混凝沉淀技术
- 格式:docx
- 大小:234.72 KB
- 文档页数:13
磁混凝沉淀技术在污水处理中的应用一、磁混凝沉淀技术的原理磁混凝沉淀技术是一种利用磁性材料对水中污染物进行混凝沉淀的新型技术。
其原理是在污水中加入一种具有磁性的混凝剂,通过外加磁场的作用,使混凝剂在磁场的作用下聚集成团,同时吸附并沉降水中的悬浮物、有机物和重金属离子等污染物,从而实现对污水的净化和处理。
磁混凝沉淀技术利用磁性颗粒在外加磁场的作用下产生磁聚集效应,能够加快混凝物的形成和沉淀速度,减少混凝剂的投加量,提高污水的净化效率,同时也便于混凝剂的回收和再利用,具有节能、环保和经济等优点。
1. 高效净化:磁混凝沉淀技术能够快速、高效地去除水中的悬浮物、有机物和重金属离子等污染物,使污水水质得到有效改善,达到排放标准。
2. 节能环保:磁混凝沉淀技术在处理污水时,能够降低混凝剂的投加量,减少化学药剂的使用,并且能够实现混凝剂的回收和再利用,降低能耗和成本,减少污泥的产生,能够达到节能环保的效果。
3. 操作简便:磁混凝沉淀技术的操作简单,设备维护方便,投资和运行成本较低,适用于各类污水处理厂和工业废水治理项目。
4. 联合工艺:磁混凝沉淀技术能够与其他水处理工艺进行联合运用,如沉淀、过滤、膜分离等,提高整体处理效率,适用于各种不同类型的污水处理。
1. 城市污水处理厂:城市污水处理厂是磁混凝沉淀技术的主要应用领域之一。
城市污水处理厂处理的污水中含有大量的悬浮物和有机物,采用磁混凝沉淀技术能够有效地去除水中的污染物,提高处理效率,使得处理后的污水能够直接排放或者进一步处理为可再利用水资源。
3. 农村污水治理:农村地区的污水治理是当前面临的一个难题,采用传统的处理方式成本高,效果不佳。
磁混凝沉淀技术能够有效地解决农村地区污水处理难题,快速净化污水,提高水质,改善生态环境。
4. 新型材料制备:磁混凝沉淀技术在废水处理过程中产生的沉淀物可以经过再处理,获得高纯度的新型材料,如氧化铁、氧化铝等,具有较高的附加值。
通过以上案例描述,可以看出磁混凝沉淀技术在污水处理中具有较广泛的应用前景,可以满足不同场景下的废水处理需求,对于环境保护和可持续发展具有重要意义。
混凝沉淀工艺技术的优缺点
混凝沉淀工艺技术是一种在水处理和废水处理中广泛使用的方法。
它通过添加化学物质来使废水中的悬浮物和溶解物凝聚成大颗粒物,然后利用重力沉淀分离出来。
这种方法有其优点和缺点。
优点:
1.适用范围广:混凝沉淀工艺适用于不同类型的水,包括工业废水、污水、市政供水等。
2.处理效果好:混凝沉淀工艺可以有效去除水中的悬浮物、有机物、重金属等,使水质达到国家排放标准。
3.投资费用低:混凝沉淀工艺相对于其他处理工艺来说,成本较低,投资费用也比较少。
4.易于操作:混凝沉淀工艺操作简单,维护方便,不需要专业技能。
缺点:
1.处理时间长:混凝沉淀工艺需要较长时间才能达到最佳处理效果,可能需要几个小时或甚至一整天。
2.对水质要求高:混凝沉淀工艺对水质有一定的要求,如果水质差,可能需要添加更多的化学物质。
3.化学物质损耗大:混凝剂需要大量使用,这会增加成本,并产生化学物质的副产品,可能对环境造成负面影响。
4.运营成本高:混凝沉淀工艺需要大量能源,如电力、水力等,因此运营成本较高。
总的来说,混凝沉淀工艺技术在水处理和废水处理中有着很广泛的应用,具有很多优点,但也存在一些缺点。
