平面向量共线的坐标表示
- 格式:doc
- 大小:87.50 KB
- 文档页数:5
2.3.4平面向量共线的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法.知识点 平面向量共线的坐标表示1.设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a ,b 共线,当且仅当存在实数λ,使a =λb . 2.如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线.注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.1.若向量a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则x 1y 1=x 2y 2.( × )提示 当y 1y 2=0时不成立.2.若向量a =(x 1,y 1),b =(x 2,y 2),且x 1y 1-x 2y 2=0,则a ∥b .( × ) 3.若向量a =(x 1,y 1),b =(x 2,y 2),且x 1y 2-x 2y 1=0,则a ∥b .( √ )4.向量a=(1,2)与向量b=(4,8)共线.(√)题型一向量共线的判定例1(1)下列各组向量中,共线的是()A.a=(-2,3),b=(4,6)B.a=(2,3),b=(3,2)C.a=(1,-2),b=(7,14)D.a=(-3,2),b=(6,-4)考点平面向量共线的坐标表示题点向量共线的判定答案 D解析A选项,(-2)×6-3×4=-24≠0,∴a与b不平行;B选项,2×2-3×3=4-9=-5≠0,∴a与b不平行;C选项,1×14-(-2)×7=28≠0,∴a与b不平行;D选项,(-3)×(-4)-2×6=12-12=0,∴a∥b,故选D.(2)在下列向量组中,可以把向量a=(-3,7)表示出来的是() A.e1=(0,1),e2=(0,-2)B.e1=(1,5),e2=(-2,-10)C.e1=(-5,3),e2=(-2,1)D.e1=(7,8),e2=(-7,-8)考点 平面向量共线的坐标表示 题点 向量共线的判定 答案 C解析 平面内不共线的两个向量可以作基底,用它能表示此平面内的任何向量,因为A ,B ,D 都是两个共线向量,而C 不共线,故C 可以把向量a =(-3,7)表示出来.反思感悟 向量共线的判定题目应充分利用向量共线定理或向量共线的坐标条件进行判断,特别是利用向量共线的坐标条件进行判断时,要注意坐标之间的搭配. 跟踪训练1 下列各组向量中,能作为平面内所有向量基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 B解析 A 选项,∵e 1=0,e 1∥e 2,∴不可以作为基底;B 选项,∵-1×7-2×5=-17≠0,∴e 1与e 2不共线,故可以作为基底;C 选项,3×10-5×6=0,e 1∥e 2,故不可以作为基底;D 选项,2×⎝⎛⎭⎫-34-(-3)×12=0, ∴e 1∥e 2,不可以作为基底. 故选B.题型二 三点共线问题例2 已知A (1,-3),B ⎝⎛⎭⎫8,12,C (9,1),求证:A ,B ,C 三点共线. 考点 平面向量共线的坐标表示 题点 三点共线的判定与证明 证明 AB →=⎝⎛⎭⎫8-1,12+3=⎝⎛⎭⎫7,72, AC →=(9-1,1+3)=(8,4), ∵7×4-72×8=0,∴AB →∥AC →,且AB ,AC →有公共点A , ∴A ,B ,C 三点共线.反思感悟 (1)三点共线问题的实质是向量共线问题,两个向量共线只需满足方向相同或相反,两个向量共线与两个向量平行是一致的,利用向量平行证明三点共线需分两步完成:①证明向量平行.②证明两个向量有公共点.(2)若A ,B ,C 三点共线,即由这三个点组成的任意两个向量共线.跟踪训练2 已知OA →=(k ,2),OB →=(1,2k ),OC →=(1-k ,-1),且相异三点A ,B ,C 共线,则实数k =________.考点 向量共线的坐标表示的应用 题点 利用三点共线求参数 答案 -14解析 AB →=OB →-OA →=(1-k,2k -2), AC →=OC →-OA →=(1-2k ,-3), 由题意可知AB →∥AC →,所以(-3)×(1-k )-(2k -2)(1-2k )=0, 解得k =-14(k =1不合题意舍去).由向量共线求参数的值典例 已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?考点 向量共线的坐标表示的应用 题点 利用向量共线求参数解 方法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4), ∵k a +b 与a -3b 平行,∴(k -3)×(-4)-10(2k +2)=0,解得k =-13.方法二 由方法一知k a +b =(k -3,2k +2), a -3b =(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ, 使k a +b =λ(a -3b ). 由(k -3,2k +2)=λ(10,-4).得⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13.