24-6《实数与向量相乘》PPT(上海教育版)PPT课件
- 格式:ppt
- 大小:169.00 KB
- 文档页数:80
沪教版数学九年级上册24.6《实数与向量相乘》(第2课时)教学设计一. 教材分析《实数与向量相乘》是沪教版数学九年级上册第24.6节的内容,这部分内容是在学生已经掌握了实数和向量的基本概念,以及向量的数乘运算的基础上进行学习的。
实数与向量相乘是向量运算中的一个重要部分,它不仅加深了学生对向量运算的理解,也为后续学习向量的线性组合以及向量空间等高级内容打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于实数和向量的基本概念有一定的了解。
但是,对于实数与向量相乘的理解可能会存在一定的困难,因此,在教学过程中,需要教师通过生动的例子和实际操作,帮助学生理解和掌握这一概念。
三. 教学目标1.让学生理解实数与向量相乘的概念和运算规则。
2.培养学生运用实数与向量相乘解决实际问题的能力。
3.提高学生的抽象思维能力和逻辑推理能力。
四. 教学重难点1.实数与向量相乘的概念。
2.实数与向量相乘的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过生动具体的例子,引导学生思考和探索实数与向量相乘的概念和运算规则,通过小组合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和实例。
2.准备教学PPT和板书设计。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出实数与向量相乘的概念。
例如,在平面直角坐标系中,给定一个向量和一个实数,如何通过平移的方式得到一个新的向量。
2.呈现(10分钟)通过PPT展示实数与向量相乘的定义和运算规则,同时给出相关的实例,让学生直观地理解和感受实数与向量相乘的概念。
3.操练(10分钟)让学生通过实际的例题,练习实数与向量相乘的运算,教师在这个过程中,及时给予指导和反馈,帮助学生理解和掌握实数与向量相乘的规则。
4.巩固(5分钟)通过一些选择题和填空题,让学生巩固实数与向量相乘的概念和运算规则。
5.拓展(5分钟)让学生思考和探索实数与向量相乘的应用,例如,在物理中,实数与向量相乘可以表示力的大小和方向,引导学生将数学知识应用到实际问题中。
沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计一. 教材分析沪教版数学九年级上册24.6《实数与向量相乘》是本册教材中的一个重要内容,主要让学生了解实数与向量相乘的定义和性质。
本节课的内容对于学生来说是比较抽象的,需要通过具体实例和实际操作来理解和掌握。
教材中通过丰富的例题和练习题,帮助学生逐步掌握实数与向量相乘的方法和应用。
二. 学情分析九年级的学生已经具备了一定的实数和向量的基础知识,对于实数与向量的乘法有一定的了解。
但是,对于实数与向量相乘的定义和性质,以及其在实际问题中的应用,还需要进一步的引导和培养。
因此,在教学过程中,需要注重学生的实际操作和思考,通过具体的实例和问题,引导学生理解和掌握实数与向量相乘的概念和方法。
三. 教学目标1.了解实数与向量相乘的定义和性质。
2.能够运用实数与向量相乘的方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.实数与向量相乘的定义和性质。
2.实数与向量相乘的方法和应用。
五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握实数与向量相乘的概念和方法。
2.问题驱动法:通过提出实际问题,引导学生运用实数与向量相乘的方法解决问题。
3.小组合作法:通过小组合作讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教材和教学参考书。
2.教学PPT或者黑板。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,如一个人在平面上向右移动3个单位,向上移动2个单位,引导学生思考如何用数学语言来描述这个人的移动。
2.呈现(15分钟)介绍实数与向量相乘的定义和性质,通过具体的实例来解释和展示实数与向量相乘的方法。
3.操练(15分钟)让学生分组进行实际操作,利用实数与向量相乘的方法解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对实数与向量相乘的理解和掌握程度。
实数与向量相乘1.实数与向量相乘的意义一般的,设为正整数n ,a 为向量,我们用表示ann 个a 相加;用表示个相a n -n a -加.又当为正整m 数时,a m n 表示与同向a 且长度为的a mn 向量. 要点诠释:设P 为一个正数,P 就是将的a a 长度进行放缩,而方向保持不变;—P 也就是将a a 的长度进行放缩,但方向相反. 2.向量数乘的定义 一般地,实数与向量k a 的相乘所得的积是一个向量,记作ka,它的长度与方向规定如下:(1)如果k 0,a 0且≠≠时,则:①ka 的长度:||||||ka k a = ;②ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a反方向;(2)如果k 0,a=0=或时,则:0ka = ,ka 的方向任意.实数与向量k a 相乘,叫做向量的数乘. 