在实际运用过程中,需要根据具体情况综合考虑,并选择最合适的处理工艺。
混凝沉淀过滤技术混凝沉淀过滤技术是一种常用的水处理方法,广泛应用于给水、污水处理以及其他工业过程中。
它的作用是将水中的固体颗粒物、悬浮物和胶体颗粒物通过混凝、沉淀和过滤等工艺步骤去除,以提高水的质量和清洁度。
混凝沉淀过滤技术的基本原理是让水中的颗粒物在特定的条件下聚集成较大的团簇,使其重量增大,从而沉淀下来。
通过过滤步骤,将沉淀后的固体颗粒物从水中彻底分离出来。
这种技术的有效性取决于多个因素,包括处理水的性质、液固分离装置的设计和操作参数等。
1. 混凝过程:混凝是将水中的颗粒物聚集在一起形成较大的团簇的过程。
在混凝过程中,通常添加化学混凝剂,如铝盐、铁盐、有机聚合物等。
这些混凝剂与水中的颗粒物发生化学反应或吸附作用,使颗粒物之间产生吸引力,形成较大的团簇。
混凝剂的选择和投加量应根据水的性质和要求确定,以达到最佳的混凝效果。
2. 沉淀过程:沉淀是让聚集在一起的颗粒物在水中自然下沉的过程。
沉淀过程中,可以利用重力、沉淀槽和沉淀池等设备来增加颗粒物的沉降速度和效率。
通过合理设计和操作沉淀设备,可以使沉淀效果达到最佳,并使沉淀后的水具有较高的水质。
3. 过滤过程:过滤是将沉淀后的水与固体颗粒物进行物理上的分离的过程。
过滤步骤通常采用过滤器或滤料来实现。
过滤器可以根据需要选择不同的滤料,如砂滤器、活性炭滤器、微孔滤器等。
过滤器的作用是通过滤料的孔隙和表面吸附,进一步去除水中的固体颗粒物和胶体颗粒物,以获得清洁的水。
混凝沉淀过滤技术的优点是处理效果稳定可靠,对各种水质都有一定的处理能力。
它可以去除水中的悬浮物、胶体物质、铁锰等,从而提高水的透明度和品质。
这种技术操作简单,设备投资和运行成本较低,适用于大多数地区和场合。
然而,混凝沉淀过滤技术也存在一些局限性。
对于某些特殊的固体颗粒物和胶体颗粒物,可能需要较高的混凝剂投加量和更长的处理时间才能达到满意的效果。
一些难以去除的有机物、重金属离子和微生物等也无法完全去除。
混凝沉淀工艺技术的优缺点混凝沉淀工艺是水处理领域常用的一种物理化学处理方法,用于去除水中的悬浮物、胶体物质、颜色和浊度等。
下面是混凝沉淀工艺技术的一些优缺点:优点:1. 混凝沉淀工艺对多种污染物有效:它可以去除水中的悬浮物、胶体物质、色度、浊度等多种污染物,从而改善水的质量。
2. 工艺简单可靠:混凝沉淀工艺相对简单,设备和操作成本较低,易于实施和管理。
对于一些简单的水处理需求,它是一种经济有效的选择。
3. 适应性强:混凝沉淀工艺适用于不同类型的水源和水质条件。
它可以根据实际情况进行调整和优化,以满足特定的水处理要求。
4. 结果可预测性高:经过适当的试验和调整,混凝沉淀工艺可以提供可预测的水处理效果,使操作者能够控制和调整处理过程。
缺点:1. 能耗相对较高:混凝沉淀工艺需要投入一定的能量用于混凝剂的制备和混凝过程。
这可能会导致一定的能源消耗和运营成本。
2. 处理速度较慢:相比一些其他高级水处理技术,混凝沉淀工艺的处理速度相对较慢。
对于处理大量水或有严格时间要求的情况,可能需要更大规模的设备或其他处理方法。
3. 产生污泥和废物:混凝沉淀过程会产生一定数量的污泥和废物物质。
这些废物需要进行处理和处置,可能需要额外的资源和环境管理措施。