引申探究1.若本例条件不变,判断当k a +b 与a -3b 平行时,它们是同向还是反向? 解 由本例知当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),∵λ=-13<0,∴k a +b 与a -3b 反向.2.在本例中已知条件不变,若问题改为“当k 为何值时,a +k b 与3a -b 平行?”,又如何求k 的值?解 a +k b =(1,2)+k (-3,2)=(1-3k ,2+2k ), 3a -b =3(1,2)-(-3,2)=(6,4), ∵a +k b 与3a -b 平行, ∴(1-3k )×4-(2+2k )×6=0,解得k=-13.[素养评析](1)由向量共线求参数的值的方法(2)本题利用向量共线的坐标表示得到有关参数的方程(组),再解得参数的值,这正是数学核心素养数学运算的体现.1.已知向量a=(2,-1),b=(x-1,2),若a∥b,则实数x的值为()A.2 B.-2 C.3 D.-3考点向量共线的坐标表示的应用题点利用向量共线求参数答案 D解析因为a∥b,所以2×2-(-1)×(x-1)=0,得x=-3.2.与a =(12,5)平行的单位向量为( ) A.⎝⎛⎭⎫1213,-513 B.⎝⎛⎭⎫-1213,-513 C.⎝⎛⎭⎫1213,513或⎝⎛⎭⎫-1213,-513 D.⎝⎛⎭⎫±1213,±513 考点 向量共线的坐标表示的应用 题点 已知向量共线求向量的坐标 答案 C解析 设与a 平行的单位向量为e =(x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=1,12y -5x =0,∴⎩⎨⎧x =1213,y =513或⎩⎨⎧x =-1213,y =-513.3.若a =(3,cos α),b =(3,sin α),且a ∥b ,则锐角α=______. 考点 向量共线的坐标表示的应用 题点 已知向量共线求参数 答案 π3解析 ∵a =(3,cos α),b =(3,sin α),a ∥b , ∴3sin α-3cos α=0,即tan α=3, 又α为锐角,故α=π3.4.已知三点A (1,2),B (2,4),C (3,m )共线,则m 的值为________. 考点 向量共线的坐标表示的应用 题点 利用三点共线求参数 答案 6解析 AB →=(2,4)-(1,2)=(1,2). AC →=(3,m )-(1,2)=(2,m -2).∵A ,B ,C 三点共线,即向量AB →,AC →共线, ∴1×(m -2)-2×2=0,∴m =6.5.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.考点 向量共线的坐标表示的应用题点 利用向量共线求参数 答案 (2,4)解析 ∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).1.两个向量共线条件的表示方法 已知a =(x 1,y 1),b =(x 2,y 2), (1)当b ≠0,a =λb . (2)x 1y 2-x 2y 1=0.(3)当x 2y 2≠0时,x 1x 2=y 1y 2,即两向量的相应坐标成比例.2.向量共线的坐标表示的应用(1)已知两个向量的坐标判定两向量共线.联系平面几何平行、共线知识,可以证明三点共线、直线平行等几何问题.要注意区分向量的共线、平行与几何中的共线、平行.(2)已知两个向量共线,求点或向量的坐标,求参数的值,求轨迹方程.要注意方程思想的应用,向量共线的条件,向量相等的条件等都可作为列方程的依据.一、选择题1.下列向量中,与向量c =(2,3)不共线的一个向量p 等于( ) A .(5,4) B.⎝⎛⎭⎫1,32 C.⎝⎛⎭⎫23,1D.⎝⎛⎭⎫13,12考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 A解析 因为向量c =(2,3),对于A,2×4-3×5=-7≠0,所以A 中向量与c 不共线. 2.下列各组向量中,能作为表示它们所在平面内所有向量的基底的是( ) A .e 1=(2,2),e 2=(1,1) B .e 1=(1,-2),e 2=(4,-8) C .e 1=(1,0),e 2=(0,-1) D .e 1=(1,-2),e 2=⎝⎛⎭⎫-12,1 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 C解析 选项C 中,e 1,e 2不共线,可作为一组基底.3.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 D4.(2018·云南昆明联考)如果向量a =(k ,1),b =(4,k )共线且方向相反,则k 等于( )A .±2B .-2C .2D .0 考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 B解析 ∵a 与b 共线且方向相反,∴存在实数λ(λ<0),使得b =λa ,即(4,k )=λ(k ,1)=(λk ,λ),∴⎩⎪⎨⎪⎧ λk =4,k =λ, 解得⎩⎪⎨⎪⎧ k =-2,λ=-2或⎩⎪⎨⎪⎧k =2,λ=2(舍去). 5.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则m n等于( ) A .