2017中考全等三角形专题(8种辅助线的作法)
- 格式:doc
- 大小:440.50 KB
- 文档页数:16
全等三角形中常见辅助线的作法一、倍长中线法。
1. 作法。
- 当遇到三角形中线时,可将中线延长一倍,连接相应顶点,构造全等三角形。
- 例如,在△ABC中,AD是BC边上的中线。
延长AD到E,使DE = AD,然后连接BE。
2. 原因。
- 因为BD = CD(AD是中线),∠BDE = ∠CDA(对顶角相等),DE = AD(所作辅助线),根据SAS(边角边)判定定理,可以证明△BDE≌△CDA。
- 这样做的好处是可以将分散的线段和角集中到新构造的全等三角形中,从而便于解决问题,比如可以将AC边转化为BE边,进而在新的三角形△ABE中研究线段之间的关系。
二、截长补短法。
1. 截长法。
- 作法。
- 在较长的线段上截取一段等于已知的较短线段。
- 例如,在△ABC中,要证明AB = AC + CD(假设AC<AB)。
在AB上截取AE = AC,然后连接DE。
- 原因。
- 截取AE = AC后,我们可以通过证明△ADE≌△ADC(如果有合适的条件,如AD 是角平分线,则可以利用SAS判定),得到DE = CD。
这样就将AB = AC+CD的证明转化为证明BE = DE的问题,将问题简化。
2. 补短法。
- 作法。
- 延长较短的线段,使延长后的线段等于较长的线段。
- 例如,在上述△ABC中,延长AC到F,使CF = CD,然后连接DF。
- 原因。
- 延长AC到F使CF = CD后,如果能证明△ABD≌△AFD(根据具体题目中的条件,可能利用AAS、ASA等判定定理),就可以将AB = AC + CD的证明转化为证明AB = AF的问题,通过构造全等三角形,把线段之间的关系进行转化,从而达到解题目的。
三、作平行线法。
1. 作法。
- 过三角形的一个顶点作某条边的平行线。
- 例如,在△ABC中,D是AB上一点,E是AC上一点,要证明AD/AB = AE/AC。
过D作DF∥AC交BC于F。
2. 原因。
- 因为DF∥AC,根据平行线的性质,可得∠ADF = ∠A,∠AFD = ∠C,∠BDF = ∠B。
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最要紧的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一碰运气。
线段垂直平分线,常向两头把线连。
要证线段倍与半,延长缩短可实验。
三角形中两中点,连接那么成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两头5.用“截长法”或“补短法”:碰到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后组成等边三角形7.角度数为30、60度的作垂线法:碰到三角形中的一个角为30度或60度,能够从角一边上一点向角的另一边作垂线,目的是组成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,如此能够取得在数值上相等的二条边或二个角。
从而为证明全等三角形制造边、角之间的相等条件。
8.计算数值法:碰到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,如此能够取得在数值上相等的二条边或二个角,从而为证明全等三角形制造边、角之间的相等条件。
常见辅助线的作法有以下几种:最要紧的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)碰到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)碰到角平分线在三种添辅助线的方式4)(1)能够自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”DCB AEDFCBA,所考知识点常常是角平分线的性质定理或逆定理.(2)能够在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
教师用:全等三角形问题中常见的8种辅助线的作法8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形3)遇到角平分线在三种添辅助线的方法(1)可以自角平分线上的某一点向角的两边作垂线(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点DC B A 再向角平分线上的某点作边线,构造一对全等三角形。
4) 过图形上某一点作特定的平分线,构造全等三角形5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知AB-BE <2AD<AB+BE 故AD 的取值范围是1<AD<4ED F CB A例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,显然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知EG=EF在△BEG中,由三角形性质知EG<BG+BE故:EF<BE+FC例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA解:延长AE至G使AG=2AE,连BG,DG,显然DG=AC,∠GDC=∠ACD由于DC=AC,故∠ADC=∠DAC在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG 故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE 应用:1、(09崇文二模)以的两边AB 、AC 为腰分别向外作等腰RtABD∆和等腰RtACE∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是, 线段AM 与DE 的数量关系是 ; (2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.ABC ∆EDCBA二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC解:(截长法)在AB 上取中点F ,连FD △ADB 是等腰三角形,F 是底AB 中点,由三线合一知DF ⊥AB ,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC解:(截长法)在AB 上取点F ,使AF =AD ,连FE △ADE ≌△AFE (SAS ) ∠ADE =∠AFE , ∠ADE+∠BCE =180°PQCBA∠AFE+∠BFE =180° 故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