4. 对部分污染物的去除效果有限:混凝沉淀工艺对于一些特1/ 2定的污染物,如溶解性物质和微量有机物等,可能效果有限。
对于这些污染物,可能需要结合其他水处理技术进行综合处理。
综合考虑,混凝沉淀工艺是一种经济实用的水处理方法,但在实际应用中需根据水质特点和处理要求综合评估其优缺点,并结合其他技术进行综合水处理。
2/ 2。
混凝沉淀法在污水处理中的应用混凝沉淀法是一种常用的污水处理技术,通过对污水中的悬浮物进行混凝、聚集和沉淀,以达到净化水质的目的。
混凝沉淀法在污水处理中广泛应用,下面将详细介绍该技术的应用及其优势。
一、混凝沉淀法的原理混凝沉淀法基于物理和化学原理,通过添加混凝剂促使污水中的悬浮物汇聚成较大的颗粒,然后利用重力或气浮等方式使其沉淀下来。
该技术的关键步骤包括混凝剂的选择和投加、混凝剂与悬浮物的反应、混合沉淀和污泥处理等。
二、混凝沉淀法的应用领域1.生活污水处理:混凝沉淀法可以用于市政污水处理厂中,对生活污水进行预处理。
通过混凝沉淀,能够有效去除污水中的悬浮物、有机物和部分无机溶解物,降低进一步处理的难度。
2.工业污水处理:混凝沉淀法广泛应用于各类工业污水处理厂中,包括制药、化工、纺织、造纸等行业。
它可以去除工业废水中的悬浮物、重金属、有机物等,达到国家排放标准要求。
3.农村污水处理:农村地区污水处理相对较为薄弱,混凝沉淀法是一种简单、经济的处理方法。
通过混凝沉淀,可以有效去除村庄生活污水中的悬浮物及有机污染物,净化水质,改善环境。
三、混凝沉淀法的优势1.适用性广泛:混凝沉淀法适用于不同类型的污水,包括生活污水、工业废水和农村污水等。
不同领域的污水处理厂都可以采用该技术进行预处理,以提高后续处理设施的效果。
2.处理效果好:混凝剂与污水中的悬浮物发生作用后,悬浮物得到聚集并形成较大颗粒,易于沉淀。
这样可以有效去除污水中的悬浮物、有机物和部分无机溶解物,净化水质,提高水质的处理达标率。
3.操作简单:混凝沉淀法的操作过程相对简单,不需要复杂的设备和技术。
一般只需在污水中适量投加混凝剂,进行混凝沉淀反应,然后再通过沉淀池将沉淀物与清水分离。
操作简便,经济实用。
4.成本较低:与其他高级处理技术相比,混凝沉淀法投资成本较低,适合各种规模的污水处理厂。
同时,该技术不需要大量能耗,可以节约能源和运营成本。
综上所述,混凝沉淀法是一种在污水处理中广泛应用的技术。
混凝沉淀技术在工业废水和生活废水处理中,有一种很重要的物化处理方法:混凝法。
这种水处理方法应用广泛,各种污染指标去除率高。
混凝的目的在于通过向水中投加一些药剂(通常称为混凝剂及助凝剂),混凝剂在水中通过电离和水解等化学作用使水中难以沉淀的胶体颗粒能互相聚合而形成胶体,然后通过胶体的压缩双电层作用、吸附电性中和、吸附架桥作用和沉析物网捕作用等与水体中的杂质和有机物胶体结合形成更大的颗粒絮体,颗粒絮体在水的紊流中彼此易碰撞吸附,形成絮凝体(亦称绒体或矾花)。
絮凝体具有强大吸附力,不仅能吸附悬浮物,还能吸附部分细菌和溶解性物质。
絮凝体通过吸附,体积增大而下沉。