-2 B .2 C .-12 D.12考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 C解析 由题意得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),∵(m a +n b )∥(a -2b ),∴-(2m -n )-4(3m +2n )=0,∴m n =-12,故选C. 6.已知向量a =(x,3),b =(-3,x ),则下列叙述中,正确的个数是( )①存在实数x ,使a ∥b ;②存在实数x ,使(a +b )∥a ;③存在实数x ,m ,使(m a +b )∥a ;④存在实数x ,m ,使(m a +b )∥b .A .0B .1C .2D .3考点 平面向量共线的坐标表示题点 向量共线的判定与证明答案 B解析 只有④正确,可令m =0,则m a +b =b ,无论x 为何值,都有b ∥b .7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则实数k 应满足的条件是( )A .k =-2B .k =12C .k =1D .k =-1 考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 C解析 因为A ,B ,C 三点不能构成三角形,则A ,B ,C 三点共线,则AB →∥AC →,又AB →=OB →-OA →=(1,2),AC →=OC →-OA →=(k ,k +1),所以2k -(k +1)=0,即k =1.8.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( )A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4) 考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 B解析 由题意,得m +4=0,所以m =-4.所以a =(1,2),b =(-2,-4),则2a +3b =2(1,2)+3(-2,-4)=(-4,-8).二、填空题9.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =______.考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 -6解析 因为a ∥b ,所以由(-2)×m -4×3=0,解得m =-6.10.已知AB →=(6,1),BC →=(4,k ),CD →=(2,1).若A ,C ,D 三点共线,则k =________.考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 4解析 因为AB →=(6,1),BC →=(4,k ),CD →=(2,1),所以AC →=AB →+BC →=(10,k +1).又A ,C ,D 三点共线,所以AC →∥CD →,所以10×1-2(k +1)=0,解得k =4.11.已知点A (4,0),B (4,4),C (2,6),O (0,0),则AC 与OB 的交点P 的坐标为________. 考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 (3,3)解析 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34, 所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3). 12.设OA →=(2,-1),OB →=(3,0),OC →=(m ,3),若A ,B ,C 三点能构成三角形,则实数m 的取值范围是________.考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 {m |m ∈R 且m ≠6}解析 ∵A ,B ,C 三点能构成三角形,∴AB →,AC →不共线.又∵AB →=(1,1),AC →=(m -2,4),∴1×4-1×(m -2)≠0.解得m ≠6.∴m 的取值范围是{m |m ∈R 且m ≠6}.三、解答题13.平面上有A (2,-1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC 延长至E ,使|CE →|=14|ED →|,求点E 的坐标. 解 ∵AC →=12BC →,∴A 为BC 的中点,AC →=BA →, 设C (x C ,y C ),则(x C -2,y C +1)=(1,-5),∴x C =3,y C =-6,∴C 点的坐标为(3,-6),又|CE →|=14|ED →|,且E 在DC 的延长线上, ∴CE →=-14ED →,设E (x ,y ), 则(x -3,y +6)=-14(4-x ,-3-y ), 得⎩⎨⎧ x -3=-14(4-x ),y +6=-14(-3-y ),解得⎩⎪⎨⎪⎧x =83,y =-7. 故点E 的坐标是⎝⎛⎭⎫83,-7.14.如图所示,已知在△AOB 中,A (0,5),O (0,0),B (4,3),OC →=14OA →,OD →=12OB →,AD 与BC相交于点M ,求点M 的坐标.考点 向量共线的坐标表示的应用 题点 利用向量共线求点的坐标解 ∵OC →=14OA →=14(0,5)=⎝⎛⎭⎫0,54, ∴C ⎝⎛⎭⎫0,54. ∵OD →=12OB →=12(4,3)=⎝⎛⎭⎫2,32,∴D ⎝⎛⎭⎫2,32. 设M (x ,y ),则AM →=(x ,y -5),AD →=⎝⎛⎭⎫2-0,32-5=⎝⎛⎭⎫2,-72. ∵AM →∥AD →,∴-72x -2(y -5)=0,即7x +4y =20.① 又∵CM →=⎝⎛⎭⎫x ,y -54,CB →=⎝⎛⎭⎫4,74,CM →∥CB →, ∴74x -4⎝⎛⎭⎫y -54=0, 即7x -16y =-20.②联立①②,解得x =127,y =2, 故点M 的坐标为⎝⎛⎭⎫127,2.。