要点诠释:(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算; (3)ka表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面; (4)向量的数乘体现几何图形中的位置关系和数量关系. 3.实数与向量相乘的运算律 设m n 、为实数,则:(1)()()m na mn a =(结合律);(2)()m n a ma na +=+(向量的数乘对于实数加法的分配律);(3)m (+b )=m a a mb +(向量的数乘对于向量加法的分配律)4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 要点诠释:任意非零向量与它同方a 向的单位向量0a 的关系:0a a a = ,01a a a=.(2)平行向量定理:如果向量与b 非零向量平a 行,那么存在唯一的实数m ,使b ma =.要点诠释:(1)定理中,bm a =,m 的符号由与b a 同向还是反向来确定.(2)定理中的“a 0≠ ”不能去掉,因为若a 0= ,必有b 0=,此时可以取m 任意实数,使得b ma =成立.(3)向量平行的判定定理:a 是一个非零向量,若存在一个实数m ,使b m a =,则向量与非b 零向量平行a .(4)向量平行的性质定理:若向量与非b 零向量平行a ,则存在一个实数m ,使b ma =.(5)A 、B 、C 三点的共线若存在实⇔AB//BC ⇔数λ,使 AB BC λ=.要点五、向量的线性运算 1.向量的线性运算定义 向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 要点诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果是同一12,e e 平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量a ,有且只有一对实数12,λλ,使得1122a e e λλ=+.要点诠释:(1)同一平面内两个不共线(或不平行)向量叫做这12,e e 一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底表示为形12,e e 1122a e e λλ=+ 式,叫做向量的分解,当相互垂直12,e e时,就称为向量的正分解.每家都会装修,我们可以用一根电线将一盏电灯吊在天花板上,为了保险我们也可以用两根绳将这盏电灯吊在同一位置。
实数与向量相乘1.实数与向量相乘的意义一般的,设n 为正整数,a 为向量,我们用a n 表示n 个a 相加;用a n -表示n 个a -相加.又当m 为正整数时,a m n 表示与a 同向且长度为a mn的向量. 要点诠释:设P 为一个正数,P a 就是将a 的长度进行放缩,而方向保持不变;—P a 也就是将a 的长度进行放缩,但方向相反. 2.向量数乘的定义一般地,实数k 与向量a 的相乘所得的积是一个向量,记作ka ,它的长度与方向规定如下:(1)如果k 0,a 0且≠≠时,则:①ka 的长度:||||||ka k a =;②ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a 反方向; (2)如果k 0,a=0=或时,则:0ka =,ka 的方向任意.实数k 与向量a 相乘,叫做向量的数乘. 要点诠释:(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算;(3)ka 表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面;(4)向量的数乘体现几何图形中的位置关系和数量关系. 3.实数与向量相乘的运算律 设m n 、为实数,则:(1)()()m na mn a =(结合律);(2)()m n a ma na +=+(向量的数乘对于实数加法的分配律);(3)m (+b)=m a a mb + (向量的数乘对于向量加法的分配律) 4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 要点诠释:任意非零向量a 与它同方向的单位向量0a 的关系:0a a a =,01a a a=.(2)平行向量定理:如果向量b 与非零向量a 平行,那么存在唯一的实数m ,使b ma =. 要点诠释: (1)定理中,b m a=,m 的符号由b 与a 同向还是反向来确定.(2)定理中的“a 0≠”不能去掉,因为若a 0=,必有b 0=,此时m 可以取任意实数,使得b ma =成立.(3)向量平行的判定定理:a 是一个非零向量,若存在一个实数m ,使b ma =,则向量b 与非零向量a 平行.(4)向量平行的性质定理:若向量b 与非零向量a 平行,则存在一个实数m ,使b ma =. (5)A 、B 、C 三点的共线⇔AB //BC ⇔若存在实数λ,使 AB BC λ=.要点五、向量的线性运算 1.向量的线性运算定义向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 要点诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果12,e e 是同一平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量a ,有且只有一对实数12,λλ,使得1122a e e λλ=+. 要点诠释:(1)同一平面内两个不共线(或不平行)向量12,e e 叫做这一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底12,e e 表示为1122a e e λλ=+形式,叫做向量的分解,当12,e e 相互垂直时,就称为向量的正分解.每家都会装修,我们可以用一根电线将一盏电灯吊在天花板上,为了保险我们也可以用两根绳将这盏电灯吊在同一位置。