目录混凝沉淀技术 (1)目录 (2)1 混凝法 (3)1.1 混凝法的概念 (3)1.2 混凝的基本原理 (3)1.2.1压缩双电层作用: (4)1.2.2吸附-电中和作用: (6)1.2.3吸附架桥作用: (6)1.2.4絮体的网捕作用: (7)2 几种常见的混凝剂 (8)2.1聚合氯化铝(又称碱式氯化铝PAC) (8)2.2 聚合硫酸铁(PFS) (8)2.2.1聚合硫酸铁使用方法及注意事项 (9)2.2.2聚合硫酸铁使用注意事项 (9)2.3 聚丙烯酰胺(PAM) (10)3影响混凝效果的因素 (10)3.1水质的影响: (10)3.2 水体碱度的影响: (11)3.3 水体pH值的影响: (11)3.4 水温对混凝效果也有影响: (11)3.5 絮凝剂的投加量、性质和结构影响: (12)3.6 水力学条件及混凝反应的时间的影响: (12)4混凝剂的选择 (13)1 混凝法·1.1 混凝法的概念物质在水中存在的形式有三种:离子状态、胶体状态和悬浮状态。
一般认为,颗粒粒径小于1nm的为溶解物质,颗粒粒径在1~100nm的为胶体物质,颗粒粒径在100nm~1mm为悬浮物质。
其中的悬浮物质是肉眼可见物,可以通过自然沉淀法进行去除;溶解物质在水中是离子状态存在的,可以向水中加入一种药剂使之反应生成不溶于水的物质,然后用自然沉淀法去除掉;而胶体物质由于胶粒具有双电层结构而具有稳定性,不能用自然沉淀法去除,需要向水中投加一些药剂,使水中难以沉淀的胶体颗粒脱稳而互相聚合,增加至能自然沉淀的程度而去除。
磁混凝沉淀技术处理污水(二)引言概述
磁混凝沉淀技术是一种有效的污水处理方法,通过利用磁性材料吸附和沉淀污染物物质,将废水中的悬浮固体和溶解性有机物去除,实现水质的净化。
本文将从五个方面详细介绍磁混凝沉淀技术在处理污水中的应用。
正文内容
1. 磁混凝沉淀技术的原理
1.1 磁混凝作用的基本原理
1.2 磁性材料在污水处理中的应用
1.3 磁混凝沉淀技术的工艺流程
2. 磁混凝沉淀技术处理污水的关键参数
2.1 磁混凝剂的选择
2.2 磁性材料的粒径和形状
2.3 混凝剂的使用浓度和投加方式
2.4 混凝时间和混凝温度的控制
2.5 沉淀后的污泥处理方法
3. 磁混凝沉淀技术在不同污水处理工艺中的应用
3.1 磁混凝沉淀技术在生活污水处理中的应用
3.2 磁混凝沉淀技术在工业废水处理中的应用
3.3 磁混凝沉淀技术在农村污水处理中的应用
3.4 磁混凝沉淀技术在海水淡化处理中的应用
3.5 磁混凝沉淀技术在水体净化和修复中的应用
4. 磁混凝沉淀技术的优势和限制
4.1 磁混凝沉淀技术的优势
4.2 磁混凝沉淀技术的限制与挑战
5. 磁混凝沉淀技术的发展前景
5.1 磁混凝沉淀技术的应用前景
5.2 磁混凝沉淀技术的改进方向
5.3 磁混凝沉淀技术的市场前景
总结
磁混凝沉淀技术是一种高效的污水处理方法,其原理和关键参数对于有效去除污染物至关重要。
在不同的污水处理工艺中,磁混凝沉淀技术都有着广泛的应用,但其仍存在一些局限性。
然而,随着科技的不断发展和人们对环境保护意识的增强,磁混凝沉淀技术有着广阔的发展前景,并有望在未来得到更广泛的应用。
混凝沉淀技术在工业废水和生活废水处理中,有一种很重要的物化处理方法:混凝法。
这种水处理方法应用广泛,各种污染指标去除率高。
混凝的目的在于通过向水中投加一些药剂(通常称为混凝剂及助凝剂),混凝剂在水中通过电离和水解等化学作用使水中难以沉淀的胶体颗粒能互相聚合而形成胶体,然后通过胶体的压缩双电层作用、吸附电性中和、吸附架桥作用和沉析物网捕作用等与水体中的杂质和有机物胶体结合形成更大的颗粒絮体,颗粒絮体在水的紊流中彼此易碰撞吸附,形成絮凝体(亦称绒体或矾花)絮凝体具有强大吸附力,不仅能吸附悬浮物,还能吸附部分细菌和溶解性物质。