必修42.3.4 平面向量共线的坐标表示【学习目标】1.能自己推导出平面向量共线的坐标表示,能对该结论熟练运用、解决实际问题;2.知道利用向量推导定比分点公式的推导方法,并运用此方法求解一些问题;3.培养同学们在解决问题过程中见“数”思“形”、以“形”助“数”的思维习惯.【学习重点】平面向量共线的坐标表示及运用 【难点提示】定比分点公式的推导与理解.【学法提示】1.请同学们课前将学案与教材98102P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备前面我们学习了向量有关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白处,同时思考下列问题:1.平面向量的坐标运算公式,若),(11y x a =,),(22y x b = ,则________a b +=;_________a b -=;______()a R λλ=∈;2.向量共线定理:向量)(0≠a a 与b 共线 有 一个实数λ,使_______; 3.若点),(11y x A ,),(22y x B ,则________________________=AB4.令),(11y x a = ,),(22y x b = ,则⇔=⇔=),(),(2211y x y x b a___________二、学习探究 1.向量共线的坐标表示在“学习准备中”我们已经回顾了向量共线定理和平面向量坐标表示及运算,那么,我们自然要想这两者有怎样的联系呢?向量共线定理能否用坐标来表示呢?请同学们运用前面所学知识,亲自动手推导一下看!自己独立思考后,请阅读教材,在归纳总结.归纳概括 向量共线的坐标表示: 设),(11y x a =,),(22y x b = ,且)(0 ≠b ,则由向量共线定理可知,a//⇔≠)0( b b _________________________.快乐体验 (1)若向量a=(4,2)、b =(6,y)且a b ,求实数y 的值.解:(2)教材P100页练习第4题,可以作在书上. 解:同学们通过探究、归纳、体验,对向量共线的坐标表示有哪些感悟,能对此进行挖掘拓展吗?挖掘拓展 (1)(2 (3)向量共线有几种表现形式与判定方法?(链接1) 2.定比分点公式联想思考 现有这样一个问题:如图2.3.4-1已知点 111222(,)(,)P x y P x y 、,有一个人在直线12PP 上从1P 点开始走,当走到P 点时,他测得 12PP PP λ= (其中λ为给 定的常数),现在他想知道所在P 点的坐标,你能帮助他完 成这个心愿吗?温馨提示 (1)这时点P 的坐标能确定吗?若能确定,现在那些是已知,需要求什么? (2)如何利用三个条件12PP PP λ=、111222(,)(,)Px y P x y 、,是否需要设点P 的坐标 (,)x y ,在看运用那些知识可将三个点的坐标与已知式联系起来,从而用12P P 、的坐标及λ表示出,x y .推导过程归纳结论 若111222(,)(,)P x y P x y 、、(,)P x y ,当12PP PP λ=(其中λ为常数),则: _________,__________,x y ==这时我们把点P 叫做有向线段12PP 的定比分点,常数λ叫做点P 分有向线段12PP 的定比分值.快乐体验 教材P101页练习的5、6、7. 解:同学们通过探究、推导、归纳、体验,对定比分点坐标公式及相关内容有哪些感悟,你能对此进行挖掘拓展吗?挖掘拓展 (1)在关系式12PP PP λ=中,λ可以取那些实数?λ的取值与点P 的位置有何关系?(链接2)(2)该公式有何特征?有几个量?如何记忆?如何使用?使用范围是什么? (3)当1λ=时,点P 是线段12PP 的 点,此时,_____,_____,x y ==(链接3) (4)若点G 是ABC ∆的重心,),(11y x A 、),(22y x B 、33(,)C x y 、(,)G x y ,请用A 、B 、C 三点的坐标表示x y 、,有_________,__________x y ==(链接4).三、典例赏析例1.教材P98页例7,请同学们先独立完成后在对比教材的解答. 解:解后反思 (1)该题的题型怎样?你的求解与教材一致吗?求解时运用了哪些知识与思想方法?求解的关键在哪里?还有方法吗?(2)向量平行、向量共线、三点共线、直线平行有什么区别与联系?变式练习 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行? 并确定此时它们是同向还是反向.解:例2.