实数与向量相乘中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
24.6实数与向量相乘(1)一、教学内容分析在学生已经学习向量的有关概念和加、减运算的基础上,本节通过将“几个相同向量连加”与“几个相同数的连加”类比,引入了正整数与向量相乘的运算,然后说明了整数与向量相乘的意义.二、教学目标设计1.通过类比几个相同的数连加的运算,认识整数与向量相乘的规定的合理性;理解实数与向量相乘的意义,掌握实数与向量相乘的表示方法;对于给定的一个非零实数和一个非零向量,能画出它们相乘所得的向量2.领悟类比思想,增强概括能力三、教学重点及难点实数与向量相乘的几何意义,. 四、教学用具准备 实物投影仪、多媒体设备 五、教学流程设计六、教学过程设计(一)温故知新复习:1.向量的加法和减法的运算方法是什么?怎么表示的?平行四边形法则是怎么表示的?2. a已知:向量b a ,求:(1)b a +(2) b a - (二)探索新知1.思考:已知=++a a a 3a ,那么=++→→→a a a ?几个相同的向量相加,是否能像几个相同的数相加一样呢?b例题1 已知向量a ,如何求(1)a a a++a学生动手画图验证猜测结论并归纳. 变式:(2)求)()()(a a a-+-+-=?2.归纳我们规定向量的另一种新的运算,即实数与向量相乘的运算: 一般的,设n 为正整数,a 为向量,我们用a n表示n 个a 相加;用a n -表示n 个-相加..又当m 为正整数时,a m n表示与同向且长度为a m n的向量.[说明] 例题1是根据实数与向量相乘的意义画图后与学生共同归纳,体会实数与向量相乘的几何表示,初步感受到实数与向量相乘的积是一个与原向量平行的向量例题2 已知非零向量a,求作,3,3,25a a a--并指出他们的长度和方向.a例题3 已知平行四边形ABCD 中,E 、F 、G 、H 、分别是各边的中点EG 与FH 相交于点O.设b a ==,请用向量a 或b 表示向量,,并写出图中与向量OE 相等的量.ABCD EH GFO[说明]本例题将平行四边形的性质与向量加法的平行四边法则结合运用.例题4 已知点D 、E 分别在ABC ∆的边AB 与AC 上DE ∥BC ,3AD=4DB ,试用向量BC 表示向量.[说明]本例题引导学生初步认识两个平行向量的代数表达形式(三)巩固练习1、→a k 表示实数k 与向量→a 相乘的运算,下列表示运算是否正确: (1)→a k 表示为k ×→a 或者k ·→a ( ) (2)→a k 表示→a k ( ) (3)→a k 表示a k →( ) 2、已知非零向量a ,求作4→a ,-2→a ,-21→a ,并指出他们的长度和方向.3.如图,矩形ABCD 中,E 、M 、F 、N 是AB 、DC 的三等分点,设b DA a AB==,试用向量b a ,表示向量AD AE ,,并写出图中与DA AE ,向相等的向量(四)反思小结1、这节课你学会了什么?2、你还有什么疑惑吗?(五)、作业布置练习册:习题 24.6(1)BCC。
沪教版数学九年级上册24.6《实数与向量相乘》(第2课时)教学设计一. 教材分析沪教版数学九年级上册24.6《实数与向量相乘》这一节主要介绍了实数与向量相乘的概念和性质。
学生需要掌握实数与向量相乘的定义,理解实数与向量相乘的几何意义,并能熟练运用实数与向量相乘解决相关问题。
二. 学情分析九年级的学生已经掌握了实数和向量的相关知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于实数与向量相乘的概念和性质的理解还需要进一步引导和深化。
三. 教学目标1.理解实数与向量相乘的定义和性质。
2.掌握实数与向量相乘的几何意义。
3.能够运用实数与向量相乘解决相关问题。
四. 教学重难点1.实数与向量相乘的定义和性质。
2.实数与向量相乘的几何意义。
五. 教学方法采用问题驱动法,通过引导学生思考和探索实数与向量相乘的概念和性质,激发学生的兴趣和积极性。
同时,运用案例分析和问题解决的方法,帮助学生理解和掌握实数与向量相乘的几何意义。
六. 教学准备1.准备相关的教学案例和问题。
2.准备多媒体教学材料,如PPT等。
七. 教学过程1.导入(5分钟)通过向学生提问:“实数与向量有什么关系?”引导学生回顾已学的实数和向量的知识,为新课的学习做好铺垫。
2.呈现(15分钟)向学生介绍实数与向量相乘的定义和性质,通过示例和讲解,让学生理解实数与向量相乘的几何意义。
3.操练(15分钟)让学生通过解决一些实际问题,运用实数与向量相乘的知识,巩固所学的内容。
4.巩固(5分钟)通过一些练习题,让学生进一步巩固实数与向量相乘的概念和性质。
5.拓展(5分钟)引导学生思考实数与向量相乘的应用,如在几何图形中的运用等。
6.小结(5分钟)让学生总结实数与向量相乘的概念和性质,以及解题方法。
7.家庭作业(5分钟)布置一些相关的作业题,让学生巩固所学的内容。
8.板书(5分钟)板书实数与向量相乘的定义和性质,以及解题方法。
本节课通过问题驱动法和案例分析法,引导学生理解和掌握实数与向量相乘的概念和性质。