絮凝体通过吸附,体积增大而下沉。
目录混凝沉淀技术 (1)目录 (2)1混凝法 (3)1.1混凝法的概念 (3)1.2混凝的基本原理 (3)1.2.1压缩双电层作用: (4)1.2.2吸附-电中和作用: (6)1.2.3吸附架桥作用: (6)1.2.4絮体的网捕作用: (7)2几种常见的混凝剂 (8)2.1聚合氯化铝(又称碱式氯化铝PAC) (8)2.2聚合硫酸铁(PFS) (8)2.2.1聚合硫酸铁使用方法及注意事项 (9)2.2.2聚合硫酸铁使用注意事项 (9)2.3 聚丙烯酰胺(PAM) ................................................................................ 1..03影响混凝效果的因素 ................................................................................................ 1..03.1水质的影响:................................................................................................. 1..03.2水体碱度的影响: (11)3.3水体pH 值的影响: (11)3.4水温对混凝效果也有影响: (11)3.5絮凝剂的投加量、性质和结构影响:................................................. 1. 23.6水力学条件及混凝反应的时间的影响:............................................ 1 24混凝剂的选择............................................................................................................... 1..3. 1混凝法·1.1混凝法的概念物质在水中存在的形式有三种:离子状态、胶体状态和悬浮状态。
一般认为,颗粒粒径小于1nm 的为溶解物质,颗粒粒径在1~100nm的为胶体物质,颗粒粒径在100nm~1mm为悬浮物质。
其中的悬浮物质是肉眼可见物,可以通过自然沉淀法进行去除;溶解物质在水中是离子状态存在的,可以向水中加入一种药剂使之反应生成不溶于水的物质,然后用自然沉淀法去除掉;而胶体物质由于胶粒具有双电层结构而具有稳定性,不能用自然沉淀法去除,需要向水中投加一些药剂,使水中难以沉淀的胶体颗粒脱稳而互相聚合,增加至能自然沉淀的程度而去除。
这种通过向水中加入药剂而使胶体脱稳形成沉淀的方法叫混凝法,所投加的药剂叫混凝剂。
1.2混凝的基本原理/废水中的胶体物质具有巨大的比表面积,可以吸附液体介质中的正离子或负离子或极性分子等,使固液两相界面上的电荷呈不平衡分布,在界面两边产生电位差,这就是胶体微粒的双电层结构。
形成双电层结构的微粒的整个胶体结构就称为胶团,整个胶团是电中性的。
胶团中心是带有电荷的固体微粒本身,称为胶核。