设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2),当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标. 解:解后反思 该题的题型怎样?求解时运用了哪些知识与思想方法?求解的关键在哪里?有易错点吗?若点P 为线段P 1P 2的一个四分点,如何求解呢?变式练习 如图2.3.4-2,已知ABC ∆中,A(0,5),O (0,0),B (4,3),14OC O A =,12OD OB =,AD 与BC 相交于点M ,求点M 的坐标.解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法, 你的任务完成了吗?你讲的怎样?你提问了吗?我们的学习目标达到了吗?如:向量共线的坐标表示、有向线段定比分点公式等都理解与掌握了吗?并能灵活运用了吗?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.本节课见到那些题型,都能求解了吗?你对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与课堂美在哪里吗?五、学习评价1. 若A(x,-1),B(1,3),C(2,5)三点共线,则x 的值为( ) A-3 B-1 C1 D32. 若j i 2+=, j y i x )4(3-+-=)( (其中j i,的方向分别与x 、y 轴正方向相同且为单位向量) AB 与DC 共线,则x 、y 的值可能分别为( )A1,2 B2,2 C3,2 D2,43. 已知(x,1)b ,)1,2(==a ,若b a b a -+22与平行,则x的值为4. 已知,平行四边形ABCD 的三个顶点的坐标分别为A (2,1),B (-1,3),C (3,4),则第四个顶点D 的坐标是_____________5. 已知A 、B 、C 、D 四点坐标分别为A(1,0),B(4,3),C(2,4),D(0,2),试证明:四边形ABCD 是梯形证:6.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),,31=31=, 求证:EF ∥证:7.已知三点A (0,8),B (-4,0),C(5,-3),D点内分AB 的比为1∶3,E 点在BC 边上,且使△BDE 的面积是△ABC 面积的一半,求DE 中点的坐标. 解:8.教材P101习题2.3B 组第3、4题.◆承前启后 现在我们学习了向量的线性运算与坐标运算等知识,那么我们自然是否应想到向量还有其它的运算方式呢?如:向量有乘法与除法吗?【学习链接】链接1.向量共线从“形”上有平行与在同一直线上,从“式”上有线性关系与坐标表示. 判定方法三种:几何法、线性法、坐标法.链接2. P 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有四种情况:0λ=时,点P 与1P 重合;λ>0(内分) (外分) (λ<-1) ( 外分) (-1<λ<0)链接3. 当1λ=时,P 为线段12PP 的中点,121222x x y y x ++==、y 叫中点坐标公式;链接4.若G 是ABC ∆的重心,),(11y x A 、),(22y x B 、33(,)C x y 、(,)G x y ,则: 1233x x x x ++=,1233y y y y ++=叫三角形的重心坐标公式.。
授课主题平面向量共线的坐标表示 教学目标 1.理解向量共线定理.2.掌握两个向量平行(共线)的坐标表示和会应用其求解有关两向量共线问题.教学内容1.向量共线定理1)向量a 与非零向量b 共线的条件是当且仅当存在实数λ,使a =λb2)为什么要规定b 为非零向量?答:若向量b =0,则由向量a ,b 共线得a =λb =0,但向量a 不一定为零向量.2.两个向量平行(共线)的坐标表示1)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 等价于x 1y 2-x 2y 1=02)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1x 2=y 1y 2要满足什么条件? 答:a ∥b ⇔x 1x 2=y 1y 2的适用范围是x 2≠0,y 2≠0,这与要求b 是非零向量是等价的.题型一 平面向量共线的坐标运算例1 若向量a =()2,-1,b =()x ,2 ,c =()-3,y ,且a ∥b ∥c ,求x ,y 的值.分析:由平面向量共线的坐标运算可得.解析:∵a ∥b ∥c ,由向量共线的坐标表示得∴⎩⎪⎨⎪⎧ 4+x =0,2y -3=0,解得⎩⎪⎨⎪⎧ x =-4,y =32.点评:记住已知a =()x 1,y 1,b =()x 2,y 2,则a ∥b ⇔x 1y 2-x 2y 1=0.巩 固 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行?并确定此时它们是同向还是反向.分析:先求出向量k a -b 与a +3b 的坐标,然后根据向量共线条件可求解.解析:∵ a =(1,0),b =(2,1),∴k a -b =k ()1,0-()2,1=()k -2,-1,a +3b =()1,0+3()2,1=()7,3.