线段垂直平分线,常向两端把线连。
三角形中两中点,连接则成中位线。
也可将图对折看,对称以后关系现。
角平分线加垂线,三线合一试试看。
要证线段倍与半,延长缩短可试验。
三角形中有中线,延长中线等中线。
1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形7.角度数为30 、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形,或40-60-80 的特殊直角三角形, 常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理.(2 )可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形问题中常见8种子辅助线的作法1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相D C BAED F CB A交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
全等三角形问题中常见的8种辅助线的作法(有答案)全等三角形问题中常见的辅助线的作法(有答案)常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.ABD例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BBAE.AEFDCAB应用:1、(09崇文二模)以ABC的两边AB、AC为腰分别向外作等腰RtDECABD和等腰Rt ACE,BAD CAE90,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图① 当ABC为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰Rt ABD绕点A沿逆时针方向旋转(0二、截长补短1、如图,ABC中,AB=2AC,AD平分BAC,且AD=BD,求证:CD⊥AC2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过=AD+BC。
2017年中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:1)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.2)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法适合于证明线段的和、差、倍、分等类的题目.3)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.5)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1.已知:如图3所示,AD为△ABC的中线,求证:AB+AC>2AD。
分析:要证AB+AC>2AD,由图形想到:AB+BD>AD,AC+CD>AD,所以有:AB+AC+ BD+CD > AD +AD=2AD,但它的左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去。
证明:延长AD至E,使DE=AD,连接BE,CE。
3图AB CDE3图例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.因为BD=DC=AC ,所以AC=1/2BC因为E 是DC 中点,所以EC=1/2DC=1/2AC E D CB A∠ACE=∠BCA ,所以△BCA ∽△ACE 所以∠ABC=∠CAE因为DC=AC ,所以∠ADC=∠DAC ∠ADC=∠ABC+∠BAD所以∠ABC+∠BAD=∠DAE+∠CAE 所以∠BAD=∠DAE即AD 平分∠BAE 应用: 二、截长补短例1.已知:如图1所示, AD 为△ABC 的中线,且∠1=∠2,∠3=∠4。
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
中考全等三⾓形专题种辅助线的作法完整版中考全等三⾓形专题种辅助线的作法HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】全等三⾓形问题中常见的辅助线的作法【三⾓形辅助线做法】图中有⾓平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
⾓平分线平⾏线,等腰三⾓形来添。
⾓平分线加垂线,三线合⼀试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三⾓形中两中点,连接则成中位线。
三⾓形中有中线,延长中线等中线。
1.等腰三⾓形“三线合⼀”法:遇到等腰三⾓形,可作底边上的⾼,利⽤“三线合⼀”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三⾓形3.⾓平分线在三种添辅助线4.垂直平分线联结线段两端5.⽤“截长法”或“补短法”:遇到有⼆条线段长之和等于第三条线段的长,6.图形补全法:有⼀个⾓为60度或120度的把该⾓添线后构成等边三⾓形7.⾓度数为30、60度的作垂线法:遇到三⾓形中的⼀个⾓为30度或60度,可以从⾓⼀边上⼀点向⾓的另⼀边作垂线,⽬的是构成30-60-90的特殊直⾓三⾓形,然后计算边的长度与⾓的度数,这样可以得到在数值上相等的⼆条边或⼆个⾓。
从⽽为证明全等三⾓形创造边、⾓之间的相等条件。
8.计算数值法:遇到等腰直⾓三⾓形,正⽅形时,或30-60-90的特殊直⾓三⾓形,或40-60-80的特殊直⾓三⾓形,常计算边的长度与⾓的度数,这样可以得到在数值上相等的⼆条边或⼆个⾓,从⽽为证明全等三⾓形创造边、⾓之间的相等条件。
常见辅助线的作法有以下⼏种:最主要的是构造全等三⾓形,构造⼆条边之间的相等,⼆个⾓之间的相等。
1)遇到等腰三⾓形,可作底边上的⾼,利⽤“三线合⼀”的性质解题,思维模式是全等变换中的“对折”法构造全等三⾓形.2)遇到三⾓形的中线,倍长中线,使延长线段与原中线长相等,构造全等三⾓形,利⽤的思维模式是全等变换中的“旋转”法构造全等三⾓形.DCBA E DF CBA3) 遇到⾓平分线在三种添辅助线的⽅法,(1)可以⾃⾓平分线上的某⼀点向⾓的两边作垂线,利⽤的思维模式是三⾓形全等变换中的“对折”,所考知识点常常是⾓平分线的性质定理或逆定理.(2)可以在⾓平分线上的⼀点作该⾓平分线的垂线与⾓的两边相交,形成⼀对全等三⾓形。