胶核所带电荷的符号就是胶体所带电荷的符号。
胶体微粒之所以能在水中保持稳定性,原因在于胶体粒子之间的静电斥力(胶体常常带有同种电荷而具有斥力)、胶体表面的水化作用及胶粒之间相互吸引的范德华力共同作用。
胶体微粒带电越多,其电位就越大,带电荷的胶粒和反离子与周围水分子发生水化作用越大,水化壳也越厚,越具有稳定性。
向水中投加药剂,使胶体失去稳定性而形成微小颗粒,而后这些均匀分散的微小颗粒再进一步形成较大的颗粒,从液体中沉淀下来,这个过程称为凝聚。
凝聚有以下几方面的作用:1.2.1压缩双电层作用:水中粘土胶团含有吸附层和扩散层,合称双电层。
双电层中正离子浓度由内向外逐渐降低,最后与水中的正离子浓度大致相等。
因此双电层有一定的厚度。
如向水中加入大量电解质,则其正离子就会挤入扩散层而使之变薄;进而挤入吸附层,使胶核表面的负电性降低。
这种作用称压缩双电层。
胶体双电层结构)(压缩双电层) 由于离子的扩散作用,水中的反离子进入胶体的扩散层和吸附层,从 而为保持胶体电中性所需的扩散层中的正离子的减少,扩散层厚度变薄, 压缩了扩散层,于是 ζ 电位降低,排斥势能 E R 也随之降低,排斥能峰 Emax 也会减小甚至消失。
当 ζ 电位下降至一定程度,使 Emax = 0,胶粒发生 聚集,此时的电位成为临界电位; 当 ζ 电位降低至 ζ= 0时称为等电状态, 此时排斥势能 E R 消失,则排斥能峰 Emax 也消失。
简而言之,压缩双电层作用机理:通过加入电解质压缩扩散层而导致 胶粒脱稳凝聚的作用机理。
脱稳:胶粒因 ζ 电位降低而失去稳定性的过程。
凝聚:脱稳胶体相互凝结形成微小絮凝体的过程。
1.2.2 吸附- 电中和作用:对于混凝剂投量过多而使胶体重新稳定的现象,可以用电中和作用机 理解释:若混凝剂投加量过多,会使水中原来带负电荷的胶体变化为正电 荷的胶体,这是因为胶核表面吸附了过多正离子的结果,从而使胶体又重 新稳定。
若混凝剂投加量适中,带有正电荷的高分子物质或高聚合离子吸附了带负电荷的胶体离子以后,就产生电性中和作用,从而导致胶粒ζ 电位的降低,并达到临界电位,再通过吸附作用,使胶体达到脱稳凝聚的目的压缩双电层和吸附- 电中和的对比情况:吸附架桥作用:对高分子絮凝剂,有的表面不带电,为非离子型,有的表面带负电荷,仍然能对负电荷的胶体杂质起混凝作用,这个现象可用吸附架桥作用机理来解释。
高分子絮凝剂为线性分子、网状结构,其中碳碳单键一般情况下是可以旋转的,聚合度较大,即主链较长,在水介质中主链是弯曲的,其表面积较大,吸附能力强。
在主链的各个部位吸附了很多固体颗粒,就象是为固体颗粒架了许多桥梁,让这些固体颗粒相对地聚集起来形成大的颗粒。
(高分子物质或高聚合物在不同情况下对胶粒的吸附架桥作用)1.2.4 絮体的网捕作用:无机混凝剂(如铝盐或铁盐)投量很多时,会在水中形成高聚合度的多羟基化合物的絮体或大量氢氧化物沉淀,形成一张絮凝网状结构,在沉淀过程中可以吸附、卷带水中胶体颗粒共同沉淀,此过程称为絮凝剂的网捕作用机理,是一种机械作用。
对于低浊度水,可以利用这个作用机理,在水中投加大量混凝剂,以达到去除胶体杂质的目的。
2几种常见的混凝剂常用的混凝剂有无机絮凝剂、有机高分子絮凝剂、生物絮凝剂等。
无机絮凝剂主要产品有硫酸铝、聚合氯化铝、三氯化铁、硫酸亚铁和聚合硫酸铁、聚合硅酸铝、聚合硅酸铁、聚合氯化铝铁、聚合硅酸铝铁和聚合硫酸氯化铝等。