∵向量k a -b 与a +3b 平行,∴3()k -2+7=0,解得k =-13. ∵k =-13,k a -b =-13(a +3b ), 所以向量k a -b 与a +3b 反向.题型二 平面向量共线的证明例2 已知A (-1,-1),B (1,3),C (2,5),求证A 、B 、C 三点共线.分析:证向量AB →与AC →共线.证明:∵ A (-1,-1),B (1,3),C (2,5),∴AB →=()2,4,AC →=()3,6.∴AB →=23AC →. ∵AB →,AC →有公共点A ,∴A 、B 、C 三点共线.点评: 通过证有公共点的两向量共线,从而证得三点共线.巩 固 已知OA →=()k ,12,OB →=()4,5,OC →=()10,k ,当k 为何值时,A 、B 、C 三点共线?分析:由A 、B 、C 三点共线,可得AB →与BC →共线.解析:∵OA →=()k ,12,OB →=()4,5,OC →=()10,k ,∴AB →=()4-k ,-7,BC →=()6,k -5.∵A 、B 、C 三点共线,∴()4-k ()k -5+42=0.解得k =11或k =-2.题型三 用共线向量的性质求坐标例3 若M ()3,-2,N ()-5,-1, 且 MP →=12MN →,则P 点的坐标是________. 分析:设P ()x ,y ,由MP →=12MN →可求解. 解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=12MN →,∴()x -3,y +2=12()-8,1=⎝⎛⎭⎫-4,12⇒x =-1,y =-32. ∴P ⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32 点评:把求点的坐标转化为向量共线问题.巩 固 若M ()3,-2,N ()-5,-1,且MP →=-2MN → , 则P 点的坐标是________.解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=-2MN →,∴()x -3,y +2=-2()-8,1=(16,-2).解得P ()19,-4.答案:()19,-4题型四 共线向量的综合应用例4 如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线.分析:把向量AB →=i -2j 和BC →=i +m j 转化为坐标表示,再根据向量共线条件求解.解析:∵AB →=i -2j ,BC →=i +m j ,∴AB →=()1,-2,BC →=()1,m .∵ A 、B 、C 三点共线,即向量AB →与BC →共线,∴m +2=0,解得m =-2.点评:向量共线的几何表示与代数表示形式不同但实质一样,在解决问题时注意选择使用.巩 固 已知A ()1,1,B ()3,-1,C ()a ,b .(1)若A 、B 、C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解析:(1)AB →=()2,-2,AC →=()a -1,b -1,∵A 、B 、C 三点共线,∴AB →与AC →共线.∴2()b -1+2()a -1=0,即a +b =2.(2)∵AC →=2AB →,∴()a -1,b -1=2()2,-2⇒a =5,b =-3.∴C ()5,-3.1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A .6B .5C .7D .8答案:C2.已知点M 是线段AB 上的一点,点P 是平面上任意一点,PM →=35P A →+25PB →,若AM →=λMB →,则λ等于( ) A.35 B.25 C.32 D.23解析:用P A →,PB →表示向量AM →,MB →.∵AM →=AP →+PM →=AP →+35P A →+25PB →=-25P A →+25PB →,MB →=MP →+PB →=-PM →+PB →=-35P A →+25PB →+PB →=-35P A →+35PB →,∴AM →=23AB →. 答案:D3.已知▱ABCD 四个顶点的坐标为A (5,7),B (3,x ),C (2,3),D (4,x ),则x =__________.答案:54.已知两点A (1,3)、B (4,-1),则与向量AB →同向的单位向量是( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45. 答案:A5.已知A ()-2,-3,B ()2,1,C ()1,4,D ()-7,-4,判断AB →与CD →是否共线.解析:∵AB →=(4,4),CD →=(-8,-8),∴AB →=-12CD →. ∴AB →与CD →共线.6.已知A (-1,-1),B (1,3),C (1,5) ,D (2,7) ,向量AB →与CD →平行吗?直线AB 平行于直线CD 吗?解析:AB →=()2,4,CD →=()1,2,AB →=2CD →,所以向量AB →与CD →平行,即直线AB 平行于直线CD .7.已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ).(1)求实数x 的值,使向量AB →与CD →共线.