表示公比。
3. 等差
数列前n项和公式:Sn = n/2 [a1 + an]其中,a1表示首项,an表示第
n项。
4. 等比数列前n项和公式:Sn = a(1-q^n)/(1-q)其中,a表示首项,q表示公比。
5. 等差数列通项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
6. 等比数列通项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
7. 等差数列
求第n项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
8. 等比数列求第n项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
9. 等差数列求公差公式:d = (an - a1)/(n-1)其中,d表示公差,an表示第n项,a1表示首项。
10. 等比数列求公比公式:q = (an/a1)^(1/(n-1))其中,q表示公比,an表示第n项,a1表示首项。
以上是高中数列求和公式的总结大全。
求数列前n 项和的8种常用方法一.公式法(定义法):i.等差数列求和公式:特别地,当前〃项的个数为奇数时,S2灯|=(2&+1).%1,即前〃项和为中间项乘以项数。
这个公 式在很多时候可以简化运算;2.等比数列求和公式:(1) q = 1, S n =叫:。
1(1-矿)(2)S n =—~,特别要注意对公比的讨论:3. 可转化为等差、等比数列的数列;4. 常用公式:(2)1» = l + 2 + 3+L +〃=_〃(〃+1):22 = ]2 + 22 + 32 +L + / =项〃 +1 )(2〃 +1 )=项〃 + '(〃 +1 ):4-1 63 2(3)£(2Sl)=l + 3+5+L +(2〃-1)=片.▲■I例 1 已知 log3X= T ,求x+x 2+x 3 + ...+x n 的前〃项和.log? 3解:由 log3 x = —zl_ => log 3 x = -log 3 2 n x = 5= x + x 2 + x 3 +L +y*n J = 1(1-1)A2(4)log 2 3由等比数列求和公式得x(l —x 1-X1&例 2 设S “=l + 2+3+ • +〃,解:易知 S =]_〃(〃+1), "2S..2",求_/•(〃)=— 的最大值.(〃 + 32)S tS . =!(〃+1)(〃+2)jt+i 2n .・'(〃)-(〃 + 32)s* — / + 34〃+ 64= ]_________1_______ 1〃 +34+丝 一(V ;-_L)2+50 - 50n JnQ1・•・当而-如即〃 =8时,f(n) =_.V82 50二.倒序相加法:如果一个数列{%},与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前〃项和即可用倒序相加法。
如:等差数列的前〃项和即是用此法推导的,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到〃个(0+4).例3求sii?1°+sin22°+sin23° +-+sin288°+sin289°的值解:设S=sin2l°+sin22°+sin23°+•••+sin288°+sin289°........①将①式右边反序得S=sin289°+sin288°+…+sin23°+sin22°+sin21°........②(反序)又因为sinx=cos(90°-x),sin2x+cos2x=1①得(反序相加)2S=(sin21°+cos2l°)+(sin22°+cos22。