有机高分子絮凝剂以聚丙烯酰胺类产品为代表,生物絮凝剂是一类由微生物产生的具有絮凝能力的高分子有机物,主要有蛋白质、黏多糖、纤维素和核酸。
下面简单介绍几种常用的混凝剂。
2.1聚合氯化铝(又称碱式氯化铝PAC )聚合氯化铝是应用最广泛的一种絮凝剂,它在常温下化学性能稳定,久储不变质,固体裸露易吸潮,但不变质,无毒无害,溶液为无色至黄褐色透明状液体,聚合氯化铝易溶于水并易发生水解,水解过程中伴随有电化学、凝聚、吸附、沉淀等物理化学现象。
相对于硫酸铝而言,聚合氯化铝混凝效果随温度变化较小,形成絮体的速度较快,絮体颗粒和相对密度都较大,沉淀性能好,投加量较小。
聚合氯化铝适宜的PH值范围在5-9 之间,最佳处理范围在6-8 之间。
PAC处理水体适应力强,反应快、耗药少、制水成本低,矾花大,沉降快,滤性好,可提高设备利用率。
但是PAC过量投加一般不会出现胶体的再稳定现象。
聚合氯化铝水溶液呈弱酸性,PH值在5.5-6.0 ,对设备的腐蚀性很小。
2.2聚合硫酸铁(PFS)聚合硫酸铁简称固体(聚铁),形态淡黄色无定型粉状固体,极易溶于水,水溶液随时间有浅黄色变成红棕色透明溶液。
在产品的储存的使用过程中,聚合硫酸铁对设备基本无腐蚀作用。
聚合硫酸铁投药量低,而且基本不用控制液体的PH值。
与铝盐相比,聚合硫酸铁絮凝速度更快,形成的矾花大,沉降速度更快;另外,它还具有脱色、除重金属离子、降低水中COD、BOD浓度的作用;但是其出水容易显黄色。
2.2.1聚合硫酸铁使用方法及注意事项因原水性质各异,应根据不同情况,现场调试或作烧杯试验,取得最佳使用条件和最佳投药量以达到最好的处理效果。
1)使用前,将本产品按一定浓度(10-30%)投入溶矾池,注入自来水搅拌使之充分水解,静置至呈红棕色液体,再兑水稀释到所需浓度投加混凝。
水厂亦可配成2-5%直接投加,工业废水处理直接配成5-10%投加。
2)投加量的确定,根据原水性质可通过生产调试或烧杯实验视矾花形成适量而定,制水厂可以原用的其它药剂量作为参考,在同等条件下本产品与固体聚合氯化铝用量大体相当,是固体硫酸铝用量的1/3-1/4 。
如果原用的是液体产品,可根据相应药剂浓度计算酌定。
大致按重量比1:3 而定。
3)使用时,将上述配制好的药液,泵入计量槽,通过计量投加药液与原水混凝。
4)一般当日配制当日使用,配药需要自来水,稍有沉淀物属正常现象。
2.2.2聚合硫酸铁使用注意事项(1)凝聚阶段:是药液注入混凝池与原水快速混凝在极短时间内形成微细矾花的过程,此时水体变得更加浑浊,它要求水流能产生激烈的湍流。
(2)絮凝阶段:是矾花成长变粗的过程,要求适当的湍流程度和足够的停留时间(10-15min ),至后期可观察到大量矾花聚集缓缓下沉,形成表面清晰层。
(3)沉降阶段:它是在沉降池中进行的絮凝物沉降过程,要求水流缓慢,为提高效率一般采用斜管(板式)沉降池(最好采用气浮法分离絮凝物),大量的粗大矾花被斜管(板)壁阻挡而沉积于池底,上层水为澄清水,剩下的粒径小、密度小的矾花一边缓缓下降,一边继续相互碰撞结大,至后期余浊基本不变。
2.3聚丙烯酰胺(PAM )聚丙烯酰胺按离子特殊性分类,可分为阳离子型、阴离子型、非离子型和两性酰胺四种。
阳离子酰胺主要用于水处理,阴离子酰胺主要用于造纸、水处理,两性酰胺主要用于污泥脱水处理。