解析:AB →=()x ,1,CD →=()4,x ,∵向量AB →与CD →共线,∴x 2-4=0,解得x =±2.(2)当向量AB →与CD →共线时,点A ,B ,C ,D 是否在一条直线上?解析:x =2时,不在同一条直线上;x =-2时,在同一条直线x +2y +2=0上.8.△AB C 的顶点A 、B 、C 分别对应向量a =()x 1,y 1,b =()x 2,y 2,c =()x 3,y 3其重心为G ,对应的向量为g =()x 0,y 0.求证:x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 证明:设AD 为BC 边的中线,O 为坐标原点.则OG →=OA →+AG →=OA →+23AD →=OA →+13()AB →+AC →=OA →+13()OB →-OA →+OC →-OA →=13()OA →+OB →+OC →. ∵A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),G (x 0,y 0)∴x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 9.已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.分析:(1)只需证明a ·b =0即可;(2)由已知条件得到cos α+cos β,sin α+sin β的值,然后再利用诱导公式得到α,β间的关系即可求得α,β的值.(1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解析:因为a +b =(co s α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0, sin α+sin β=1, 由此得,cos α=cos ()π-β,由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.。
课时跟踪检测(二十一) 平面向量共线的坐标表示
层级一 学业水平达标
1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )
A .e 1=(0,0),e 2=(1,-2)
B .e 1=(-1,2),e 2=(5,7)
C .e 1=(3,5),e 2=(6,10)
D .e 1=(2,-3),e 2=⎝⎛⎭⎫12
,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12
e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.
2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ―→,则实数λ的值为( )
A .-23
B.32
C.23 D .-32
解析:选C 根据A ,B 两点的坐标,可得AB ―→=(3,1),
∵a ∥AB ―→,∴2×1-3λ=0,解得λ=23
,故选C. 3.已知A (2,-1),B (3,1),则与AB ―→平行且方向相反的向量a 是( )
A .(2,1)
B .(-6,-3)
C .(-1,2)
D .(-4,-8)
解析:选D AB ―→=(1,2),向量(2,1),(-6,-3),(-1,2)与(1,2)不平行;(-4,-8)
与(1,2)平行且方向相反.
4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )
A .-3
B .2
C .4
D .-6
解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.
5.已知a =(-2,1-cos θ),b =⎝
⎛⎭⎫1+cos θ,-14,且a ∥b ,则锐角θ等于( ) A .45°
B .30°
C .60°
D .15°
解析:选A 由a ∥b ,得-2×⎝⎛⎭⎫-14-(1-cos θ)(1+cos θ)=0,即12
=1-cos 2θ=sin 2θ,得sin θ=±22,又θ为锐角,∴sin θ=22
,θ=45°,故选A. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.
解析:∵向量a =(3x -1,4)与b =(1,2)共线,
∴2(3x -1)-4×1=0,解得x =1.
答案:1
7.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________.
解析:AB ―→=(x +1,-6),AC ―→=(4,-1),
∵AB ―→∥AC ―→,∴-(x +1)+24=0,∴x =23.
答案:23
8.已知向量a =(1,2),b =(1,0),c =(3,4),若λ为实数,(a +λb )∥c ,则λ的值为________. 解析:由题意知,a +λb =(1+λ,2),c =(3,4).因为(a +λb )∥c ,所以4(1+λ)-2×3=
0,解得λ=12
. 答案:12
9.如图所示,在平行四边形ABCD 中,A (0,0),B (3,1),C (4,3),
D (1,2),M ,N 分别为DC ,AB 的中点,求AM ―→,CN ―→的坐标,并判
断AM ―→,CN ―→是否共线.
解:由中点坐标公式可得M (2.5,2.5),N (1.5,0.5),
∴AM ―→=(2.5,2.5),CN ―→=(-2.5,-2.5),
又2.5×(-2.5)-2.5×(-2.5)=0,∴AM ―→,CN ―→共线.
10.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE ―→=13AC ―→,BF ―→=13
BC ―→,求证:EF ―→∥AB ―→.
证明:设E ,F 的坐标分别为(x 1,y 1),(x 2,y 2),
依题意有AC ―→=(2,2),BC ―→=(-2,3),AB ―→=(4,-1).
∵AE ―→=13AC ―→,∴(x 1+1,y 1)=13
(2,2).
∴点E 的坐标为⎝⎛⎭
⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF ―→=⎝⎛⎭⎫83
,-23. 又83
×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ―→∥AB ―→. 层级二 应试能力达标
1.已知向量a =(-1,1),b =(3,m ),若a ∥(a +b ),则m =( )
A .2
B .-2
C .-3
D .3
解析:选C 因为a +b =(2,m +1),
所以-(m +1)=2,
解得m =-3.
2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )
A .13
B .-13
C .9
D .-9
解析:选D ∵A ,B ,C 三点共线,
∴AB ―→∥AC ―→,而AB ―→=(-8,8),AC ―→=(3,y +6),
∴-8(y +6)-8×3=0,解得y =-9.
3.已知向量a =(1,0),b =(0,1),c =ka +b (k ∈R),d =a -b ,如果c ∥d ,那么( )
A .k =1且c 与d 同向
B .k =1且c 与d 反向
C .k =-1且c 与d 同向
D .k =-1且c 与d 反向
解析:选D 若c ∥d ,则c =λd ,
∴(k,1)=λ(1,-1)
∴k =λ=-1,
∴k =-1,且c 与d 反向.
4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是( )
A .(1,5)或(5,5)
B .(1,5)或(-3,-5)
C .(5,-5)或(-3,-5)
D .(1,5)或(5,-5)或(-3,-5)
解析:选D 设A (-1,0),B (3,0),C (1,-5),第四个顶点为D ,
①若这个平行四边形为▱ABCD ,
则AB ―→=DC ―→,∴D (-3,-5);
②若这个平行四边形为▱ACDB ,
则AC ―→=BD ―→,∴D (5,-5);
③若这个平行四边形为▱ACBD ,
则AC ―→=DB ―→,∴D (1,5).
综上所述,D 点坐标为(1,5)或(5,-5)或(-3,-5).
5.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 解析:a -2b =(3,3),根据a -2b 与c 共线,得3k =3×3,解得k =1.
答案:1
6.已知AB ―→=(6,1),BC ―→=(4,k ),CD ―→=(2,1).若A ,C ,D 三点共线,则k =________.
解析:因为AB ―→=(6,1),BC ―→=(4,k ),CD ―→=(2,1),
所以AC ―→=AB ―→+BC ―→=(10,k +1).又A ,C ,D 三点共线,
所以AC ―→∥CD ―→,所以10×1-2(k +1)=0,解得k =4.
答案:4
7.已知A (1,1),B (3,-1),C (a ,b ).
(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;
(2)若AC ―→=2AB ―→,求点C 的坐标.
解:(1)若A ,B ,C 三点共线,则AB ―→与AC ―→共线.
AB ―→=(3,-1)-(1,1)=(2,-2),AC ―→=(a -1,b -1),
∴2(b -1)-(-2)(a -1)=0,∴a +b =2.
(2)若AC ―→=2AB ―→,则(a -1,b -1)=(4,-4),
∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧
a =5,
b =-3,
∴点C 的坐标为(5,-3).
8.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).
(1)求满足a =mb +nc 的实数m ,n 的值;
(2)若(a +kc )∥(2b -a ),求实数k 的值.
解:(1)因为a =mb +nc , 所以(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).
所以⎩⎪⎨⎪⎧ -m +4n =3,2m +n =2,解得⎩⎨⎧ m =59,n =89.
(2)因为(a +kc )∥(2b -a ),
又a +kc =(3+4k,2+k ),2b -a =(-5,2),
所以2×(3+4k )-(-5)×(2+k )=0,解得k =-1613
.。